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Abstract: In many applications of mixture experiments in medicine or biology, for

example, not only the proportions of the involved mixture ingredients, but also their

total amount is of particular interest. This calls for designs in mixture amount mod-

els, which are obtained from classical mixture setups by including terms capturing

the total amount, simultaneously dropping the sidecondition on the proportions

to sum up to one. While design optimality usually depends sensitively on the

underlying model, we establish here a close relation between admissible mixture,

and admissible mixture amount designs in additive and homogeneous models. This

particularly allows to obtain D-, A- and V -optimal mixture amount from opti-

mal mixture designs, and vice versa. We present some examples for Becker’s and

Scheffé’s mixture models.
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1. Introduction and Preliminaries

Many practical problems are associated with the investigation of mixture in-
gredients t1, . . . , tq of q factors, with ti ≥ 0, being further restricted by

∑q
i=1 ti =

1. The definitive text Cornell (1990) lists numerous examples and provides a thor-
ough discussion of both, theory and practice. Early seminal work was done by
Scheffé (1958, 1963) who suggested (1958, p.347) and analyzed canonical model
forms when the expected response y = y(t) is a multiple polynomial of degree
one, two, or three. Quenouille (1959) and others pointed out and illustrated
that alternatives for describing mixture experiments are desirable, as polynomial
models do not only have shortcomings for prediction purposes, but also do not
satisfactorily account for mixture components which are inert or have additive ef-
fects on the response. Besides that, in polynomial mixture models the regression
coefficients cannot be interpreted. For overcoming these disadvantages, Becker
(1968) proposed additive mixture models constructed from functions which are
homogeneous of the same degree (degree one, in his paper). The essential point
in these classical mixture setups is that the response is supposed to depend only
on the proportions of the involved ingredients, but not on their total amount. In
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many applications, however, the total amount is of particular interest, (due to
toxic side effects in biology or medicine, for example). For investigating whether
the blending properties of the ingredients change when the total amount of the
mixture changes, so-called component amount models were suggested, which in-
clude terms capturing the total amount, see e.g., Piepel and Cornell (1985, 1994).
Typically, the total amount of the individual components is zero in the placebo
point or control test, cf. e.g., Piepel (1988). When normalizing the maximum
total amount to one, the mixture ingredients t1, . . . , tq ≥ 0 satisfy the restriction∑q

i=1 ti ≤ 1 instead of summing to one.
Optimality properties of experimental designs usually depend sensitively on

the underlying model. Actually, when taking the total amount of the mixture
components into account, even the structure of optimal designs may change com-
pletely. The purpose of the present paper is to investigate in more detail the re-
lation between optimal designs for mixture, and for component amount models.
More precisely, we consider multifactor experiments, for q deterministic ingre-
dients that are assumed to influence the response through the percentages (or
proportions) in which they are blended together. For i = 1, . . . , q let ti ∈ [0, 1]
be the proportion of ingredient i in the mixture. As usual, we assemble the in-
dividual components to form the column vector t = (t1, . . . , tq)′ of experimental
conditions, (the prime denotes transposition). In classical mixture experiments,
the experimental domain is the (q−1)-dimensional unit simplex

Sq−1 =
{

t ∈ [ 0 , 1 ]q :
q∑

i=1

ti = 1
}

; (1.1a)

in component amount models, the experimental domain is the q-dimensional
simplex

S =
{

t ∈ [ 0 , 1 ]q :
q∑

i=1

ti ≤ 1
}

. (1.1b)

Under experimental conditions t, the response Yt is taken to be a scalar random
variable. Replications under identical conditions, or responses from distinct con-
ditions are assumed to be uncorrelated with equal (unknown) variance σ2. We
follow Becker (1968), see also Cornell and Gorman (1978), in considering, for
classical mixture experiments, an additive and homogeneous response. That is,
we start from ν permutationally invariant and continuous functions fj on the j-
dimensional simplex, all of which are homogeneous of degree one, (here, 1 ≤ ν ≤ q

is a fixed integer). Define the k-dimensional regression vector f, k =
∑ν

j=1 ( q
j ),

by

f(t) = (f1(t1), . . . , f1(tq), f2(t1, t2), . . . , f2(tq−1, tq), . . . ,

fν(t1, . . . , tν), . . . , fν(tq−ν+1, . . . , tq))
′, (1.2)
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where t = (t1, . . . , tq) ∈ S. We thus have

f(α t) = αf(t) for all 0 ≤ α ≤ 1 and all t ∈ S . (1.3a)

For avoiding trivialities we assume that the regression functions f1, . . . , fν are
linearly independent over Sq−1. Note that by homogeneity of f this particularly
implies f1(1) �= 0. Consequently, with c being the k-dimensional vector whose
first q components equal 1/f1(1) while all other components equal zero, we get

c′f(t) =
q∑

i=1

ti for all t ∈ S . (1.3b)

