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Abstract: A novel combinatorial criterion, called minimum moment aberration, is
proposed for assessing the goodness of nonregular designs and supersaturated de-
signs. The new criterion, which is to sequentially minimize the power moments of
the number of coincidences among runs, is a surrogate with tremendous compu-
tational advantages for many statistically justified criteria, such as minimum Ga-
aberration, generalized minimum aberration and E(s?). In addition, the minimum
moment aberration is conceptually simple and convenient for theoretical develop-
ment. The general theory developed here not only unifies several results, but also
provides novel results on nonregular and supersaturated designs.
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1. Introduction

Nonregular designs are used widely in experiments due to their run size
economy and flexibility (Wu and Hamada (2000)). These designs include the
Plackett-Burman designs (with run size not a power of two) and many other
symmetrical and asymmetrical orthogonal arrays, as described in Dey and Muk-
erjee (1999), Hedayat, Sloane and Stufken (1999) and Wu and Hamada (2000).
Nonregular designs are traditionally used for screening main effects only. Hamada
and Wu (1992) proposed an analysis strategy to demonstrate that some interac-
tion effects in such designs can also be entertained and estimated. The success
of their analysis strategy is due to the fact that nonregular designs have some
hidden projection properties (Wang and Wu (1995)). Recently generalized min-
imum aberration (GMA) criteria have been proposed for assessing nonregular
designs, see Deng and Tang (1999), Tang and Deng (1999), Xu and Wu (2001)
and Ma and Fang (2001). GMA designs are model robust in the sense that they
tend to minimize the contamination of non-negligible two-factor and higher-order
interactions on the estimation of the main effects (Tang and Deng (1999) and Xu
and Wu (2001)).

Supersaturated designs have become increasingly popular in recent years
because of their potential for saving run size and their technical novelty. A
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popular criterion in the supersaturated design literature is the F(s?) criterion
(Booth and Cox (1962)), which is limited to the two-level case. Extensions to the
multi-level case are not unique. One extension is an average x? statistic (Yamada
and Lin (1999)), which measures the goodness of a three-level supersaturated
design. Another extension is the GMA criterion (Xu and Wu (2001)), which
can assess the goodness of general supersaturated designs (including mixed-level
cases). However, although some general results are available for the two-level
case, there are no general optimality results, due to the complexity of the design
problem itself and the lack of proper tools.

Computation is an important issue for both nonregular and supersaturated
designs since there are many potential designs and they do not have a unified
description. The GMA criterion has a major drawback in this regard. It is
expensive to compute, because its definition involves a complicated coding of
factorial effects that include all main effects and interactions.

The purpose of this paper is to propose a new criterion that is conceptually
simple and computationally cheap. The key innovation is to investigate the rela-
tionship between runs (i.e., rows), instead of studying the relationship between
factors (i.e., columns). The new criterion, called minimum moment aberration,
sequentially minimizes the power moments of the number of coincidences among
runs. Avoiding the complex coding of factorial effects, it offers tremendous sav-
ings in computation over the GMA criterion. The conceptual simplicity of the
new criterion allows us to investigate some hard problems in depth. Sufficient
conditions are given to show when a design has minimum moment aberration, and
a unified theory is developed for nonregular and supersaturated designs which
includes several results in the literature as special cases.

The paper is organized as follows. Preliminary notation and results are given
in Section 2. The minimum moment aberration criterion is introduced in Section
3, and a unified theory is developed for nonregular and supersaturated designs in
Section 4. Applications and extensions of the new concept and theory are given
in Section 5 and Section 6, respectively. For simplicity of presentation, all proofs
are given in an appendix.

2. Preliminary Notation and Results

For a set S, let |S| be its cardinality. For an integer k > 0, let (}) =
z(x —1)---(x — k4 1)/k!, with (5) = 1 and (;) = 0if k¥ < 0. For integers
k,7 >0, let S(k,j) be a Stirling number of the second kind, i.e., the number of
ways of partitioning a set of k elements into j nonempty sets. It is well known
that S(k,j) = (1/5!) S27_o(=1)77(})i* for k > j > 0. We take 0° = 1.

For a real number z, let | x| be the largest integer that does not exceed z. For
integers m,n > 0, let h(m,n) = |m/n|?*n+ (2|m/n] +1)(m — [m/n|n). Clearly



MINIMUM MOMENT ABERRATION 693

h(m,n) = m?/n if m is a multiple of n. The following minimization problem,
related to h(m,n), is elementary and quite useful in the theoretical development
for the minimum moment aberration.

Lemma 1. Suppose that x1,...,x, are nonnegative integers and that > x; = m.
Then S x? > h(m,n) with equality if and only if all z; equals [m/n] or |[m/n]+1.

An asymmetrical (or mixed-level) design of N runs, n factors and levels
S1y-..,8n is denoted by (N, s1---8,). An (N, sq1---sy,)-design is an N X n matrix
[1ij]Nxn With r;; from a set of s; symbols, say, {0,...,s; — 1}. For example,
an (N, s]*s5?)-design has ny factors of s; levels and ny factors of sz levels. In
particular, an (IV, s")-design is symmetrical. Two designs are isomorphic if one
can be obtained from the other through permutations of rows, columns and
symbols in each column.

