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Abstract: Cumulative meta-analysis typically involves performing an updated meta-

analysis every time a new trial is added to a series of similar trials, which by

definition involves multiple inspections. Since the studies are often conducted at

different times with different protocols, the heterogeneity among studies is generally

not ignorable and the estimation of the between-study variation poses the biggest

challenge in cumulative meta-analyses because the testing process generally starts

with a small number of studies. This is one of the major reasons why the con-

ventional group sequential methods do not perform well in controlling the overall

type I error. This paper presents an approach − motivated by the Law of Iterated

Logarithm − that “penalizes” the Z-value of the test statistic to account for mul-

tiple tests. It also can account for estimation of heterogeneity in treatment effects

across studies and for the unpredictable nature of information from trials in a cu-

mulative meta-analysis. Our extensive simulation studies show that this method

controls the overall type I error for a very broad range of practical situations for

up to 25 inspections. An example based on data from the Stroke Unit Trialists’

Collaboration is used to illustrate the method.
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1. Introduction

Cumulative meta-analysis of clinical trials has been proposed as a statistical
tool that may facilitate the determination of clinical efficacy or harm and may be
helpful in fostering clinical recommendations for therapy (Lau, Antman, Jimenez-
Silva, Kupelnick, Mosteller and Chalmers (1992) and Antman, Lau, Kupelnick,
Mosteller and Chalmers (1992)). When trials are chronologically ordered, this
involves performing a new or updated meta-analysis every time one or more new
trials are added to a series of similar trials. The accumulation may proceed
according to the year of study completion or publication, and also according to
study size, the event rate in the control group, some quality score assigned to
each study, or other covariates such as drug dosage or trial duration (Lau, Schmid
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and Chalmers (1995)). When trials are chronologically ordered, the implied
goal of this process is to decide on the earliest time in which there is clinically
and statistically significant evidence of benefit or harm of a new intervention to
warrant its adoption or rejection.

Because it revises information in light of new information, cumulative meta-
analysis is naturally amenable to a Bayesian analysis (Lau, Schmid and Chalmers
(1995) and Stangl and Berry (2000)). From a classical (frequentist) perspective,
however, it suffers from the problem of repeated testing and an inflated overall
type I error (Berkey, Mosteller, Lau and Antman (1996), Pogue and Yusuf (1997),
Whitehead (1997), Todd (1997) and Sutton, Abrams, Jones, Sheldon and Song
(2000)). By definition, the technique involves multiple looks at accumulating
evidence. Without appropriate adjustments, even if there is no genuine treatment
effect, the process of adding trials and multiple testing will eventually lead to
statistical significance and produce a false conclusion that there is a treatment
effect.

In this manuscript, we suggest an approach − motivated by the Law of
Iterated Logarithm (Robbins (1970) and Breiman (1992, Chap. 13)) − that “pe-
nalizes” the Z-value of the test statistic to account for multiple tests (say, across
time) in a cumulative meta-analysis of a continuous endpoint, planned prospec-
tively or examined retrospectively. When applied to a random-effects model,
it also can account for estimation of heterogeneity in treatment effects across
studies. Furthermore, the methodology implicitly accounts for the unpredictable
nature of information from trials. In doing so, the method is intended to be flexi-
ble enough to allow inspections to occur at variable times and leave the maximum
amount of information unspecified.

2. Sequential Aspects

Even though interest lies mainly in two-sample comparisons we start with the
one-sample case for simplicity, and then generalize it to the two-sample case. Let
X1, . . . ,Xn be n i.i.d. observations from a normal distribution N(µ, σ2). Consider
a one-tailed test: H0 : µ = 0 versus H1 : µ > 0. For the moment, assume
σ2 = 1. Under H0, the standardized test statistic Zn = Sn/

√
n ∼ N(0, 1), where

Sn =
∑

Xi. We have P{Zn ≥ C for some n = 1, 2, . . . .} = 1 for any positive
C. Hence, if Zn is monitored sequentially and Ho is rejected when Zn ≥ C, the
probability of eventually rejecting the null hypothesis is 1.