For classical mixture experiments, we consider the linear regression model M for
the expected response

M : E[Yt ] = θ′f(t) , t ∈ Sq−1 , (1.4a)

where, as usual, θ is viewed as an unknown k-dimensional mean parameter vector.
The corresponding component amount models M̃ is obtained by including the
constant 1 into the regression model, simultaneously enlarging the experimental
domain from Sq−1 to S,

M̃ : E[Yt ] = ϑ0 + θ′f(t) = θ̃′f̃(t), say, t ∈ S ; (1.4b)

(henceforth, a tilde in our notation refers to a mixture amount setting related to a
mixture model via (1.4b)). Becker (1968) proposed three particular homogeneous
mixture models H1, H2, H3 with (1.3a-b),

H1 : E[Yt] =
q∑

i=1

ϑiti +
∑

1≤i<j≤q

ϑij min{ti, tj} + · · ·

+
∑

1≤i1<···<iν≤q

ϑi1···iν min{ti1 , . . . , tiν},

H2 : E[Yt] =
q∑

i=1

ϑi ti +
∑

1≤i<j≤q

ϑij
titj

ti + tj
+ · · ·

+
∑

1≤i1<···<iν≤q

ϑi1···iν
ti1 · · · tiν

(ti1 + · · · + tiν )ν−1
,

H3 : E[Yt] =
q∑

i=1

ϑi ti +
∑

1≤i<j≤q

ϑij (titj)1/2 + · · ·

+
∑

1≤i1<···<iν≤q

ϑi1···iν (ti1 · · · tiν )1/ν ,
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where t ∈ Sq−1; if in model H2 any denominator is zero, the value of the corre-
sponding term is taken to be zero. For discussions on these models see for instance
Snee (1973) and Becker (1978). We also refer to Draper and Pukelsheim (1998a,
b) for detailed investigations of homogeneous mixture polynomials.

An experimental design ξ is a probability measure (on the experimental
domain) having a finite number of support points. If ξ assigns weights w1, w2, . . .

to its points of support, then the experimenter is directed to draw proportions
w1, w2, . . . of all observations under the respective experimental conditions. With
a mixture design ξ on Sq−1 we associate its moment matrix, (in model (1.4a)),

M(ξ) =
∫

Sq−1
f(t)f ′(t) d ξ(t) ; (1.5a)

similarly, for a mixture amount design ξ̃ on S, its moment matrix in model (1.4b)
is

M̃(ξ̃) =
∫
S

f̃(t)f̃ ′(t) d ξ̃(t) . (1.5b)

Of course, any mixture design ξ on Sq−1 may be viewed as a mixture amount
design. Then, the moment matrix M(ξ) is a principal submatrix of M̃(ξ),

M̃ (ξ) =

(
1 m(ξ)′

m(ξ) M(ξ)

)
, with m(ξ) =

∫
Sq−1

f(t) d ξ(t) . (1.6)

Let c be the k-dimensional vector from (1.3b), and define the k×(k+1) matrix
C = (c | Ik), with Ik being the identity in IRk× k. Then c′f(t) ≡ 1 on Sq−1, hence
M(ξ) c = m(ξ) and c′M(ξ) c = 1, and (1.6) rewrites to

M̃(ξ) = C ′M(ξ)C for all mixture designs ξ on Sq−1 . (1.7)

Homogeneity of the regression functions f and the relations (1.6) and (1.7) be-
tween the moment matrices are the fundamentals for our analysis:

In Section 2 we show that for many optimality criteria (namely, for all
Loewner monotonic criteria), optimal mixture amount designs are supported by
the origin and by Sq−1, only. Moreover, for specific criteria (among those are
D-, A- and V -optimality), Proposition 2 establishes a simple method for con-
structing optimal mixture amount designs from optimal mixture ones (and vice
versa): We only have to adjust the weight to be assigned to the origin, while −
up to normalization − the weights assigned to support points from Sq−1 remain
unchanged.

The results unify and extend some of the known results on optimal mixture
and mixture amount designs, as illustrated in Section 3. We comment on these



MIXTURE DESIGNS 713

results, and end up with some examples and counterexamples, demonstrating the
power and limitations of the results.

2. An Admissibility Result

Design optimality usually aims at maximizing the moment matrices of de-
signs in the sense of a statistically meaningful optimality criterion ϕ. Such a
criterion is a IR-valued function, defined on the set of competing moment ma-
trices, being isotonic w.r.t. the Loewner partial ordering, i.e., A ≥L B implies
ϕ(A) ≥ ϕ(B); (the Loewner partial ordering is defined by A ≥L B iff A − B is
nonnegative definite). Mostly, determining ϕ-optimal designs is a difficult task,
even when the optimization is done numerically. Therefore the question arises
whether there are possibilities to restrict the search for a maximizing ξ to sub-
classes of designs.