An asymmetrical (or mixed-level) orthogonal array (OA) of N runs, n factors,
strength ¢ and levels si,...,s,, denoted by OA(N,s;---sy,t) or OA(t), is an
(N, sy sp)-design in which all possible level combinations for any t factors
appear equally often. A balanced design is an OA(1). For an OA(N, s1 - - 8n,2),
the Rao bound says that N —1 > > (s; — 1). An (N, sy ---sp)-design is
saturated if N —1 = > ,(s; — 1) and supersaturated if N —1 < >~ ;(s; — 1).
A supersaturated design does not have enough degrees of freedom to estimate all
main effects. In the literature, nonregular designs are often referred to OA(2)’s
that are not completely specified by some defining relations among factors.

The definition of OA(t) requires that all level combinations for any ¢ factors
appear equally often. This condition is often too strong to satisfy and the concept
of weak strength ¢ can be useful.

A design is called an OA of weak strength ¢, denoted by OA(t™), if all level
combinations for any t columns appear as equally often as possible, that is, the
difference of occurrence of level combinations does not exceed one. It is easy to
show that an OA(t) is always an OA(t™). It is important to note that an OA(t™)
is not necessary an OA((t —1)7).

Now we briefly describe the GMA criterion proposed by Xu and Wu (2001).
For an (N, sq - - s,)-design D, consider the ANOVA model

Y = XoBo+ X161+ -+ X8 + ¢,

where Y is the vector of N observations, §; is the vector of all j-factor inter-
actions, X is the matrix of contrast coefficients for 3; and ¢ is the vector of

independent random errors. For j =0,...,n, if X; = [mgi)], let

2
| (1)

N .
4;(D) =N3>y
koi=1
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The A;(D) defined in (1)) are invariant with respect to the choice of orthonormal
contrasts. The vector (A;(D),...,A,(D)) is called the generalized wordlength
pattern. Xu and Wu (2001) showed that the generalized wordlength pattern has
the following important property.

Lemma 2. D is an OA(t) if and only if Aj(D) =0 for1 < j <t.

Definition 1. For two (IV,s; - - sy,)-designs D and Dy, D; is said to have less
aberration than Dsy if there exists an r, 1 < r < n, such that A,(D;) < A,(D3)
and A;(Dy) = A;(Dy) for j =1,...,7 — 1. D is said to have GMA if there is
no other design with less aberration than D;.

The GMA criterion is equivalent to the minimum aberration criterion (Fries
and Hunter (1980)) for regular designs, the minimum Gsa-aberration criterion
(Tang and Deng (1999)) for two-level nonregular designs, and the minimum gen-
eralized aberration criterion (Ma and Fang (2001)) for multi-level nonregular
designs.

Finally, we turn to optimality criteria for supersaturated designs. For an
(N,2")-design D, the popular E(s?) criterion (Booth and Cox (1962)) can be
defined as E(s?)=N?Ay(D)/[n(n—1)/2]. For an (N, s")-design D = [r;]nxn, let
ngi(a,b)={i : rig=a,rm;=>b}| and x2;= 545 [np(a, b)-N/s%)2/(N/s?). The
average x? statistic (Yamada and Lin (1999)) is ave(x?) = Y1 <pci<nXyy/[n(n—
1)/2]. Yamada and Lin showed that E(s?) = Nave(x?) for a balanced (N, 2")-
design. As mentioned in the introduction, the GMA criterion can serve as an
optimality criterion for supersaturated designs. It will be shown in Section 5 that
both E(s?) and ave(x?) are special cases of the GMA.

3. Minimum Moment Aberration

For simplicity of presentation, only symmetric designs are considered in this
and the next two sections. Extensions to asymmetrical designs are given in
Section 6.

For an (N, s")-design D = [rij|nxn and a positive integer ¢, define the tth
power moment to be K;(D) = [N(N —1)/2]7" Y1, j<n [6,;(D)]", where

8ij(D) = 0(rig, 7jn) (2)
k=1

is the number of coincidences between the ith and jth rows and §(x,y) is the
Kronecker delta function, equal to 1 if x = y and 0 otherwise. It is important to
note that n — d;;(D) is known as the Hamming distance between the ith and jth
rows in algebraic coding theory.

The minimum moment aberration criterion is to sequentially minimize the
power moments.
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Definition 2. For two (N, s™)-designs D and Ds, D is said to have less moment
aberration than Do if there exists a ¢, 1 < ¢ < n, such that K;(D;) < K{(D3)
and K;(Dy) = K;(Ds) fori=1,...,t — 1. Dy is said to have minimum moment
aberration if there is no other design with less moment aberration than D;.

The minimum moment aberration has a geometrical interpretation. The
power moments measure the similarity among runs (i.e., rows). The first and
second power moments measure the average and variance of the similarity among
runs. Minimizing the power moments makes runs be as dissimilar as possible.

The power moments also measure the orthogonality among columns. As
shown in the next section, the power moments are linear combinations of the
generalized wordlength patterns. Therefore, minimum moment aberration is in-
deed equivalent to GMA although they are quite different by definition. As
a consequence, the former can be used as a surrogate for the latter, which is
statistically well justified.

