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Abstract: Local polynomial models for capture-recapture experiments on open pop-

ulations with frequent capture occasions and heterogeneous capture probabilities

are proposed. A one-step bootstrap procedure is proposed to determine optimal

bandwidths. It is shown in simulations that for heterogeneous populations the

proposed procedure performs better than the kernel estimator of Huggins and Yip

(1999) that was developed for homogeneous populations and the locally constant

estimator of Huggins, Yang, Chao and Yip (2003).
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1. Introduction

Traditional capture-recapture experiments have involved captures from pop-
ulations on multiple occasions that are close enough together that the population
could be assumed to be closed. Open population models, such as the Jolly-Seber
approach, are based on relatively sparse capture occasions and involve modeling
the population dynamics. However, the assumptions of the Jolly-Seber model
may be easily violated. In particular, there may be heterogeneous capture prob-
abilities. Over the twenty or more years since Burnham and Overton (1978),
enormous effort has been spent on devising methods that allow individual het-
erogeneity of capture probabilities in closed capture-recapture experiments. See
Chao and Huggins (2001) for a review of these methods. The incorporation
of heterogeneity in open population models is less well studied. Hwang and
Chao (1995) have previously applied sample coverage methods to the Jolly-Seber
model, Pledger and Efford (1998) proposed correction to the bias arising from
heterogeneity in the Jolly-Seber model and Huggins, Yang, Chao and Yip (2003)
introduced kernel smoothing in a limited setting.

The natural extension of closed population methods to open populations is to
consider experiments conducted over a long time period, but where the capture
occasions are close together. Huggins and Yip (1999) and Huggins et al. (2003)
have previously used kernel smoothing to extend the homogeneous model, where
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capture probabilities vary by occasion but not by individual, and the heteroge-
neous model for closed populations to open populations with frequent capture
occasions. Their work used locally constant models and hence supposed that
the population size was approximately constant over short time intervals. The
estimator of Huggins and Yip (1999) was shown to have advantages over the
traditional Jolly-Seber method when individuals could leave and return to the
population. The methods of Huggins et al. (2003) performed better than the
Huggins and Yip (1999) estimator when the capture probabilities were hetero-
geneous. The availability of capture data with capture occasions at frequent
intervals encourages further development of the open population methodologies
pioneered in Huggins and Yip (1999) and Huggins et al (2003).

The main assumption on the population size in the approaches of Huggins
and Yip (1999) and Huggins et al. (2003) is that the population size is locally
constant. That is, in a neighbourhood of a given capture occasion, the popu-
lation size is constant. This assumption is reasonable if the capture occasions
are close together but in practice this is rarely so. Moreover, it is known in
other settings that violation of this assumption may result in serious bias. In
non-parametric kernel estimation, local polynomial models have been shown to
have good theoretical properties and to have advantages in practical applications
(Fan and Gijbels (1996, p.60)). This motivates us to extend the approach of
Huggins et al. (2003) so that there is no need to assume the population is locally
closed. The method again utilizes the optimal martingale estimating equations of
Chao, Yip, Lee and Chu (2001) and follows the general local estimating equation
methodology of Carroll, Ruppert and Welsh (1998). A difficulty encountered in
Huggins and Yip (1999) and Huggins et al. (2003) was the determination of the
bandwidth. Here we propose the use of the bootstrap method to estimate the
bias (Efron and Tibshirani, Chap. 10) and variance (e.g., Shao and Tu, pp.228-
229) and hence the mean squared error. Using the criterion of minimum mean
squared error, we can then select an optimal bandwidth for each time point.

A feature of the model is that the population size is regarded as a fixed de-
terministic function, and as such is a parameter to be estimated. However, some
assumptions on how individuals are removed from the population are required,
so that on a given capture occasion the nuisance parameter consisting of the
number of marked individuals in the population may be estimated. This is nec-
essary as the number of individuals marked and released will, due to removals,
overestimate the number of marked individuals remaining in the population.

Our approach is based on sample coverage. The concept of sample coverage
was originally proposed by I. J. Good (1953) and was defined as the proportion of
capture probabilities of the captured individuals. Chao, Lee and Jeng (1992) and
Lee and Chao (1994) used sample coverage and the coefficient of variation of the



THE ESTIMATION OF THE SIZE OF AN OPEN POPULATION 675

capture probabilities to quantify recapture information and sample dependencies,
and subsequently estimated the size of a closed population. Chao et al. (2001)
developed martingale estimating equations based on sample coverage. Hwang
and Chao (1995) extended the sample coverage approach to the open population
model. The advantage of the sample coverage approach is that whilst the number
of the unobserved individuals is difficult to estimate, the sample coverage can be
well-estimated. The population size may then be estimated by exploiting the
relationship between population size and sample coverage.