One suitable subclass in this sense is formed by the admissible designs, where
admissibility of a design ξ means that its moment matrix cannot be properly
improved upon (w.r.t. the Loewner partial ordering) by the moment matrix of
another design. That is, ξ is admissible iff for any other design τ, M(τ) ≥L M(ξ)
implies M(τ) = M(ξ), cf. e.g., Ehrenfeld (1956). Note that admissibility of a
design depends on the underlying regression model.

In the mixture and component amount models (1.4a, b), continuity of the
respective regression vectors and compactness of the experimental domains entail
compactness of the associated sets of moment matrices of designs, and thereby
it is not hard to see that in both models admissible designs exist, and, moreover,
any design can be improved upon by an admissible one, (see Heiligers (1991,
Lemma 1)). Actually, there is a close relation between the admissible mixture,
and the admissible mixture amount designs.

Given t ∈ S, we denote by δt the one-point design which assigns its mass to
t only.

Proposition 1. Let the regression functions f be homogeneous of degree one
over S. The set

C̃ = { ξ̃ : ξ̃ is a design on S with supp (ξ̃) ⊂ {0} ∪ Sq−1 } (2.1)

is a complete class of mixture amount designs, i.e., the moment matrix of any
mixture amount design not in C̃ can properly be improved upon by that of a
design from C̃. Moreover, under model (1.4b) the mixture amount design ξ̃ on S
is admissible iff it decomposes into

ξ̃ = αδ0 + (1 − α) ξ (2.2)

with some 0 ≤ α ≤ 1 and some admissible mixture design ξ on Sq−1, (here,
admissibility of ξ refers to model (1.4a)).
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Proof. (a) We start with verifying completeness of the class C̃ from (2.1). To this
end, let s ∈ S with s �= 0 and s �∈ Sq−1. It suffices to show that the corresponding
one-point design δs can properly be improved upon by a mixture amount design
from C̃.

Let α = 1−∑q
i=1 si, thus 0 < α < 1, and define t = (1−α)−1 s ∈ Sq−1.

Consider the two-point design ξ̃ ∈ C̃ given by ξ̃ = α δ0 + (1−α) δt. Observing
that f(0) = 0 and f(s) = (1−α) f(t) �= 0, see (1.3a, b), we find

M̃ (ξ̃) − M̃(δs) = α f̃(0)f̃ ′(0) + (1−α) f̃(t)f̃ ′(t) − f̃(s)f̃ ′(s)

= α

(
1 01× k

0k× 1 0k × k

)
+(1−α)

(
1 f ′(t)

f(t) f(t)f ′(t)

)
−
(

1 f ′(s)

f(s) f(s)f ′(s)

)

= (α−α2)

(
0 01× k

0k × 1 f(t)f ′(t)

)
= D, say;

here, 0k × 1 and 0k × k denote the zero vector and zero matrix in IRk and IRk× k,
respectively. Obviously, D is nonnegative definite. Moreover, since 0 < α < 1
and f(t) �= 0, we conclude D �= 0, and ξ̃ properly improves upon δs.
(b) We show that the one-point design δ0 in 0 is admissible under the component
amount model (1.4b). For, let ξ̃ be a mixture amount design with M̃(ξ̃) ≥L

M̃(δ0). Since the regression vector f̃ = (1 , f ′)′ contains the constant term 1,
Loewner comparability of the moment matrices ensures that

0k × 1 =
∫
S

f(t) d δ̃0(t) =
∫
S

f(t) d ξ̃(t), (2.3)

see Theorem 2 in Heiligers (1991), see also Lemma 3.3 in Gaffke and Heiligers
(1996a). Multiplying (2.3) from the left by c′, with c from (1.3b), gives

0 =
∑

t∈supp (ξ̃)

ξ̃(t) c′f(t) =
∑

t∈supp (ξ̃)

(
ξ̃(t)

q∑
i=1

ti
)

.

Because of
∑q

i=1 ti ≥ 0 for all t = (t1, . . . , tq)′ ∈ supp (ξ̃), with equality only if
t = 0q × 1, it follows that ξ̃ is the one-point measure in 0, and δ0 is admissible.
(c) Let ξ̃ �= δ0 be an admissible mixture amount design, thus ξ̃ is of the form
(2.2) with some 0 ≤ α < 1 and some mixture design ξ. We show admissibility of
ξ under the mixture model (1.4a).