The minimum moment aberration has tremendous computational advantages
over the GMA. The complexity of computing A; according to the definition () is
O((})(s - 1)/ N) because X; is an N x () (s — 1)7 matrix; hence, the complexity
of computing the generalized wordlength pattern is O(Ns™). The exponential
order implies that it is prohibitive to implement GMA in practice. In contrast,
the complexity of computing K; is O(N?n) for any j. Thus, the complexity
of computing the first n power moments is O(N?n?), which is much less than
O(Ns") if n is large.

There are also substantial savings in computation when the minimum mo-
ment aberration is used to assess the goodness of a supersaturated design. A
practical exercise for supersaturated designs is to compute and compare As or
K5, which includes E(s?) and ave(x?) as special cases. The complexity of Ay
(and ave(x?)) is O(n?(s — 1)2N), which is greater than the complexity of K,
O(N?n), for a supersaturated design. The difference is enormous when the num-
ber of factors, n, is much larger than the number of runs, N, which is common
for supersaturated designs. This observation implies that many algorithms will
speed up significantly if we replace E(s?) with Ky as the objective function.

The minimum moment aberration works with the design matrix directly and
is easy to implement. Note that Xu (2002) applies this criterion to develop an
efficient algorithm for constructing orthogonal and nearly-orthogonal arrays with
mixed levels.

Remark 1. A related concept is that of optimal moments proposed by Franklin
(1984). The moments in his definition are functions of wordlengths of defining
contrasts among factors, whereas our moments are functions of the number of
coincidences among runs. Minimum moment aberration is equivalent to GMA
(see the next section) whereas Franklin’s use of optimal moments is not.
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4. Theory of Minimum Moment Aberration

Our first theorem shows that the power moments are linear combinations of
generalized wordlength patterns. The proof of this theorem involves the general-
ized Pless power moment identities, a deep and fundamental result in algebraic
coding theory.

Theorem 1. For an (N,s")-design D and t = 1,2, ...,
Kt(D) = OétAt(D) + Ott_lAt_l(D) + -+ OélAl(D) + @y — Cp, (3)

where a; = a;(t; N,n,s) = [N/(N — 1)] ZZZO(—l)k“(Z)nt_k[Z;?:Oj!S(k,j)s_j
(s —1)77¢ (?:Z)], co =n'/(N —1) and S(k,j) are Stirling numbers of the second
kind. In particular, oy = t!N/[(N —1)s!], au—1 = t![n+ (t — 1)(s — 2)/2]N/[(N —
1)st].

Because the leading coefficient oy in (B]) is positive, it is clear that sequentially
minimizing K;(D) for t = 1,2,... is equivalent to sequentially minimizing A;(D)
for t =1,2,.... Therefore, we have the following.

Theorem 2. For symmetric designs, minimum moment aberration is equiva-

lent to GMA. In particular, a symmetric design has GMA if and only if it has
minimum moment aberration.

Consequence of Theorem 1 is that results about power moments can be
obtained from generalized wordlength patterns, and vice versa. For example,
Theorem 1 and Lemma 2 together lead to the following result regarding the
power moments.

Corollary 1. If D is an OA(N, s",e), then K;(D) = ap(t; N,n,s) —n'/(N —1)
18 a constant depending only on t,n, N and s fort =1,... e.
The identities in Theorem 1 involving Stirling numbers of the second kind

are complicated in general. The first three identities of (B]) are of most interest
in practice and are therefore made explicit below.

Ki1(D) ={[A1(D) + n]N —ns}t/[(N — 1)s],

Ky(D) = {[2A3(D) + (2n + s — 2) A1 (D) +n(n + s — 1)]N — (ns)?}/[(N —1)s?],

K3(D) = {[6A3(D) + 6(n + s — 2) As(D) + (3n? + 6ns + s> —9n — 65 + 6) A1 (D)
+n(n? 4 3ns + s> — 3n — 35 + 2)|N — (ns)*}/[(N — 1)s°].

With these identities and the fact that A;(D) > 0, we can establish a series
of lower bounds for K;(D). For example, we have the following lower bounds:

Corollary 2. (i) K1(D) > [n(N — s)]/[(N — 1)s], with equality if and only if D
is an OA(1).
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(i) K2(D) > [Nn(n+s—1) — (ns)?]/[(N — 1)s?], with equality if and only if
D is an OA(2).

(iii) K3(D) > [Nn(n?+3ns+s2—3n—3s+2)— (ns)3]/[(N —1)s%], with equality
if and only if D is an OA(3).

The lower bounds in Corollary 2 are valuable; nevertheless, they provide no
more information than Lemma 2. In the following, we develop more useful lower
bounds for K(D).

Note that the lower bound for K;(D) in Corollary 2 is tight if and only if
an OA(t) exists. Recall that all level combinations of any ¢ columns of an OA(t)
appear equally often. When the equal occurrence cannot be met, it is reasonable
to expect that a design of which all level combinations of any ¢ columns appear
as equally often as possible should have a minimum K;(D) value. Formally, we
have the following results.

Theorem 3. K;(D) is minimized if D is an OA(i™) fori=1,...,t

Corollary 3. (i) K1(D) > [nh(N s) — Nn]/[N(N —1)].