In Section 2 we derive the estimating equations when various nuisance pa-
rameters (the sample coverage and coefficient of variation) are known. In Section
3 estimation of the sample coverage and coefficient of variation of the capture
probabilities is discussed. This yields a preliminary step for estimating the num-
ber of “marked” individuals. In Section 4 we give an estimate of the number of
“marked” individuals that is crucial to the sample coverage approach. In Section
5 we propose a bootstrap bandwidth selector. A simulation study is conducted
in Section 6. In Section 7 the method is applied to data. Our notational conven-
tion is to take a superscript LC or LL depending on “Local Constant” or “Local
Linear” and a subscript H or H̄ for the homogeneous and heterogeneous models,
respectively.

1.1. Assumptions

As in Huggins and Yip (1999) and Huggins et al. (2003), the population size
is regarded as an unknown deterministic function Nt of t of the form [Nλt] where
λt is some continuous function and [x] denotes the closest integer to x. Suppose
there are a total of τ capture occasions, 0 < t1 < · · · < tτ < T . For simplicity
it is supposed that the occasions are equally spaced but this is not necessary.
Let Xij = I( the ith individual is caught on occasion j), where I(A) denotes the
indicator function for the event A, and let Fj be the capture history up to the jth
capture occasion. Thus P{Xij = 1|Fj−1} = pi. The basic assumption required in
this paper is : the individual capture probabilities pi, i = 1, . . . , Nt, are supposed
to be i.i.d. random variables from a distribution Ft(p). This extends the classical
heterogeneity model. Denote their mean at time t by p̄(t) = N−1

t

∑Nt
i=1 pi and

their coefficient of variation at time t by γt = {∑Nt
i=1 [pi − p̄(t)]2/[Ntp̄(t)2]}1/2.

We assume throughout that the capture probability of an individual arriving
into the population at time t also has distribution Ft(p) and is independent of
the individuals already in the population. Although the population size is not
random, in order to estimate the number of marked individuals in the population
it is necessary to make some assumptions on how individuals are removed from
the population. It is assumed that the probability of removal is the same for
individuals captured and released on a given capture occasion as for individuals
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captured and released before that occasion. This assumption was implicit in
Huggins and Yip (1999) and was explicitly stated in the locally constant model
of Huggins et al. (2003). Finally, to fit a polynomial of degree p it is supposed
that the (p+2)nd derivative of the function λt, λ

(p+2)
t , exists and is continuous as

in Fan, Heckman and Wand (1995). This assumption is reasonable in practice as
long as there are not large changes in the population size in small intervals. We
note that the asymptotic results of Huggins and Chao (2001) may be extended
to show convergence of the estimators for fixed t, although in some cases they
may be biased.

2. Martingale Estimating Equations

We suppose Ns ≈ ∑p
l=0 βl(s − t)l for constants β0, · · · , βp. For large N this

may be justified by applying a Taylor series expansion to the smooth part Nλt

of Nt. As usual, β0 = Nt and if β0 can be estimated, the estimated population
size at time t is β̂0. Let k(t) denote the closest time occasion to time t. Let
Q(·) denote a kernel function assigning weights to each capture occasion. For a
fixed time t and a given bandwidth (window width) h, the window Wt contains
all of the capture occasions in the support of Q((t − s)/h), 0 ≤ s ≤ T . We
suppose throughout for some K, the window Wt = [k(t) − K,k(t) + K] includes
the 2K + 1 capture occasions tk(t)−K , . . . , tk(t)+K . The weight function wj(t) of
the jth occasion in window Wt is defined as wj(t) = (

∑
l∈Wt

Ql(t, h))−1Qj(t, h),
where Ql(t, h) = Q((t−tl)/h). Consider a window Wt. Let nj denote the number
of individuals captured on occasion j, uj(t) denote the number of individuals that
were captured for the first time in Wt on occasion j, and mj(t) denote the number
of individuals that were recaptured on occasion j after being previously captured
in Wt. We may write

uj(t) =
Ntj∑
i=1

I
( j−1∑

l=k(t)−K

Xil = 0,Xij = 1
)

and mj(t) =
Ntj∑
i=1

I
( j−1∑

l=k(t)−K

Xil ≥ 1,Xij = 1
)
.