Consider a design τ on Sq−1 with M(τ) ≥L M(ξ), and define the mixture
amount design τ̃ = α δ0 + (1−α) τ . From (1.7), applied to τ , we get M̃(τ̃ ) =
αM̃(δ0)+(1−α)C ′M(τ)C, and similarly, again applying (1.7), M̃ (ξ̃) = αM̃ (δ0)+
(1−α)C ′M(ξ)C. Consequently, the matrix D̃ = M̃(τ̃ )−M̃(ξ̃) = (1−α)C ′(M(τ)−
M(ξ))C is nonnegative definite, and therefore, due to admissibility of ξ̃, it equals
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zero. Since M(τ) − M(ξ) is a diagonal submatrix of D̃, it follows that M(τ) =
M(ξ), ensuring admissibility of ξ.
(d) Let ξ be an admissible mixture design on Sq−1, and let 0 ≤ α ≤ 1. We prove
admissibility (in model (1.4b)) of ξ̃ = αδ0 + (1−α) ξ.

In virtue of part (b) it suffices to consider the case of α < 1. Let τ̃ be an
admissible mixture amount design with M̃(τ̃) ≥L M̃(ξ̃), (such a design τ̃ exists,
see Lemma 1 in Heiligers (1991)). By parts (a) (and (c)), τ̃ = βδ0 + (1−β) τ

with some 0 ≤ β ≤ 1 and some (admissible) mixture design τ on Sq−1. From
Theorem 2 in Heiligers (1991) we conclude∫

S
f(t) d τ̃(t)

(
= (1−β)m(τ)

)
(2.4)

=
∫
S

f(t) d ξ̃(t)
(

= (1−α)m(ξ)
)
,∫

S
f(t)f ′(t) d τ̃(t)

(
= (1−β)M(τ)

)
(2.5)

≥L

∫
S

f(t)f ′(t) d ξ̃(t)
(

= (1−α)M(ξ)
)

.

Let the vector c and the matrix C be as before. Multiplication of (2.4) by c′ from
the left directly yields (1−β) = (1−α). From (2.5) we hence get M(τ) ≥L M(ξ),
and therefore, observing admissibility of ξ, M(τ) = M(ξ). Since τ̃ is admissible,
the identity M̃(τ̃ ) = βM̃(δ0) + (1−β)C ′M(τ)C = αM̃(δ0) + (1−α)C ′M(ξ)C =
M̃(ξ̃), cf. (1.7), now entails admissibility of ξ̃.

By obvious modifications in the proof to Proposition 1 it is seen that the
assertions remain valid if the regression vector f is not homogeneous of degree
one, but of degree p ≥ 1, i.e., f(α t) = αpf(t) for all 0 ≤ α ≤ 1 and t ∈ S. Hence,
for example, in the quadratic Scheffé (and Kronecker) settings, the results from
Draper, Heiligers and Pukelsheim (1999, 2000) ensure that the permutationally
invariant and admissible mixture amount designs are supported by 0 and by
barycenters of Sq−1, only; see also Theorem 4.4 of the latter paper for a smaller
essentially complete class of admissible designs.

Usually, design admissibility does not imply any statistically meaningful op-
timality property, (see, however, Pukelsheim (1993), Chapter 10, for some opti-
mality properties), but may be viewed only as a fundamental property, outruling
the most inefficient designs. That is because admissibility depends on the design
support only, but not on the associated weights, see e.g., Karlin and Studden
(1966), Theorem 7.2. Moreover, although by Proposition 1 the reasonable mix-
ture amount designs have the origin as the only possible support point outside
the unit simplex Sq−1, this in general does not mean or imply that optimal mix-
ture amount designs are directly obtainable from optimal mixture designs by
adjusting the weight α assigned to 0 only. Nevertheless, Proposition 1 allows to
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derive simple transformation rules for the important and popular D-, A-, and V-
criteria, (the latter is also called I-criterion), which aim at minimizing the respec-
tive generalized variance, average variance of parameter estimates, and average
variance of the predicted regression function over the experimental region, see
e.g., Atkinson and Donev (1992, Chapter 10), or Pukelsheim (1993, Chapter 6),
see also Studden (1977).

Proposition 2. Suppose that the regression functions f from (1.4b) are ho-
mogeneous of degree one over S. Then the mixture amount design ξ̃∗ in model
(1.4b) is D-optimal (A-optimal, V-optimal) iff ξ̃∗ = α∗ δ0 + (1−α∗) ξ∗, where
ξ∗ is a D-optimal (A-optimal, V-optimal) mixture design in model (1.4a), and
α∗ = (1+

√
β∗)−1 with

β∗ =



k2 , for D-optimality,

1
1+c′c trace[M−1(ξA) ] , for A-optimality, (ξA = ξ∗),

(q+1)!
2

∫
Sq−1

f ′(u)M−1(ξV )f(u)du1 · · · duq−1, for V-optimality, (ξV = ξ∗).