We modify the testing sequence {Z1, . . . , Zn, . . .} to create a new sequence
{Z∗

1 , . . . , Z∗
n, . . .} so that the overall type I error rate can be maintained at the

desired level for the sequential testing process. This modification is possible by
the Law of Iterated Logarithm (LIL) which states that, under Ho : µ = 0,

P

(
lim sup

n→∞
Sn√

n ln(ln(n))
=

√
2

)
= 1. (1)
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Note that Sn/
√

n ln(ln(n)) = Zn/
√

ln(ln(n)), and (1) can be restated as

P

(
lim sup

n→∞
Zn√

ln(ln(n))
=

√
2

)
= 1. (2)

If we introduce a penalty and create an adjusted test statistic Z∗
n =

Zn/
√

ln(ln(n)), the sequence {Z∗
n} is a bounded sequence with probability 1.

When σ2 is unknown, Z∗
n needs to be normalized by an estimate σ̂ of σ.

3. Applying Z∗ Sequentially to Cumulative Meta-Analysis

In a cumulative meta-analysis, one tests µ = 0 repeatedly after each trial,
ordered sequentially by year of publication. Suppose there are nk additional
subjects observed between the (k − 1)th and the kth inspection (k = 1, . . . ,K).
The maximum number of inspections K can be large in practice and is, in prin-
ciple, unbounded. Let Z(k) be the Z-statistic of the kth inspection based on
n1 +n2 + · · ·+nk(= nck) observations up to the kth inspection. We define a new
sequence {Z∗(k)} to control the overall type I error.

3.1. The fixed effects model

The fixed effects model assumes a constant treatment effect across studies
and considers only within-study variability of treatment effect. Reconsider the
one-sample case with σ2 = 1. Equation (1) based on LIL can be modified to
arrive at the cumulative test statistic at the kth inspection:

S∗(k) =
S(k)√

λ(nck) ln(ln(nck))
, (3)

where S(k) is the sum of all nck observations and λ is an adjustment factor. The
value of λ will be determined through simulation to control the α (significance)
level under different practical scenarios.

From this point on, we focus on the more common two-sample case. Suppose
that, in the jth study, X1, . . . ,Xn1j are n1j i.i.d. N(µ1, σ

2
1j) observations from the

treatment group and Y1, . . . , Yn2j are n2j i.i.d. N(µ2, σ
2
2j) observations from the

control group. Let X̄j and Ȳj be the sample means, respectively, for treatment
and control in the jth study. In the two-sample case, we test the hypothesis
H0 : δ = µ1 − µ2 = 0 against the one-sided alternative H1 : δ > 0.

In the context of sequential analysis with two groups, (3) can be refined to
obtain the cumulative test statistic at the kth inspection:

Z∗(k) =
S(k)√

λIck ln(ln(Ick))
=

Z(k)√
λ ln(ln(Ick))

, (4)
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where Ick =
∑k

j=1 Ij =
∑k

j=1[(σ
2
1j/n1j) + (σ2

2j/n2j)]−1 is the cumulative amount
of information up to the kth inspection, and S(k) is the weighted sum: S(k) =∑k

j=1 Ij(X̄j − Ȳj). These notations represent one study per inspection. Equation
(4), though, is also valid for multiple studies per inspection by simply modifying
the weighted sum S(k) and the cumulative information Ick accordingly using
double sub-indices. The number of studies per inspection need not be constant.

3.2. The random effects model

The random effects model allows each study to have its own treatment effect
and the central value around which these individual study effects vary becomes
the overall treatment effect. Suppose that, in the jth study, the sample mean
difference Dj = X̄j − Ȳj follows a normal distribution N(∆j, σ

2
1j/n1j + σ2

2j/n2j),
where ∆j is a random variable normally distributed as N(0, τ2), in which τ2

is the population between-study variance component of treatment effects. Un-
conditionally, under the null hypothesis, Dj has mean of 0 and variance of
(σ2

1j/n1j) + (σ2
2j/n2j) + τ2. The revised test statistic, which incorporates τ2,

is

Z∗(k) =
S+(k)√

λI+
ck ln(ln(Ick))