Let θT = [β0, . . . , βp, p̄(t)] be the vector of model parameters, and gj(t) =
(gj1(t), gj2(t))

T , where gj1(t) = uj(t) − E (uj(t)|Fj−1) and gj2(t) = mj(t) −
E (mj(t)|Fj−1), be a 2 × 1 vector of martingale differences (See Appendix A for
their explicit forms). The weighted version of the optimal estimating equations
of Chao et al. (2001) are: g(t) =

∑
j∈Wt

wj(t)Dj(t)T Vj(t)−1gj(t) = 0, where
Dj(t) = E(∂gj(t)/∂θT |Fj−1) is a 2×(p+2) matrix and Vj(t) = Cov{uj(t),mj(t)|
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Fj−1} is the 2× 2 conditional covariance matrix. The resulting estimating func-
tions for β = (βl, l = 0, . . . , p)T , and p̄(t) are shown in Appendix A to be

gβ(t) = −
∑

j∈Wt

wj(t)

[
uj(t) −

{∑p
l=0 βl(tj − t)l − M∗

j (t,K)
}

p̄(t)
]

(1 − Cj−1(t,K))
∑p

l=0 βl(tj − t)l
Gp(tj − t), (1)

gp̄(t) = −
∑

j∈Wt

wj(t)

(
nj − p̄(t)

p∑
l=0

βl(tj − t)l
)

, (2)

where Cj−1(t,K) =
∑Nt

i=1 piI(
∑j

l=k(t)−K Xil > 0)/
∑Nt

i=1 pi is the local sample
coverage, Gp(v) = [1, v, v2, . . . , vp]T and M∗

j (t,K) = NtjCj−1(t,K). From the
estimating function (2) we find that

p̄(t) =
∑

j∈Wt
wj(t)nj∑

j∈Wt
wj(t)

∑p
l=0 βl(tj − t)l

,

which we may substitute into (1) to obtain the weighted estimating equations

∑
j∈Wt

wj(t)

[
uj(t) −

{∑p
l=0 βl(tj − t)l − M∗

j (t,K)
}

p̄(t)
]

[1 − Cj−1(t,K)]
∑p

l=0 βl(tj − t)l
Gp(tj − t) = 0

for β. To calculate the estimates, we replace the unknown M∗
j (t,K) and Cj−1(t,

K) by the estimators M̂∗
j (t,K) and Ĉj−1(t,K) below. Let N̂LL

H̄
denote the local

linear estimator arising when p = 1, which is found numerically. Details are given
in Appendix B. When p = 0 we obtain the closed form estimator

N̂LC
H̄ (t) =

∑
j∈Wt

wj(t)M̂∗
j (t,K)/

{
1 − Ĉj−1(t,K)

}
∑

j∈Wt
wj(t)[

(
1 − η−1

t uj(t)
)

/
(
1 − Ĉj−1(t,K)

) (3)

with ηt =
∑

j∈Wt
wj(t)nj , and M̂∗

j (t,K) and Ĉj−1(t,K) being the correspond-
ing estimators of the number of marked individuals and sample coverage under
the locally constant model proposed by Huggins et al. (2003). The martin-
gale estimator developed by Huggins and Yip (1999) under a locally constant,
homogeneous capture probabilities model is

N̂LC
H (t) =

∑
j∈Wt

wj(t)M̄j(t,K)nj∑
j∈Wt

wj(t) (nj − uj(t))
, (4)

where the M̄j(t,K) are the corresponding estimators of the numbers of marked
individuals under a locally constant homogeneous model. The estimator N̂LC

H (t)
is a good starting value for iterative searching routines. In Section 6 we compare
the performance of this estimator with our proposed estimators.
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3. Estimating the Sample Coverage and Coefficient of Variation

The estimation of the number of marked individuals, the sample coverage and
the coefficient of variation is critical to our approach. The estimators of M∗

j (t,K)
and Cj−1(t,K) are different for p = 0 and p = 1. For p = 0 refer to Huggins
et al. (2003). For p = 1, following Hwang and Chao (1995), E[Ck(t,K)] ≈
E[mk(t)]/E(nk), k = k(t) − K, . . . , k(t) + K − 1. Our proposed estimator of the
local sample coverage is:

Ĉk(t,K) =
∑

j∈Wt
wj(tk)mj(t)∑

j∈Wt
wj(tk)nj

.

Due to the existence of the heterogeneity among individuals, Chao et al. (1992)
employed the CV to quantify the magnitude of variation among individuals. They
proposed an estimator based on capture frequencies to estimate the population
size under closed population. Hwang and Chao (1995) extended the concept and
proposed an estimator of the CV, γ̂(t,K), for an open population that we use,
but do not formally define here. The reader is referred to Hwang and Chao (1995)
for details.