Proof. Consider a mixture amount design ξ̃ = α δ0 +(1−α) ξ from the complete
class C̃ (2.1). Abbreviating M̃ = M̃(ξ̃), M = M(ξ), and m = m(ξ), we find

M̃ =

(
1 (1−α)m′

(1−α)m (1−α)M

)
,

see (1.7). Recall that m = M c, hence m′M+m = c′Mc = 1, where M+ is the
Moore-Penrose inverse of M . We hence compute

det[M̃ ] = (1 − (1−α)m′M+m) det[(1−α)M ] = α (1−α)k det[M ] , (2.6)

see e.g., Theorem 13.3.8 and Section 14.8 in Harville (1997). It particularly
follows that M̃ is nonsingular iff M is nonsingular and 0 < α < 1. Moreover, if
M̃ is nonsingular, and consequently c = M−1m, then

M̃−1 =
1
α

(
1 −c′

−c cc′ + α
1−αM−1

)
,

and, obviously,

trace[M̃−1] =
1 + c′c

α
+

1
1−α

trace[M−1]. (2.7)

Finally, for the (k + 1)×(k + 1) matrix F̃ =
∫
S f̃(s)f̃ ′(s) ds, homogeneity of the

regression vector f implies

F̃ =
∫

Sq−1

 1
q

1
q+1 f ′(u)

1
q+1 f(u) 1

q+2 f(u)f ′(u)

 du1 · · · duq−1 .
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Utilizing the formula
∫
Sq−1 1du1 · · · duq−1 = 1/(q−1)!, and observing that c′f(u) ≡

1 on Sq−1, we therefore compute∫
S

f̃ ′(s)M̃−1f̃(s) d s = trace[M̃−1F̃ ]

=
2

α (q+2)!
+

1
(1−α) (q+2)

∫
Sq−1

f ′(u)M−1f(u) du1 · · · duq−1 . (2.8)

Since the D-, A-, and V-criterion are strictly monotonic w.r.t. the Loewner par-
tial ordering, the optimal mixture amount designs are admissible, and thus, by
Proposition 1, they belong to the complete class C̃. The assertions now follow
from (2.6), (2.7) and (2.8) by straightforward computations.

A more stringent version of Proposition 2 carries over to linear optimality
for the linear parameter function ÃΘ̃, with some fixed Ã = (a |A) ∈ IRr ×(k+1);
(as special cases, these criteria lead to A-, and V-optimality, when Ã = Ik+1 and
Ã = F̃ , respectively, and to scalar optimality, when r = 1). Then, arguing as in
the proof to Proposition 2, we obtain for ξ̃ = α δ0 + (1−α) ξ ∈ C̃, trace[L̃M̃−1] =
(1/α)(l11 − 2l′1c + c′Lc) + [1/(1 − α)]trace[LM−1]. with L̃, l11, l1 and L defined
by

L̃ =

(
l11 l′1
l1 L

)
= Ã′Ã.

Note however that, depending on Ã, a linear optimal design need not even
belong to the complete class C̃, but of course, among the optimal designs, there
is an admissible one.

It follows, that ξ̃ = α δ0 + (1−α) ξ ∈ C̃ is linear optimal for ÃΘ̃ (among all
mixture amount designs) iff ξ is linear optimal for AΘ and α = (1+

√
β)−1, with

β = (trace[AM−1 A′]/(a′a − 2a′Ac + c′A′Ac)−1. Consequently, given a linear
optimal mixture design ξ for AΘ, an optimal mitxure amount design for (a |A)Θ̃
is directly obtainable. Conversely, for obtaining a linear optimal mixture design
for AΘ from an optimal mixture amount design ξ̃ for (a |A)Θ̃ we firstly have
to find an optimal design in the complete class C̃. This one can be constructed
by the method utilized in the proof to part (a) of Proposition 1; an explicit
description, however, is somewhat technical in details, and we therefore omit it.

3. Examples and Discussions

Of course, an application of Proposition 2 for determining D-, A- or V-
optimal designs on S (resp. on Sq−1) requires knowledge of the optimal ones
on Sq−1 (resp. S). In most setups, the optimal mixture or mixture amount
designs have to be computed numerically. Regarding this problem we found in
our numerical examples that the Quasi-Newton method proposed by Gaffke and
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Heiligers (1996a), see also Gaffke and Heiligers (1996b), is remarkably stable, and
shows an excellent convergence behavior. We omit the details; instead we will
focus here on examples where explicit results on optimal designs are available.