=
Z+(k)√

λ ln(ln(Ick))
, (5)

where S+(k) =
∑k

j=1 I+
j (X̄j − Ȳj) is again the weighted estimator of the treat-

ment difference and I+
ck =

∑k
j=1 I+

j =
∑k

j=1[(σ
2
1j/n1j) + (σ2

2j/n2j) + τ2]−1 is the
cumulative information through the kth inspection. It should be noted that
Ick =

∑k
j=1 Ij =

∑k
j=1(σ

2
1j/n1j + σ2

2j/n2j)−1 is used instead of the corresponding
cumulative information I+

ck for the log-log penalty in the denominator of (5). The
reason for this is that the penalty using ln(ln(I+

ck)) will be too small for large n1j

and n2j, in which case the between-study variance τ2 is likely to dominate in I+
j .

In addition, in (4) and (5), the penalty ln(ln(Ick)) is set to 1 if it is smaller than
1 (to be conservative).

3.3. Estimation of between-study variance in random effects models

The most commonly used estimator of τ2 is the moment estimator (see, e.g.,
Shadish and Haddock (1994, Chap. 18)). For the kth inspection, the between-
study variance is estimated by

τ̂2
k =

Qk − (k − 1)∑k
j=1 Îj −

[(∑k
i=1 Î2

j

)
/
∑k

i=1 Îj

] , (6)

where Qk =
∑k

j=1 Îj(Dj − D̄
(k)
w )2 and D̄

(k)
w is the weighted average of D1, . . . ,Dk

with weights Îj. However, the estimate in (6) can be unstable and negative, with
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negative variance estimates customarily treated as zero. These shortcomings may
make the estimator in (6) biased (Brockwell and Gordon (2001)); moreover, in
our simulation, we found this estimator anti-conservative by often inflating type
I error rates. We propose to use the simple variance estimator

τ̂2
k =

1
(k − 1)

k∑
j=1

(Dj − D̄(k))2 (7)

when there are five or fewer studies, or whenever the estimate in (6) is non-
positive. The quantity D̄(k) in (7) is the simple or unweighted average of
D1, . . . ,Dk.

Equation (7) is an unbiased estimate for the total variance and therefore
overestimates the between-study variance. Yet it may be preferred to be con-
servative when the estimate (6) is wrong (non-positive) or unreliable especially
when based on a small number of studies. Actually, in some situations, this con-
servative estimator of τ2 may still need to be inflated to control overall type I
error (see Sections 4 and 5 for details).

4. Simulation Study and Results

4.1. The fixed effects model: two groups

In the simulation, the maximum number of inspections, K, was evaluated
at 5, 10, 15, 20 and 25. Testing stopped if there was significance at an in-
terim inspection or if there was no statistical significance after all K inspections.
The number of incremental subjects added to each study was simulated from
N(M,SD2). We evaluated M at 20, 40, 100, 200, 300, 400, 500, 600, 700 and
800, with two SD values for each M , SD = 1/3M or 2/3M . At least 20 new
subjects were required to be available for testing at each inspection.

We did not assume the variances in the two treatment groups were equal. We
also allowed sample variances to vary from study to study, although we assumed
the treatment effect was fixed. The sample standard deviation ratio σ2j/σ1j

was simulated from a uniform distribution over [1/2, 2], while σ2
1j for the jth

study was simulated from χ2(5)/5. Furthermore, the sample size ratio n1j/n2j

randomly varied over [0.4, 0.6] uniformly.
For each simulation scenario, the objective was to determine the λ in (4)

that gave an overall one-sided significance level of 0.025. All results were based
on 100,000 simulation replications. In all cases, the adjustment factor λ = 1.5
was found to control the overall type I error at the desired level for a maximum
number of inspections up to 25, which should cover most practical situations.
As the size of the studies increases, this adjustment factor decreases. For large
studies, that is when the combined average study size M was greater than 300,
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no such adjustment was needed and λ = 1 works. As expected, more inspections
required larger λ.