4. Estimating the Number of Marked Individuals

The martingale estimating equation involves the unknown terms M∗
j (t,K)

and its estimation is the crucial step in the sample coverage approach. Let
Mj(t,K) denote the number of individuals that have been captured in the interval
k(t) − K, . . . , j − 1, and M̃j(t,K) denote the number of individuals captured in
k(t) − K, . . . , j − 1 that are still in the population at occasion j. Furthermore,
let M∗

j (t,K) = NtjCj−1(t,K). In an open population, we need to estimate
M̃j(t,K). A naive estimator is Mj(t,K). However, some individuals marked
in a window Wt may permanently leave the population after a specific time
point tj ∈ Wt. Thus the estimator Ml(t,K) overestimates the actual number of
marked individuals M̃l(t,K), j < l. In order to adjust for the bias, Huggins and
Yip (1999) and Huggins et al. (2003) applied kernel smoothing method to the
estimating equation E{zj(t)nj − rj(t)[M̃j(t,K)−mj(t)]|M̃j(t,K),mj(t), nj} = 0
to derive the smooth estimator

M̄j(t,K) =
∑

l∈Wt
wl(tj)[zl(t)nl + rl(t)ml(t)]∑

l∈Wt
wl(tj)rl(t)

, (5)

where rl(t) denotes the number of the nl individuals captured and released on
occasion l and recaptured by occasion k(t) + K, and zl(t) denotes the number of
individuals captured at least once in occasions k(t) − K, . . . , l − 1, not captured
on occasion l and recaptured at least once in occasions l + 1, . . . , k(t) + K. If we
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suppose a local polynomial model for the number of marked individuals for each
j, M̃l(t,K) =

∑p
q=0 αq(tl − tj)q, this results in the estimating equations

∑
l∈Wt

wl(tj)
{
zl(t)nl − rl(t)

[ p∑
q=0

αq(tl − tj)q − ml(t)
]}

Gp(tl − tj) = 0,

and we estimate M̃j(t,K) by M̄j(t,K) = α̂0. However, for computational
simplicity in the simulations and application below, we used the locally con-
stant model. Furthermore, we obtain M̂∗

j (t,K) = M̄j(t,K) + [(nj/rj(t))Rj +
f1,j−1(t)]γ̂2(t,K), where f1,j−1(t) is the estimated number of individuals that
are caught once up to occasion j − 1, and Rj denotes the number of individuals
caught at least twice in occasions k(t)−K, . . . , j and once in j +1, . . . , k(t)+K.

5. Bandwidth Selection

The empirical-bias bandwidths of Ruppert (1997) was found to be computa-
tionally intractable. To choose the optimal local bandwidth, we instead employ
the bootstrap to estimate the MSE at a grid of times for an initial bandwidth set
H from which we may select optimal bandwidths. For the bandwidths not in the
initial bandwidth set H, we use interpolation. In order to construct our boot-
strap samples, rather than reconstruct the entire process we construct samples
for each time of interest. We follow the approach of Chao et al. (2001) for closed
populations and employ a non-parametric bootstrap by resampling from the cap-
tured individuals. We suppose that the bandwidth h has been determined. Let t

denote the time of the capture occasion considered, and let k(t)−K, . . . , k(t)+K

be the capture occasions considered. Let Nt,K denote the capture histories of the
nt,K individuals captured on at least one occasion in k(t)−K, . . . , k(t) + K. We
assign probabilities n−1

t,K to each capture history in Nt,K and construct a boot-
strap sample of size nt,K . For an estimator N̂(t), the number of uncaptured
individuals is fixed as N̂(t) − nt,K . In order to determine the bandwidth, it is
necessary to calculate the bias and variance for the bandwidths listed in Section
5.1. Thus several bootstrap samples are required at each time t considered. This
procedure is repeated each time a bootstrap sample is required. Bootstrap bias
and variance thus can be obtained and applied to yield the corresponding MSE,
in turn the optimal local bandwidth.

5.1. One step bootstrap estimation of the bias and variance

Carroll et al. (1998) proposed estimating the variance of the estimators,
and hence the mean squared error, using the sandwich method. However, we
have reservations about this approach due to the number of nuisance parameters
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involved in the procedure. Note that even in closed populations the bootstrap
is typically used to estimate the variance (Chao et al. (2001), Huggins and
Chao (2001)). In the present setting the conventional bootstrap will involve an
enormous amount of computation and we propose to use the one-step bootstrap
(e.g., §5.4.7 of Shao and Tu 1995).