Becker models
For the quadratic (ν = 2) Becker models H1, H2, H3 from Section 1 in two

variables (q = 2), the D-optimal designs are given in Hilgers (1991, p.200), see
also Liu and Neudecker (1997, Theorem 3), and for Becker’s minimum model
H1 with q = ν ≥ 2 in Hilgers (2000, Theorem 2.1). From these results and
our Proposition 2 we directly obtain, (see also Hilgers (1991, p.197), and Hilgers
(1999, Lemma 2.1)),

Corollary 3.
(a) For model H̃1 with ν = q ≥ 2, the D-optimal mixture amount design assigns

equal mass αD = 1/2q to 0 and to all barycenters of Sq−1 up to depth q.
(b) For models H̃2 and H̃3 with ν = q = 2, the D-optimal mixture amount design

assigns equal mass αD = 1/4 to (0 , 0), (1 , 0), (0 , 1) and (1/2 , 1/2).

In the minimum model H̃1 with ν < q it is known that the D-optimal mixture
amount design does not spread its mass uniformly to 0 and to the barycenters of
Sq−1 of depth up to ν, cf. Hilgers (2000, Theorem 2.1). However, from Lemma
2.1 in that paper, combined with our Proposition 2, it follows that the optimal
design assigns its mass to 0 and to the barycenters of Sq−1 up to depth q, and
hence the D-optimal design problem becomes an allocation problem. Numerical
results, for 2 ≤ ν < q ≤ 5, are easily derived from Table 1 in Hilgers (2000).

Liu and Neudecker (1997) also obtain A- and V-optimal allocation designs on
Sq−1 for models H1, H2, H3, i.e., they solve the design problems within the spe-
cific subclass of designs being supported by the barycenters of Sq−1 up to depth ν.
Actually, the general equivalence theory for optimal designs, see e.g., Pukelsheim
(1993, Section 7), ensures that for the minimum model H1 the A- and V-optimal
designs are concentrated on the barycenters of Sq−1 only, (combine the reasoning
as in Atwood (1969, Theorem 2.1), with symmetry arguments as in Farrell, Kiefer
and Walbran (1967, p.119), for example). Hence, the optimal allocation design
for model H1 with ν = q from Theorem 1 and Theorem 4 in Liu and Neudecker
(1997) are in fact optimal among all designs.

Corollary 4. For model H̃1 with ν = q ≥ 2,
(a) the A-optimal mixture amount design assigns mass αA = (

√
1+q + q(1+√

2)q−1)−1 to 0, and mass αA·
√

d2 2q−d/(1+q) to each barycenter of Sq−1 of
depth d, 1 ≤ d ≤ q;

(b) the V-optimal mixture amount design assigns mass αV = (1+
∑q

d=1

√
( q

d ))−1

to 0, and mass αV ·
√

1/( q
d) to each barycenter of Sq−1 of depth d, 1 ≤ d ≤ q.
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Proof. The assertions follow by some lengthy computations from Proposition 2,
combined with Theorems 1 and 4 in Liu and Neudecker (1997), or directly from
Corollary 1 in Pukelsheim and Torsney (1991), observing that the collocation
matrix built in the f̃ vector evaluated at 0 and all barycenters of Sq−1 is a
principal block-triangular matrix, whose inverse can be explicitly determined,
(see the appendix in Liu and Neudecker (1997)).

As one might have expected, the optimal weight assigned to 0 monotonously
tends to zero with an increasing number q of mixture ingredients; Figure 1 dis-
plays the weights for some values of q. Thus, for large q, the optimal mixture
amount designs mimic their respective mixture counterparts. This, however, is
not true for all setups and all criteria, (see the E-optimal design for the 1-tic
model in Hilgers and Bauer (1995, p.245)).

Figure 1. Weight α assigned to 0 by an optimal mixture amount design for
the minimum model H̃1 with q = 2, . . . , 10. The crosses, stars, and diamonds
give the respective D-, A-, and V-optimal weights from Corollaries 3 and 4.

Scheffé’s ν-tic model

The regression vector f in the ν-tic model with ν ≥ 2,

Sν : E[Yt ] =
ν∑

�=1

∑
1≤i1<···<i�≤q

ϑi1···i�
�∏

j=1

tij , t ∈ Sq−1,

does obviously not satisfy our basic homogenity assumptions (1.3a), and hence
the Transformation Proposition 2 is not directly applicable for obtaining optimal
ν-tic amount designs. The arguments given in the proof to this proposition,
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however, ensure that the assertions remain valid if the following conditions hold:

The optimal mixture amount design is concentrated on 0 ∪ Sq−1. (3.1a)

The regression vector f(in the mixture model) satisfies
(3.1b)

(i) f(0) = 0, and (ii) c′f ≡ 1 on Sq−1 for some vector c.