4.2. The random effects model: two groups

In addition to the common factors mentioned above for the fixed effects
model, the random effects model allowed the treatment effect to vary from study
to study. For the kth study, the treatment difference ∆k between the two treat-
ment groups was simulated from N(0, τ2), where three values of τ were evaluated:
τ = 0.2313, 0.4314 and 0.6725. A random relationship was generated between
within-study variation (σk) and cross-study variation (τ) : σk = rk · τ such that
E(σ2

k) = 1. Corresponding to the three τ values, the ratio rk was simulated
from three mixed uniform distributions: (1) mixer of U(0.1, 1) and U(1, 10); (2)
mixer of U(0.2, 1) and U(1, 5); and (3) mixer of U(0.3, 1) and U(1, 3.333), with
a probability of 0.5 for each uniform distribution in each mixer. The second
mixed uniform distribution (corresponding to τ = 0.4314) resulted in a 25-fold
difference between the largest and the smallest within-study sample standard
deviation, which was close to the example given in Section 5.

We evaluated scenarios both with one study per inspection and with multiple
studies per inspection. For the latter, the number of studies per inspection was
simulated from a Poisson (1.5) distribution; if 0 was generated, it was set to 1.
With a random number of studies per inspection, the estimate of the between-
study variance τ̂2

k needed to be multiplied by 10, 9, 8, . . . , 2 and 1 when the total
number of studies at an inspection was 2, 3, 4, . . . and 11, respectively. With
one study per inspection, these multipliers needed to be further doubled. This
enlargement of τ̂2

k is thought of as an “extra penalty.”
While our simulations were wide ranging, λ = 2 can basically control the

overall type I error in the random effects model. Table 1 presents the overall
type I error rates for several different scenarios.

Table 1. Type I error rates with λ = 2 in the two-sample continuous case
with a random effects model based on 100,000 simulation replications.

τ Range of σ/τ Maximum Inspections Maximum Type I Error Rate*
0.2313 [0.1, 10] 15 0.0219 (0.0261)

25 0.0253 (0.0276)

0.4314 [0.2, 5] 15 0.0214 (0.0247)
25 0.0235 (0.0253)

0.6725 [0.3, 3.3] 15 0.0214 (0.0246)
25 0.0231 (0.0256)

* Main entries pertain to one study per inspection and entries in parentheses
pertain to multiple studies per inspection. The main entries are smaller than the
entries in parentheses because the extra penalty on estimates of between-study
variance for the one study per inspection is double that of multiple studies per
inspection.
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4.3. Statistical power

The inflation of type I error is the main concern in cumulative meta-analyses.
Statistical power, on the other hand, may pose a lesser concern because sample
sizes are often sufficiently large, especially at the later stages of the testing pro-
cess. Our method is conservative and controls type I errors for a broad range
of practical situations simultaneously and, therefore, may be less powerful than
a method carefully calibrated for a specific situation. It is difficult to evaluate
power for our method. Nonetheless, Table 2 includes some simulation results to
impart some sense of power performance.

Table 2. Power evaluation of the LIL-based methods with λ = 2 and the
traditional random-effects method in two-sample random-effects models with
τ = 0.4314 based on 100,000 simulation replications.

Treatment Average Study Number of Type I Error Rate or Power*
Difference Size Inspections LIL Method Traditional Method

0 500 15 0.0200 (0.0234) 0.2985 (0.2810)
25 0.0217 (0.0234) 0.3183 (0.3016)

0.4 100 15 0.4869 (0.7004) 0.9615 (0.9906)
25 0.7208 (0.9099) 0.9944 (0.9997)

500 15 0.5154 (0.7511) 0.9724 (0.9956)
25 0.7511 (0.9388) 0.9968 (0.9999)

0.6 100 15 0.8506 (0.9683) 0.9986 (0.9999)
25 0.9778 (0.9989) 0.9999 (1.0000)

500 15 0.8711 (0.9788) 0.9995 (1.0000)
25 0.9824 (0.9994) 1.0000 (1.0000)

*For main entries, one study per inspection; for entries in parentheses, mul-
tiple studies per inspection.

5. Illustrative Example

A retrospective cumulative meta-analysis using LIL is illustrated with 18
randomized or quasi-randomized studies in which specialized organized inpatient
stroke units were compared with conventional care after patients suffered a stroke
(Stroke Unit Trialists’ Collaboration (1999)). The outcome of interest was the
mean (or median) length of stay (days) in a hospital or institution. Because of
substantial heterogeneity in the outcome, a random effects model was applied to
these data.