Let Pn denote the model that generated the data and P̂n the estimate based
on the sample. Let Sn(θ, Pn) = [Sn,β(θ, Pn)T , Sn,p̄(t)(θ, Pn)]T denote the estimat-
ing equations for θ = [β0, . . . , βp, p̄(t)]T . Let g(θ, Pn) = θ − Sn(θ, Pn) so that
the estimator θ̂n is a fixed point of g(θ, Pn). Let P ∗

n denote the bootstrap ana-
logue of Pn. The computation of the one-step bootstrap estimator requires the
calculation of the matrix of derivatives of g(θ, Pn). Note that

∂Sn,β(θ)
∂βk

=
∑

j∈Wt

wj(t)
[1 − Cj−1(t,K)]

{
p̄(t)(tj − t)k[uj(t) + M∗

j (t,K)]
[
∑p

l=0 βl(tj − t)l]2

}
Gp(tj−t),

∂Sn,β(θ)
∂p̄(t)

=
∑

j∈Wt

wj(t)
[1 − Cj−1(t,K)]

{∑p
l=0 βl(tj − t)l − M∗

j (t,K)∑p
l=0 βl(tj − t)l

}
Gp(tj−t),

∂Sn,p̄(t)(θ)
∂βk

= p̄(t)
∑

j∈Wt

wj(t)(tj−t)k, and
∂Sn,p̄(t)(θ)

∂p̄(t)
=
∑

j∈Wt

wj(t)
p∑

l=0

βl(tj−t)l.

Let Ip+2 denote the p + 2 dimensional identity matrix and let

Gn(θ) =
∂g(θ, Pn)

∂θ
= Ip+2 − ∂Sn(θ)

∂θ
= Ip+2 −


 ∂Sn,β(θ)

∂β
∂Sn,β(θ)

∂p̄(t)
∂Sn,p̄(t)(θ)

∂β

∂Sn,p̄(t)(θ)

∂p̄(t)


 .

Let θ̂∗[1] be defined by θ̂∗[1] = g(θ̂n, P̂ ∗
n) = θ̂n − Sn(θ̂n, P̂ ∗

n). Then following (5.53)
of Shao and Tu (1995), we take θ̃∗[1] = θ̂n + [Ip+2 − Gn(θ̂n, P̂ ∗

n)]−1(θ̂∗[1] − θ̂n).
The sample bias and variance from the one-step bootstrap can then be used to
estimate the bias and variance.

5.2. MSE and optimal local bandwidth

Having determined the bootstrap bias and variance estimate over time grids
s1 < · · · < sa for an initial bandwidth set H = {h1, . . . , hb}, we compute the
corresponding MSE at each of these time grids. Therefore, we have a b × a

MSE matrix. For other MSEs corresponding to bandwidths not in the initial
bandwidth set H, we apply a smoothing spline to interpolate using the obtained
b MSEs at each time si, i = 1, . . . , a. Therefore, for each time si, i = 1, . . . , a,
we can choose the corresponding optimal local bandwidth h∗

i , i = 1, . . . , a, by
selecting the minimal MSE. Eventually, we obtain the optimal local bandwidth
estimates with respect to each time grid. Then these are applied to re-estimate
the population size using the method discussed in the foregoing sections.
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Figure 1. The average of 100 estimates arising from a population with
beta(5,5) capture probabilities using bandwidth h = 3. The estimated pop-
ulation sizes were computed using the estimators derived under the three
models for the capture probabilities and population size: (1) Homogeneous
and locally constant; (2) Heterogeneous and locally constant; (3) Heteroge-
neous and locally linear.

6. Simulations

6.1. The population size

We carry out a limited simulation to assess the performance of the proposed
estimator. We simulate the capture probabilities as random variables from a beta
distribution with mean α/(α + β) and squared CV β/{α(α + β + 1)}. The ten
beta distributions listed in Table 1 were considered. A population with cyclic-
variation in population size (emigration(reduction) → immigration(addition) →
emigration(reduction)) was generated.

We considered 51 evenly spaced occasions and seven different periods. The
population size, which changed relatively smoothly from one period to another
period, is displayed in Figure 1. To construct this population, in the first period
(from occasion 1 to 6), there were 400 individuals in the population. In the
second period (occasions 7 to 15), the individuals emigrated sequentially and
the population size dropped from 380 to 220 in steps of 20. In the third period
(occasions 16 to 21), the population size was kept at a fixed level of 200. In the
fourth period (occasions 22 to 30), the individuals that left the population in the
third period reentered the population and hence the population size increases
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from 220 to 380 by sequential increments of 20. In the fifth period (occasions 31
to 36), the population size returned to the original population size of 400 and
maintained the constant level within this period. In the sixth period (occasions
37 to 45), the population size started again to drop sequentially from 380 to 220
by reductions of 20. It stopped dropping until the beginning of the next period.
In the last period (occasions 46 to 51), the population size was reduced to 200
and kept constant within this period.

Due to the complexity of the computations for selecting optimal bandwidths,
we first examined the performance of the proposed estimators under fixed band-
widths, h = 3, 4 and 5. Computation of the weighted martingale estimators
requires a choice of an appropriate kernel function. Usually, a symmetric and
unimodal kernel function is used. In the simulations, we considered three ker-
nel functions: Q(v) = (15/16)(1 − v2)2, −1 ≤ v ≤ 1; the Epanechnikov kernel
Q(v) = (3/4)(1 − v2), −1 ≤ v ≤ 1; the triangular kernel Q(v) = (1 − |v|),
−1 ≤ v ≤ 1. The values of each kernel function were set to zero for v < −1 or
v > 1. Estimates obtained from solving a smooth estimating equation need not
be smooth. We produced a smoothing.