(ii) K3(D) = [n(n—1)h(N, )+nh(N s)— Nn2]/[N( —1)].

(iii) KT(D) > [n(n—1)(n— ) (N, 53)4+3n(n—1)h(N, s2)+nh(N, s)—Nn3] /[N (N—
1)].

Corollary 4. An OA(t) has minimum moment aberration if its projection onto

any t+ 1 columns does not have repeated runs.

Corollary 3 improves on Corollary 2. In addition, Theorem 3 and Corollary
4 provide a sufficient condition for K¢(D) to be minimized and for a design to
have minimum moment aberration. This sufficient condition is valuable because
it avoids an exhaustive search. Examples will be given in the next section.

The definition of power moments allows us to obtain another series of lower
bounds for K;(D) easily. It is well known that for a random variable X, (E|X|")Y/"
is nondecreasing in r > 0, so

Ky(D)Y* > K. (D)™ for t > r > 1. (4)

Combining Corollary 2(i), we obtain the following lower bounds.

Theorem 4. For an (N, s™)-design D andt > 2, Ky(D) > [n(N—s)/(s(N—1))]%.
The equality holds if and only if D is an OA(1) and the number of coincidences
between any pair of distinct rows is constant.

An important class of designs that satisfy the conditions in Theorem 4 are
saturated OA(2)’s. It is easy to verify that the lower bound for Ks(D) in Theorem
4 is tight for an OA(N,s™,2) if N —1 =mn(s —1). As a consequence, we obtain
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the following important property regarding saturated OA(2)’s, first observed by
Mukerjee and Wu (1995).

Corollary 5. The number of coincidences between any distinct pair of rows of
a saturated OA(2) is constant.

A direct outcome of Corollary 5 and Theorem 4 is that any saturated O A(2)
has minimum moment aberration. In addition, removing one column from (or
adding a balanced column to) a saturated OA(2) results in a minimum moment
aberration design.

Theorem 5. If D is an OA(17) and the difference among all 6;;(D), i < j, does
not exceed one, then D has minimum moment aberration.

Along the direction of Theorem 4, we can establish many other lower bounds
for Ky(D). For example, by Corollary 2(ii), K3(D) is a known constant for an
OA(2). Then the inequality () provides a new lower bound for K;(D) for ¢t > 3.
The procedure is straightforward and details are omitted.

5. Applications

In this section, we present some applications of the concept and theory of
minimum moment aberration to the GMA criterion, complementary designs and
supersaturated designs.

5.1. Generalized minimum aberration

The minimum moment aberration theory developed in the previous section
provides a way of assessing the GMA property without an exhaustive search.

Example 1. Consider the commonly used OA(18,37,2) given by columns 2 to
8 in Table 7C.2 of Wu and Hamada (2000). Xu and Wu (2001) showed that
any design not containing column 2 has GMA among all subdesigns from this
table. However, they failed to show that it has GMA among all possible designs
(including other designs that are not part of this table). Using the new technique,
we can show that such a design has GMA. Specifically, it is easy to verify that
any design not containing column 2 is an O A(2) and its projection onto any three
columns does not have repeated runs. Thus, it has minimum moment aberration
by Corollary 4 and hence has GMA.

The minimum moment aberration theory also provides new lower bounds
for the generalized wordlength patterns via key identities in Theorem 1. For
example, the following lower bounds for A;(D) are obtained through Corollary
3, Theorem 1 and Lemma 2.

Corollary 6. (i) A;(D) > n[h(N,s)s/N? —1].
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(ii) Aa(D) > (5)[A(N,s?)s?/N? —1] for an OA(1).
(iii) A3(D) > (3)[h(N,s*)s3/N? —1] for an OA(2).

The following lower bounds are obtained through the inequality (@), Corol-
lary 2, Theorem 1 and Lemma 2.

Cor&o;lary 7. (i) A2(D) > [n(s — 1)(ns —n — N + 1)]/[2(N — 1)] for an

OA(1).

(i) Az(D) > {[Nn(n+s—1) — (ns)?]32(N — 1)~Y2 4 (ns)?® — Nn(n®+ 3ns +
52 —3n —3s+2)}/(6N) for an OA(2).

The lower bounds in Corollary 6 are tight if an OA exists. They are useful for
assessing the nonorthogonality of a design. On the other hand, the lower bounds
in Corollary 7 are more useful for assessing nearly saturated or supersaturated
designs. Note that these lower bounds are not available in Xu and Wu (2001).

Example 2. Consider three-level designs of 18 runs (i.e., N = 18,s = 3). The
lower bounds for Az in Corollary 6 are 0.5,2,5,10 for n = 3,4, 5, 6, respectively.
These bounds are tight and achieved by the GMA designs mentioned in Example
1. However, for n = 7, the lower bound for A3 in Corollary 6 is 17.5 and not
tight. It is less than the lower bound for Ag in Corollary 7, which is 18.2. The
latter bound may be used for assessing the efficiency of an (18, 3")-design. For
instance, the A3 efficiency of the OA(18,37,2) discussed in Example 1 is at least
18.2/22 = 82.8% due to the lower bound in Corollary 7.