The adjusted Z values with and without the extra penalty (Table 3, columns
1 and 2, respectively) were similar for the first eleven studies (ten inspections) and
identical for the remaining seven studies (seven inspections). Because of added
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uncertainty imposed by the extra penalty, the standardized Z values with extra
penalty were closer to the null hypothesis (Z = 0) than the standardized Z values
without the extra penalty. In both situations statistical significance (Z ≤ −1.96)
was reached only after the last study in 1998, favoring the organized stroke unit
in reducing mean length of stay. Figure 1 depicts the cumulative results with
extra penalty. After 18 studies, relative to conventional care, the organized stroke
unit resulted in a significant average reduction of approximately 7.5 hospital days
(95% confidence interval, −15.0 to −0.015).

Table 3. Results of a random effects cumulative meta-analysis for stroke
example (single study per inspection): standardized test statistics∗.

Column 1 Column 2 Column 3
Study (yr) Extra Penalty Without Extra Penalty No Correction
1 (1980) — — —
2 (1982) −0.08 −0.31 −0.44
3 (1984) −0.07 −0.28 −0.35
4 (1984) −0.10 −0.40 −0.61
5 (1984) −0.11 −0.34 −0.58
6 (1985) 0.005 −0.31 −0.43
7 (1985) −0.12 −0.70 −0.97
8 (1993) −0.22 −0.64 −0.89
9 (1993) −0.40 −0.76 −1.06
10 (1993) −0.58 −1.30 −1.83
11 (1993) −1.41 −1.88 −2.65
12 (1993) −1.70 −1.70 −2.38
13 (1995) −1.73 −1.73 −2.44
14 (1996) −1.42 −1.42 −1.99
15 (1996) −1.25 −1.25 −1.76
16 (1997) −1.25 −1.25 −1.76
17 (1997) −1.60 −1.60 −2.26
18 (1998) −1.97 −1.97 −2.80
∗Standardized test statistics without extra penalty used the correction factor
λ = 2 (column 2). Standardized test statistics with no correction (column
3) made no adjustment. Standardized test statistics with extra penalty
(column 1) not only used λ = 2 but also doubled our estimates of inter-study
variability from the analysis without extra penalty. Bold-faced numbers
indicate statistical significance (Z ≤ −1.96).

On the other hand, the traditional cumulative meta-analysis gave reversal in
terms of statistical significance (Z ≤ −1.96). Statistical significance was reached
at the eleventh study (1993) and continued through the fourteenth study (1996)
(Table 3, column 3). Then the large amount of between-study heterogeneity
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resulted in lack of statistical significance for the fifteenth and sixteenth stud-
ies (1996-1997) before statistical significance reemerged, this time in the last
two studies (1997-1998). In summary, this example shows that the two modified
approaches based on LIL appeared to instill prudence before convincingly demon-
strating statistical significance, whereas the traditional approach gave unstable
results on statistical significance.

Figure 1. Applying law of iterated logarithm with extra penalty to cumu-
lative meta-analysis: stroke example.

6. Discussion

One major concern in meta-analysis is the heterogeneity among different
studies, since the studies may be conducted at different times with different
protocols. The fixed effects model, which assumes that results from all the trials
come from a hypothetically homogeneous population, may be too simple to be
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realistic. The random effects model includes a between-study variance component
τ2 in the treatment effect evaluation, but it is a challenging problem to obtain
a reliable estimate for τ2. This variance component can be estimated accurately
only if the number of studies is large. If testing in a cumulative meta-analysis
starts with a small number of studies, inaccuracies may ensue as the estimate of
τ2 tends to be extremely unstable at the beginning of the process. This difficulty
helps to explain why the overall type I error in the cumulative meta-analysis is
so hard to control through conventional group sequential methods. As shown in
another simulation study (Whitehead (1997)), the type I error rates of both the
conventional random-effects analysis and the proposed method by Whitehead can
quickly go over the pre-specified level of 0.025, even with only four inspections,
when the between-study variation is high (e.g., τ = 0.847).
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