We first partitioned the whole capture period, from h + 0.01 to h + 46.01,
in steps of 0.45 to yield 100 evenly spaced time grids. We generated the capture
history matrix with 51 capture occasions using various beta-distributed cap-
ture probabilities. In total, 100 simulated experiments were conducted for each
distribution. At each time grid, we estimated the population size using three
estimators: (i) N̂LC

H (Huggins and Yip, (1999)) from (4); (ii) N̂LC
H̄

(Huggins et
al. (2003)) from (3); (iii) the proposed local linear estimator N̂LL

H̄
. Moreover, we

computed the error, standard error and root mean squared error estimates for
each trial. Finally, we took the average over these 100 trials, they are in Table 1
as BIAS, S.E. and RMSE.

In Table 1, for brevity, we only show the results obtained under the fixed
bandwidths h = {3, 4, 5} for the quartic kernel. The three kernel functions pro-
duced similar results although the RMSE may be somewhat different. However,
in general, the estimates arising from the quartic kernel perform better than the
others, in RMSE sense. In Figure 1 we plot the average of 100 estimates of the
population size in the beta(5,5) case with bandwidth h = 3.

In Table 1 observe that, as measured by the MSE, our proposed estimator
generally performs better than the other two estimators, with the estimators N̂LC

H̄

and N̂LL
H̄

being superior to N̂LC
H as they take the individual heterogeneity effect

into consideration. The estimator N̂LL
H̄

typically has smaller bias than N̂LC
H̄

.
However, the penalty is a larger standard error in some cases. Even though the
proposed estimator has better performance in RMSE sense, the proposed estima-
tor is not unbiased either and negative bias occurs when the beta-distributed cap-
ture probabilities have a high coefficient of variation. When the CV is modest, the



THE ESTIMATION OF THE SIZE OF AN OPEN POPULATION 683

two estimators that allow individual heterogeneity perform well for bandwidths
of 4 or 5. However, in cases with high CV, for example beta(1,1), beta(2,10) and
beta(0.5,0.5), all estimators seriously underestimate the true population size. As
noted by Chao et al. (2001) and demonstrated in Huggins and Chao (2001), in
these cases there exist some individuals that are essentially uncatchable, which
results in a negative bias. We also simulated the other population from a death-
only model with survival rate 0.9 (the same simulation considered in Huggins
et al. (2003)). The same ten beta models for capture probability settings were
considered. The results, not reported in detail here, show that the performance
of the proposed estimator N̂LL

H̄
was not superior to N̂LC

H̄
in this case.

6.2. Optimal bandwidths

We also studied the effect of the different kernel functions on the optimal
bandwidths. We adopted the same cyclic-variation population discussed in the
previous simulation study, but to reduce the amount of computations only the
optimal bandwidths at the time points, t = {8, 16, 24, 32, 40}, were calculated
with the capture probability taken to be beta(5,5). We conducted 100 simula-
tion experiments and computed optimal bandwidths for the three various kernel
functions at each point. Due to the generally better performance of the local
linear estimator under the cyclic-variation population, we only focused on the
estimator N̂LL

H̄
. The averages and standard errors, in parentheses, of the optimal

bandwidths obtained from 100 simulations at the five time points were very sim-
ilar. This suggests that the effect of the kernel functions on determination of the
optimal bandwidth may be not critical. This results are similar to the results of
ordinary kernel smoothing analyses.

The relationship between the capture probability and the optimal bandwidth
is also of interest (an associate editor conjectures that a smaller optimal band-
width is needed if the mean capture probability is higher). In order to investi-
gate this, we again used the cyclicly-varying population and the quartic kernel in
simulations. Four capture probability distributions, beta(2,0.667), beta(3,1.5),
beta(5,5) and beta(7,14), were considered − they have the same coefficient of
variation (CV= 0.302) but different mean capture probabilities p̄(t). We focused
on the estimator N̂LL

H̄
and calculated the corresponding optimal bandwidths in

100 simulations at the five time points t = {8, 16, 24, 32, 40}. The pattern of
optimal bandwidths for different capture probabilities indeed suggested that the
associate editor’s conjecture is correct and that the higher the capture probabili-
ties, the smaller the optimal bandwidth. Moreover, the increase was larger when
the population was smaller.
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Table 1. Simulation results for different bandwidths under quartic kernel.