5.2. Complementary designs

Many authors have studied the characterization of GMA designs in terms
of their complementary designs. Suppose H is an (N, sP)-design. Call (D, D) a
pair of complementary designs from H if they are a column partition of H. The
characterization problem is to express the generalized wordlength pattern of D
in terms of that of its complementary design D. Here we revisit this problem
using minimum moment aberration. It turns out to be surprisingly trivial and
straightforward.

If H is a saturated OA(2), by Corollary 5 for i < j, §;;(D) + 6;;(D) = 7,
where ~ is a constant independent of D and D. Then, by definition,

t

t o

Ki(D) =3 () (-1~ K (D). (5)
i=0

By applying these identities and Theorem 1 recursively, we can express the gen-

eralized wordlength pattern of D in terms of that of its complementary design

D:
Ay(D) = (—=1)'Ay(D) + (-1 [1+ (s — 2)(t — 1)]Ay_1 (D) + lower order terms (6)
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fort =1,2,.... Wereach the same general relations derived by Chen and Hedayat
(1996), Tang and Wu (1996), Suen, Chen and Wu (1997), Tang and Deng (1999)
and Xu and Wu (2001).

5.3. Supersaturated designs

Here we use the concept of minimum moment aberration to study super-
saturated designs. As done in the literature, we consider only balanced designs,
which minimize the first power moment K; (D). In the spirit of minimum mo-
ment aberration, a good optimality criterion for supersaturated designs is the
minimization of Ky(D).

It can be shown (see the appendix) that for a balanced (N, s™)-design D,

ave(x?) = [(N — 1)s*Ky(D) — Nn(n + s — 1) + (ns)?]/[n(n — 1)]. (7)

Then by Theorem 1 and Lemma 2, ave(x?) = NAs(D)/[n(n —1)/2].

Since F(s?) and ave(x?) optimality are special cases of the minimum moment
aberration and GMA, we obtain many results for free. For example, Corollary 7
implies the following lower bounds: E(s?) > N?(n— N +1)/[(n—1)(N —1)] and
ave(x?) > [N(s—1)(ns—n—N+1)]/[(n—1)(N —1)], reported by Nguyen (1996)
and Tang and Wu (1997) for two-level supersaturated designs, and by Yamada
and Lin (1999) for three-level supersaturated designs.

The theory of minimum moment aberration also provides many optimality
results for supersaturated designs. For example, Theorem 5 and Corollary 5
together imply the following result.

Corollary 8. If Dy,..., D,, are m saturated OA(2)’s, their column juxtaposition
D = (Dy,...,Dy,) has minimum moment aberration. In addition, removing one
column from or adding one column to D results in a minimum moment aberration
design.

The special case of Corollary 8 for two-level supersaturated designs and F(s?)
optimality was first obtained by Tang and Wu (1997) (for the first statement) and
Cheng (1997). Furthermore, the E(s?) optimality of Lin’s (1993) half-Hadamard
designs, proved by Nguyen (1996) and Cheng (1997), also follows from Theorem
5 and Corollary 5.

As another application, we propose a novel construction method which is an
extension of Lin’s (1993) half-Hadamard construction method. The new method
is illustrated with a saturated OA(27,3'3,2). Taking any three-level column
as the branching column, we obtain three one-third fractions according to the
level of the branching column. Each one-third fraction is an OA(9,3'% 1) and
any two-third fraction is an OA(18,3'2,1) after removing the branching column.
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Following Theorem 5 and Corollary 5, it is easy to show that all these designs
have minimum moment aberration and thus have GMA.

6. Extensions

In this section we extend the concept and theory of minimum moment aber-
ration to the asymmetrical case.

Consider an (N, sy ---sp)-design D = [rjj]nxn. In order to handle mixed
levels, we introduce weights and modify the definition of ¢;;(D) in (). For the
kth column, assign weight w, > 0. Let

n
85 (D) = > wd(rie, i) (8)
k=1

be the weighted coincidence number between the i¢th and jth rows. With this
modification, the definitions of power moments and minimum moment aberration
remain the same. Then most results developed earlier can be extended easily to
the asymmetrical case. In particular, Theorems 3 and 5 remain unchanged, and
Theorem 4 becomes

Theorem 6. For an (N, sy - s,)-design D and t >2, K;(D) > [>_ wi(N/sk—1)
/(N = 1)]'. The equality holds if and only if D is OA(1) and 6;;(D) defined in
@) is a constant for all i < j.

On the other hand, the results regarding the GMA need more attention.
Recall that, for symmetrical designs, power moments are linear combinations of
generalized wordlength patterns and minimum moment aberration is equivalent
to GMA. For asymmetrical designs, the relationship between power moments
and generalized wordlength patterns is more complicated and minimum moment
aberration is not equivalent to GMA in general. Nevertheless, minimum moment
aberration is still a good surrogate for GMA because these two criteria are weakly
equivalent, as expressed in the following theorem.

Theorem 7. For an asymmetrical (N, sy ---sy)-design D, if wy, = sy for all
k, then Ky(D) = M[N(N — 1) Ay(D) + ] fort =1,...,e+ 1, where e is the
strength of D and ¢ are constants depending on t,n, N and the levels s1, ..., Sy.