Note that for D-optimality, part (ii) of condition (3.1b) may be replaced by the
assumption m′Mm = 1 for all mixture designs ξ, see formulae (2.6) in the proof
to Proposition 2.

Both conditions are satisfied in the ν-tic model: For, validity of (3.1b) is
obvious; property (3.1a) follows from Lemma 2.1 in Hilgers and Bauer (1995)
for the D-criterion. Indeed, the arguments given there carry over to the A- and
V-criterion, (and, more gernerally, to any strictly Loewner isotonic optimality
criterion).

Corollary 5.
(a) For the ν-tic component amount model with ν = 2, ν = 3 or ν = q, the

D-optimal design assigns equal mass to the origin 0 and to all barycenters of
Sq−1 of depth up to ν.

(b) For the q-tic component amount model (ν = q), the A-optimal design assigns
mass αA = (1+q 2q/2(1+

√
2)q−1)−1 to the origin 0, and masses αA ·d 2(q−d)/2

to each barycenter of Sq−1 of depth d, 1 ≤ d ≤ q.

Proof. We outline the proof. The statements on D-optimality follow immedi-
ately from our (modified) Proposition 2, combined with the known results on
optimal mixture design, given in Atwood (1969), Theorem 2.4, Kiefer (1961),
Section 5 and Uranisi (1964), Theorem 2. Regarding A-optimality, we remark
that the optimal mixture design (in the q-tic model) is saturated, and hence it
can be constructed by applying Corollary 1 in Pukelsheim and Torsney (1991),
(see also the appendix in Liu and Neudecker (1995) for the inverse of the col-
location matrix). The A-optimal mixture amount design is then obtained from
Proposition 2.

It should be noted that part (a) of Corollary 5 restates partially Theorem 2.1
in Hilgers and Bauer (1995). We also note that the V-optimal design in the q-tic
component amount model can be obtained from Theorem 2 in Liu and Neudecker
(1995); the description, however, is somewhat technical, and is therefore omitted.

Counterexamples

From the following three examples it transpires that in general neither (3.1a)
nor (3.1b) can be omitted without affecting validity of Proposition 2. Our first
example refers to a model satisfying the basic homogenity assumptions (1.3a)
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but violating (1.3b). Consider the mixture and mixture amount setups f(t) =
(min{t1, t2},min{t1, t3},min{t2, t3})′ , t ∈ Sq−1 and f̃(t) = (1,min{t1, t2},min
{t1, t3}, min{t2, t3})′, t ∈ S. Note that the regression vector f is homogeneous of
degree 1 and f(0) = 0, but no nontrivial linear transformation of f is constant
over Sq−1. Using the famous Kiefer and Wolfowitz (1960) equivalence theorem,
a little algebra shows that the design

ξD(x) =


8
27

, if x = (1/2 , 1/2 , 0) or a permutation thereof,

3
27

, if x = (1/3 , 1/3 , 1/3) ,

is the D-optimal design mixture design. However, the design ξ̃0 = (1/4) δ0 +
(3/4) ξD derived therefrom by applying Proposition 2 is not D-optimal in the
corresponding mixture amount setup. For, here we have

(M̃(ξ̃0))
−1 =

1
131


180 −252 −252 −252

−252 6012 1062 1062
−252 1062 6012 1062
−252 1062 1062 6012

 ,

hence, abbreviating g(x) = f̃ ′(x)(M̃(ξ̃0))
−1f̃(x), we find maxx∈S g(x) ≥ g(1/3,

1/3, 1/3) = 972/131 > 4 and the equivalence theorem for D-optimality entails
non-optimality of ξ̃0. In fact, it can be shown that

ξ̃D(x) =



1
6

, if x = (0 , 0 , 0) ,

2
9

, if x = (1/2 , 1/2 , 0) or a permutation thereof ,

1
6

, if x = (1/3 , 1/3 , 1/3) .

is the D-optimal design in the corresponding mixture amount setup.

Next we demonstrate that in a setups satisfying (3.1a) but violating (3.1b),
the optimal mixture amount design is not necessarily a convex combination of
the one-point design in 0 and of the corresponding optimal mixture design. To
this end, we consider the A-optimal design problem for the mixture and mixture
amount setups f(t) = (t1t2, t1t3, t2t3)′, t ∈ Sq−1 and f̃(t) = (1, t1t2, t1t3, t2t3)′,
t ∈ S. Note that the regression vector f is homogeneous of degree 2, and hence
by Proposition 1 condition (3.1a) is fulfilled. Obviously f(0) = 0, but no non-
trivial linear transformation of f is constant over Sq−1. Based on the equivalence
theorem for A-optimality, cf. e.g., Kiefer (1974), a little algebra shows that the
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uniform design ξA on the barycenters of Sq−1 of depth 2 is the optimal mixture de-
sign, (actually, ξA is uniformly optimal for all permutationally invariant and con-
cave criteria). Moreover, utilizing Corollary 1 in Pukelsheim and Torsney (1991),
it is not hard to see that the mixture amount design ξ̃0 = (7/19) δ0 + (12/19) ξA

is A-optimal among all convex combinations of δ0 and ξA, and

(M̃(ξ̃0))
−2 =

1
7


2527 −15884 −15884 −15884

−15884 127072 86640 86640
−15884 86640 127072 86640
−15884 86640 86640 127072

 .