Bandwidth h = 3 h = 4 h = 5

Estimates N̂LC
H N̂LC

H̄
N̂LL

H̄
N̂LC

H N̂LC
H̄

N̂LL
H̄

N̂LC
H N̂LC

H̄
N̂LL

H̄

beta(10, 10) BIAS -22.5 -14.8 14.0 -13.3 -6.9 12.5 -8.2 -4.7 11.5
p̄ = 0.500 S.E. 13.8 14.9 12.1 12.6 14.6 11.7 15.1 19.3 15.5
cv = 0.218 RMSE 26.4 21.0 18.5 18.3 16.2 17.1 17.2 19.9 19.3
beta(10, 20) BIAS -35.0 -18.6 5.8 -24.0 -9.4 6.1 -17.1 -4.8 5.5
p̄ = 0.333 S.E. 18.3 17.9 18.8 15.6 16.7 16.0 16.3 18.6 15.1
cv = 0.254 RMSE 39.5 25.8 19.7 28.6 19.2 17.1 23.6 19.2 16.1
beta(5, 5) BIAS -32.2 -19.9 5.4 -21.9 -11.8 4.9 -15.6 -8.4 5.1
p̄ = 0.500 S.E. 15.8 16.2 12.3 14.3 19.8 12.9 16.4 19.8 14.6
cv = 0.302 RMSE 35.9 25.7 13.4 26.1 15.9 11.9 22.6 21.5 15.4
beta(5, 8) BIAS -42.9 -23.8 -1.8 -31.5 -14.6 -0.5 -24.1 -9.7 0.1
p̄ = 0.385 S.E. 18.2 17.9 15.5 16.2 17.3 13.6 17.3 20.1 14.4
cv = 0.338 RMSE 46.6 29.8 15.6 35.4 22.7 13.6 29.7 22.3 14.4
beta(4, 8) BIAS -53.7 -29.1 -10.8 -42.0 -19.3 -8.4 -34.4 -13.9 -7.6
p̄ = 0.333 S.E. 20.8 19.4 18.1 18.5 18.8 15.6 19.2 20.6 16.4
cv = 0.392 RMSE 57.6 34.9 21.1 45.9 26.9 17.8 39.4 24.9 18.1
beta(3, 5) BIAS -57.4 -32.4 -15.5 -45.6 -22.8 -13.1 -37.4 -17.1 -11.4
p̄ = 0.375 S.E. 21.2 19.9 17.1 18.9 18.8 15.0 19.6 21.6 15.6
cv = 0.430 RMSE 61.2 38.1 23.1 49.4 29.5 19.9 42.3 27.5 19.3
beta(3, 10) BIAS -75.2 -40.9 -26.3 -63.4 -31.3 -25.9 -56.0 -23.7 -25.0
p̄ = 0.231 S.E. 28.0 24.8 27.3 24.3 22.4 23.8 24.0 23.5 22.7
cv = 0.489 RMSE 80.2 47.8 37.9 67.9 38.5 35.2 60.9 33.4 33.8
beta(1, 1) BIAS -75.5 -53.5 -44.3 -64.5 -43.8 -41.9 -56.1 -37.3 -38.1
p̄ = 0.500 S.E. 24.9 23.8 18.9 23.7 23.7 19.6 24.3 25.6 20.5
cv = 0.557 RMSE 79.5 58.6 48.2 68.7 49.8 46.3 61.1 45.3 43.2
beta(2, 10) BIAS -102.5 -61.9 -49.4 -89.3 -48.7 -46.5 -82.3 -41.5 -48.5
p̄ = 0.167 S.E. 32.3 31.6 37.7 31.4 28.4 32.2 30.1 28.5 30.4
cv = 0.600 RMSE 108.4 69.5 62.2 94.6 56.4 56.5 87.6 50.3 57.2

beta(0.5, 0.5) BIAS -99.2 -80.5 -76.2 -89.4 -71.1 -73.3 -81.8 -64.3 -68.6
p̄ = 0.500 S.E. 30.0 29.1 24.9 29.4 29.4 26.2 29.5 30.8 26.5
cv = 0.707 RMSE 103.7 85.6 80.1 94.2 77.0 77.9 86.9 71.3 73.6

7. Example

Huggins and Yip (1999) and Huggins et al. (2003) have previously examined
a data set concerning captures of Prinia flaviventris at Mai Po in Hong Kong.
The banding data was collected weekly on the bird species Prinia flaviventris at
the Mai Po bird sanctuary in Hong Kong over 34 weeks from September 1991-
April 1992. A total of 216 birds were captured in the period considered. More
details of this data are available in Huggins and Yip (1999) and Huggins et al.
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(2003). We examine this data set using a local linear model.

Figure 2. The optimal local bandwidth over the whole experiment.