For convenience, the choice of w, = As; is called a natural weight. Natural
weights provide a reasonable connection between minimum moment aberration
and GMA. An important property regarding natural weights is the following
result due to Mukerjee and Wu (1995).

Lemma 3. Suppose D is a saturated OA(N, sy -+ sp,2). Then 6;;(D) defined in
@) is a constant for all i < j if wy, = Asy for all k.
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Now consider complementary designs. Suppose that D and D are a pair
of complementary designs of a saturated (asymmetrical) OA(2). Then the rela-
tionship between K;(D) and K;(D) in (&) still holds with natural weights. In
contrast, the relationship between A;(D) and A;(D) in () no longer holds. Nev-
ertheless, the following weak result can be obtained through Theorem 7 and ([):
A3(D) = —A3(D) + constant.

Finally, as an application, consider constructing minimum moment aberra-
tion designs from the commonly used OA(36,3'221 2) given in Table 7C.7 of
Wu and Hamada (2000). It can study up to 12 three-level factors and 11 two-
level factors simultaneously. Natural weights are considered. To find a minimum
moment aberration design of ng three-level factors and ngy two-level factors, it is
necessary to enumerate all (7113,) (71;
putation, the criterion is relaxed to compare only K3, K4 and K5, which should

) subdesigns. To reduce the burden of com-

meet the practical need. Indeed it makes no difference if the first eight mo-
ments are used. The complementary design technique is used to further reduce
the computation if ng + ne > 11. In particular, no computation is needed if
n3 + ng = 21 or 22 because the complementary designs have only one or two
columns and thus are indistinguishable under minimum moment aberration. Ta-
ble 1 lists minimum moment aberration designs with n3 three-level factors and
ng two-level factors for ng < 12 and no < 11. No design is given if all possible
subdesigns are indistinguishable under minimum moment aberration.
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Appendix

Some concepts and results in algebraic coding theory are necessary to prove
Theorem 1. See MacWilliams and Sloane (1977) and van Lint (1999) for details.

For an (N, s")-design D, let d;;(D) =n — 6;;(D) and By(D) = N=1{(i,j) :
dij(D) =k, 4,5 =1,...,N}| for k =0,...,n. In coding theory, d;;(D) is called
the Hamming distance and the vector (By(D), ..., B,(D)) is the distance distri-
bution. It is clear that, for k =0,1,...,

N N n
Y3 ldy(D))F = Ny i By(D). (A1)
=0

i=1j=1
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Table 1. Minimum moment aberration designs.

ns.nz Three-Level Columns Two-Level Columns

0.5 13 14 15 16 17

0.6 13 14 15 16 17 22

1.5 1 13 14 15 16 17

1.6 1 13 14 15 16 17 22

2.1 1 2 20

2.2 1 3 15 16

2.3 2 3 13 15 23

2.4 1 3 15 16 19 20

2.5 1 3 15 16 19 20 22

2.6 1 3 13 15 16 19 20 22

2.7 1 3 13 14 15 16 19 20 22

2.8 1 3 13 14 15 16 18 19 20 22

2.9 1 3 13 14 15 16 18 19 20 22 23
2.10 9 11 13 14 15 16 17 18 19 20 22 23
2.11 8 11 13 14 15 16 17 18 19 20 21 22 23
3.0 1 2 3

3.1 1 2 8 20

3.2 4 9 10 16 21

3.3 2 3 4 15 21 23

3.4 2 3 4 13 15 21 23

3.5 2 3 4 13 15 21 22 23

3.6 1 3 4 13 15 18 19 20 23

3.7 1 3 4 13 15 18 19 20 22 23

3.8 2 4 7 14 15 16 18 20 21 22 23

3.9 7 8 10 13 14 15 17 19 20 21 22 23
3.10 6 8 11 13 14 15 16 17 18 19 20 21 22
3.11 1 6 8 13 14 15 16 17 18 19 20 21 22 23
4.0 1 2 3 7

4.1 1 5 9 10 21

4.2 1 5 9 10 16 21

4.3 1 5 9 10 16 21 23

4.4 1 5 9 10 16 21 22 23

4.5 2 8 11 12 15 19 20 21 23

4.6 2 8 11 12 13 15 19 20 21 23

4.7 2 8 11 12 13 15 17 19 20 21 23

4.8 2 8 11 12 13 15 17 19 20 21 22 23

4.9 2 8 11 12 13 15 17 18 19 20 21 22 23
4.10 7 8 10 11 13 14 15 17 18 19 20 21 22 23
4.11 5 7 10 12 13 14 15 16 17 18 19 20 21 22 23
5.0 1 2 3 7 8

5.1 1 2 6 7 11 21

5.2 1 2 6 7 11 18 21

5.3 1 5 8 9 10 21 22 23

5.4 1 5 8 9 10 16 21 22 23

5.5 1 5 8 9 10 13 16 21 22 23

5.6 1 5 6 7 11 13 15 16 17 18 21

5.7 1 5 9 10 12 13 16 17 19 21 22 23

5.8 1 7 9 11 12 13 14 15 17 18 19 21 23

5.9 2 3 5 10 12 13 14 15 16 17 18 19 21 22
5.10 5 7 8 10 11 13 14 15 17 18 19 20 21 22 23
5.11 5 7 8 10 11 13 14 15 16 17 18 19 20 21 22 23
6.0 1 2 3 7 8 9