Abbreviating g(x)= f̃ ′(x)(M̃(ξ̃0))
−2f̃(x), we find maxx∈S g(x)≥g(1/3, 1/3, 1/3)

= 82669/189 > 361 = max
x∈supp (ξ̃0)

g(x), and the equivalence theorem for A-

optimality entails non-optimality of ξ̃0. In fact, it can be shown here that the
A-optimal design is a five-point design, supported by 0 and the barycenters of
Sq−1 of depth 2 and 3,

ξ̃A(x) ≈


0.35307 , if x = (0 , 0 , 0) ,

0.19927 , if x = (1/2 , 1/2 , 0) or a permutation thereof ,

0.04913 , if x = (1/3 , 1/3 , 1/3) .

Finally, we show that in non-homogeneous setups satisfying (3.1b), an op-
timal mixture amount design does not necessarily satisfy (3.1a). To this end,
consider D-optimality in the quadratic Darroch and Waller (1985) mixture model
in q = 3 variables,

f(t) = (t1 , t2 , t3 , t1(1−t1) , t2(1−t2) , t3(1−t3))
′, t ∈ Sq−1 ,

and in the corresponding component amount model,

f̃(t) = (1 , t1 , t2 , t3 , t1(1−t1) , t2(1−t2) , t3(1−t3))
′, t ∈ S .

Obviously, property (3.1b) is met, taking c = (1 , 1 , 1 , 0 , 0 , 0)′ in part (ii). Note
that the regression vector f is not homogeneous (of any degree p ≥ 1), and
hence Proposition 1 does not ensure that an optimal (admissible) design fulfills
(3.1a). (Actually, from Lemma 1 in Heiligers (1991) and Corollary 1 in Heiligers
(1992), see also Lemma 4.1 in Gaffke and Heiligers (1996), it follows that for
any admissible and permutationally invariant mixture amount design the only
possible support points are the origin 0, the barycenters of Sq−1, and multiples in
S of these barycenters, (at most one in the relative interior of the line segments
joining the origin with the individual barycenters)).
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By Kiefer and Wolfowitz (1960), it is not hard to see that the D-optimal
mixture design on Sq−1 gives equal mass 1/6 to the barycenters of Sq−1 of depth
1 and 2, (see also Kiefer (1961), and Zhang and Guan (1992)). Hence, if (3.1a)
would be satisfied, then the uniform design ξ̃0 supported by 0 and the barycenters
of Sq−1 of depth 1 and 2 would be D-optimal. However, for ξ̃0 we compute

(M̃(ξ̃0))
−1 =



7 −7 −7 −7 0 0 0
−7 14 7 7 −14 0 0
−7 7 14 7 0 −14 0
−7 7 7 14 0 0 −14

0 −14 0 0 112 −28 −28
0 0 −14 0 −28 112 −28
0 0 0 −14 −28 −28 112


,

and, abbreviating g(x) = f̃ ′(x)(M̃(ξ̃0))
−1f̃(x), maxx∈S g(x) ≥ g(1/3 , 0 , 0) =

595/81 > max
x∈supp (ξ̃0)

g(x) = 7. Consequently, by the Kiefer and Wolfowitz

Theorem, ξ̃0 is not D-optimal, and therefore (3.1a) is not fulfilled in this setup.
Actually, by numerical computations, the D-optimal mixture amount design hav-
ing guaranteed D-efficiency ≥ 1−10−7 for the Darroch-Waller model is found to
be

ξ̃D(x) ≈



0.11341 , if x = (0 , 0 , 0) ,

0.14268 , if x = (1 , 0 , 0) or a permuation thereof ,

0.12584 , if x = (1/2 , 1/2 , 0) or a permutation thereof ,

0.02701 , if x = (0.38245 , 0 , 0) or a permuation thereof .

We note that for the Darroch-Waller model with q ≥ 4, there is much numerical
evidence that the D-optimal mixture amount design satisfies (3.1a), at least for
q ≤ 20. However, we do not have a theoretical explanation for this observation.
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