6.1 1 2 5 6 7 11 21

6.2 1 5 8 9 10 12 21 22

6.3 1 2 5 6 7 11 16 18 21

6.4 1 2 5 6 7 11 15 16 18 21

6.5 1 2 5 6 7 11 15 16 18 19 21

6.6 1 5 8 9 10 12 16 17 19 21 22 23

6.7 1 5 8 9 10 12 13 16 17 19 21 22 23

6.8 1 5 8 9 10 12 13 16 17 18 19 21 22 23

6.9 1 5 8 9 10 12 13 16 17 18 19 20 21 22 23
6.10 1 2 5 6 711 13 15 16 17 18 19 20 21 22 23
6.11 2 3 5 7 10 12 13 14 15 16 17 18 19 20 21 22 23
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Table 1. Minimum moment aberration designs (continued).

ns.no Three-Level Columns Two-Level Columns

7.0 1234 6 8 10

7.1 1235 9 10 11 16

7.2 1356 7 8 12 16 17

7.3 1356 7 8 12 16 17 20

7.4 1356 7 8 12 16 17 19 20

7.5 1356 7 8 12 16 17 19 20 22

7.6 1356 7 8 12 16 17 18 19 20 22

7.7 1235 6 711 13 15 16 18 19 21 23

7.8 1235 6 711 13 15 16 17 18 19 21 23

7.9 1356 7 8 12 13 15 16 17 18 19 20 22 23
7.10 2456 7 912 13 14 15 16 17 18 20 21 22 23
7.11 2 35 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23
8.0 1234 5 9 10 11

8.1 1345 6 7 8 12 17

8.2 2 6 78 9 10 11 12 15 19

8.3 1345 6 7 8 12 16 17 19

8.4 1345 6 7 8 12 16 17 19 22

8.5 1345 6 7 8 12 16 17 19 20 22

8.6 1345 6 7 8 12 16 17 18 19 20 22

8.7 1345 6 7 8 12 15 16 17 18 19 20 22

8.8 1345 6 7 8 12 15 16 17 18 19 20 22 23

8.9 1345 6 7 8 12 13 15 16 17 18 19 20 22 23
8.10 1345 6 7 8 12 13 14 15 16 17 18 19 20 22 23
8.11 1345 6 7 8 12 13 14 15 16 17 18 19 20 21 22 23
9.0 1234 6 7 8 9 10

9.1 1245 6 7 9 11 12 18

9.2 1346 7 910 11 12 14 20

9.3 1346 7 9 10 11 12 14 17 20

9.4 1346 7 9 10 11 12 14 17 20 21

9.5 1346 7 9 10 11 12 14 17 20 21 23

9.6 1346 7 9 10 11 12 14 17 18 20 21 23

9.7 1356 8 9 10 11 12 14 16 18 20 21 22 23

9.8 1356 8 9 10 11 12 14 15 16 18 20 21 22 23

9.9 1356 8 9 10 11 12 13 14 15 16 18 20 21 22 23
9.10 1235 6 7 10 11 12 13 14 15 16 18 19 20 21 22 23
9.11 1457 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
10.1 1234 5 6 7 8 11 12 21

10.2 2356 7 8 910 11 12 13 18

10.3 1234 5 6 8 9 10 11 13 16 18

10.4 2356 7 8 9 10 11 12 13 15 18 19

10.5 1345 6 7 8 9 11 12 13 14 16 17 18

10.6 1345 6 7 8 9 11 12 13 14 16 17 18 22

10.7 1345 6 7 8 9 11 12 13 14 16 17 18 20 22

10.8 2456 7 8 9 10 11 12 13 15 16 18 19 20 22 23

10.9 2456 7 8 9 10 11 12 13 14 15 16 18 19 20 22 23
1010 |1 2 3 4 5 6 7 8 11 12 13 14 16 17 18 19 20 21 22 23
11.1 1235 6 7 8 9 10 11 12 16

11.2 1235 6 7 8 9 10 11 12 16 22

11.3 1235 6 7 8 9 10 11 12 16 20 22

11.4 1235 6 7 8 9 10 11 12 13 16 20 22

11.5 1235 6 7 8 9 10 11 12 13 16 20 22 23

11.6 1235 6 7 8 9 10 11 12 13 16 19 20 22 23

11.7 1235 6 7 8 9 10 11 12 13 14 16 18 20 22 23

11.8 1235 6 7 8 9 10 11 12 13 14 15 16 18 20 22 23

11.9 1235 6 7 8 9 10 11 12 13 14 15 16 18 19 20 22 23
12.1 1234 5 6 7 8 9 10 11 12|22

12.2 1234 5 6 7 8 910 11 12|18 23

12.3 1234 5 6 7 8 9 10 11 12|18 22 23

12.4 1234 5 6 7 8 910 11 12|18 20 22 23

12.5 1234 5 6 7 8 910 11 12|13 18 20 22 23

12.6 1234 5 6 7 & 9 10 11 12|13 18 20 21 22 23

12.7 1234 5 6 7 8 910 11 12|13 14 16 18 20 22 23

12.8 1234 5 6 7 8 910 11 12|13 14 16 18 20 21 22 23
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Xu and Wu (2001) showed that the distance distributions are linear combi-
nations of the generalized wordlength patterns, that is, for j =0,...,n,

B;(D) = _"ZA (i;m,s), (A.2)

where Pj(x;n,5) = Y0_o(—1) (s—1)77(* )(;_7) are the Krawtchouk polynomials.

The following identities, extensions of the Pless power moment identities
(Pless (1963)), relate the moments of the distance distribution and the general-
ized wordlength pattern.

Lemma 4. For an (N,s")-design D and integers k > 0, Y7 ,i*B;(D) =
NY " o(=1)1A;(D)b;(k;n, ), where 0;(k;n, s) = Z?:o 1S (k,7)s™7 (s—l)j_i(?:f)
and S(k,7) is a Stirling number of the second kind.

Proof of Lemma 4. Let f(z) = (1 — 2)*[1 + (s — 1)2]"™* and D, be the
differentiation operator with respect to z. It is known that, for an integer x, 0 <
x < n, f(z) =g Pj(x;n,s)zl. Thus, Y7 OjkP (50, 8) = (2D f(2)|.=1. Tt
is also known that (2D,)* = ;‘»”:0 S(k,j)2(D,)?. Noting that

(n—az) n—xr— Z(S 1)2'(2_1)93-4-1"

we have (D.) f(2)],=1 = (—1)* A )s™ J(s —1)77% and

M |

f(2) = (1=2)"[s+ (s =) (z=1)]""

=0

n k
> i Pi(win,s) =Y S(k, )27 (D.) f(2)].=1
j=0 j=0
1)” Zj!3<k,j> (7 - x) S (s — 1)
- j—
7=0
Finally, by (A.2), we obtain

> i"Bi(D)=>"j*Ns™Y " P;(isn, s)Ai(D)
j=0 5=0 i=0

n n

:NZAi(D) Z ik Py (i 3)]
=0 |j=0

n k .
=N A;(D) [ (=1)" > j1S(k, j)s™ (s — 1)7~" (7 a Z)} .

i=0 i =0 J—
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Proof of Theorem 1. By definition,

N N
Ky (D) =[N(N =17 Y [6;;(D)]f = (N = 1) 'n?

i;lj;l
= [N(N=D]7' Y > [n—dij(D))" — o
i—lj—l
= IZZZ < ) “Fldij(D)]F - co.
1=1j=1k=0

Apply (A1) and Lemma 4 to get

Ki(D)=(N-1)""> (-1)* (2) nt=k Zn:isz-(D) — ¢

k=0 =0
= (N — 1)_1 Z(—l)k </i> nt=k <N Zn:(—l)ZAZ(D)HZ(k7n, S)) — Co
k=0 =0
=N(N-1)"! iAZ’(D) (i(—l)k“ <;;> nt=k0;(k;n, s)) — o
=0 k=0

Z az(t7 Nv n, S)AZ(D) — Co-
1=0

It is easy to verify from the definition that cy(t; N,n,s) = t!N/[(N — 1)st],
ai1(t;Nyn,s) = tn + (t — 1)(s — 2)/2]N/[(N — 1)s'] and a;(t; N,n,s) = 0 if
1> 1.
Proof of Theorem 3. We state a proof for ¢ = 2 only. The general case is
essentially the same but with more complicated notation.

For an (N, s”)—design D = [rij]nxn, it is easy to verify that SV, Z;-V:l
3(rik, Tk )0(T31, 1) = Doz Zb 0 nkl( b)? for 1 < k,l,< n. Then

N N [n 2
N(N -1)Ky(D)=>_ Za(rik,rjk)] — Nn?

i=1j=1 Lk=1
N N [n n

=> ZZ TiksTjk) mﬂ”jl)] — Nn?
i=1j=1 Lk=11=1
n n [s—1s—1

- 33 S S e -

k=11=1 La=0b=0
s—

+ [Si%nkl(a,b)ﬂ—

1<k+#Il<n La=0b=0
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By Lemma 1, the first term is minimized if D is an OA(17) and the second term
is minimized if D is an OA(27).

Proof of Theorem 5. First, by Theorem 3, K;(D) is minimized for OA(17).
Second, by definition and Lemma 1, K5(D) is minimized. Finally, by Lemma 1
again, all other K;(D)’s are uniquely determined given K;(D) and Ka(D).

Proof of Equation (7). It is easy to verify that for a balanced (N, s™)-design D,
X3 = (s2/N) 52 S d np(a, b)2 — N. Then, following the proof of Theorem 3,
N(N = 1)Ks(D) = Sy [N?/8] + 5y <t (N/5) (32, + N)] — Nn? = nN?/s +
(N/s?)n(n — 1)(ave(x?) + N) — Nn?, and equation () follows.

Proof of Theorem 6. Following the proof of Theorem 3, K1 (D) > > wy(N/sp—
1)/(N — 1) with equality if and only if D is an OA(1). Then the theorem follows

from ().

Proof of Theorem 7. The proof is similar to that of Theorem 1 with the
generalized Pless power moment identities for asymmetrical designs. Details are
omitted.
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