We took 164 evenly spaced time points from 1 to 33.8 in increments of 0.2.
We again used the quartic kernel and computed the estimators N̂LC

H , N̂LC
H̄

and
N̂LL

H̄
. Using the approach of Section 5, we selected an optimal local bandwidth.

An initial bandwidth set H = {hj , j = 1, . . . , 10} = {3, 3.5, . . . , 7.5} was consid-
ered. We first chose a bandwidth from the bandwidth set H. For this bandwidth
hj , we constructed a bootstrap sample with 2hj + 1 occasions and calculated
the estimate N̂LL

H̄
in this window. By repeating this procedure 200 times, we

estimated the bias, variance and hence mean squared error at each time point.
Eventually, we had a 10 × 164 array of the MSEs, where the rows denote the
bandwidth set H and the columns the time axis. As illustrated in Section 5.2,
we applied a smoothing spline to interpolate the MSE for other bandwidths not
in the initial bandwidth set H. To do this we divided the intervals between the
bandwidths into ten evenly spaced subintervals and interpolated the MSE. Then
we choose the optimal bandwidth based on minimal MSE criterion and obtain
the optimal bandwidths for all time points. The results are shown in Figure 2.

Applying the selected optimal bandwidths, we can estimate the population
size and the slope term in the local polynomial model as discussed in Section 2.
After selecting the optimal bandwidth, we applied the new optimal bandwidths
to all three estimators to show the final smoothed curve of estimated population
size in Figure 3. Thus the bandwidth is optimal for N̂LL

H̄
, but not for the other

two estimators.
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All three estimators give the same overall pattern for the population dynam-
ics. The estimated coefficients of variation ranged from zero to 1.81 (mean 0.44
and standard error 0.54), and was largest between weeks 16 and 28, giving a quite
different pattern to Figure 2. This demonstrates heterogeneity among individuals
in the population and, in this region, the estimator N̂LC

H gave noticeably lower
estimates than the other two. Under the local linear model, the estimated slope
calculated for evenly spaced time points in increments of 0.2 weeks ranged be-
tween −628.80 and 510.57 with mean −8.13. The large positive peak was around
21 weeks and the negative peak near 24 weeks. At the large negative peak, the
locally constant and locally linear estimators produced different results, but they
are similar where the estimated slope was positive. In Figure 3, we see that the
local linear and local constant models are generally similar, with the local linear
model differing the most from the locally constant model where the estimated
slope was large and negative.

Figure 3. The estimated population sizes under the three models considered
for the optimal bandwidth.

8. Discussion

The use of local polynomials allows more realistic assumptions on the popu-
lation size than does the locally constant approach. In the simulation study, we
have shown that the local polynomial approach also generally improves the bias
and the MSE. This being particularly so when the changes in the population
size were the largest. Other simulations, not reported here, show that even if
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the population changes more sharply than that in the simulations reported here,
the local linear estimator still performs quite well. In other simulations, also not
reported in detail here, we considered a population with individuals entering and
leaving at the same rate so the population size was approximately constant. In
this case the local linear estimator N̂LL

H̄
performed better than the other two

estimators.
The proposed method of the selection of optimal local bandwidth is concep-

tually simple and computationally feasible, where other possible approaches are
not. We saw in simulations that there was little difference between the optimal
bandwidths for some common kernel functions and that the higher the capture
probability is, the smaller the optimal bandwidth. The same data driven pro-
cedure could be applied to determine the degree of polynomial as, in a similar
fashion to the selection of the optimal bandwidth in Section 5.2, we could calcu-
late the MSE of the proposed estimator at each time point based on polynomial
models of different orders. Hence, the degree with minimum MSE could theo-
retically be selected at each time and the optimal degree could even be obtained
locally, or a fixed degree of polynomial over whole experimental period could be
obtained. Thus our extensions of the local linear kernel smoothing approach and
our data driven bandwidth selection method, whilst computationally intensive,
have the potential to greatly enhance the utility of the local estimating method
in capture-recapture studies.
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Appeddix A. The Estimating Equations

Let Fj−1 denote the capture histories on occasions k(t)−K, . . . , j −1. Then
it is easily shown that E[uj(t)|Fj−1] = [Ntj −M∗

j (t,K)]p̄(tj) = [
∑p

l=0 βl(tj − t)l−
M∗

j (t,K)]p̄(tj), E[mj(t)|Fj−1] = M∗
j (t,K)p̄(tj) and E[nj |Fj−1] = Ntj p̄(tj) =∑p

l=0 βl(tj − t)lp̄(tj). Under our assumptions on the removals from the popu-
lation and arrivals into the population, p̄(tj) and p̄(t) estimate the same quan-
tities. Thus we replace p̄(tj) by p̄(t) in the estimating functions and use a lo-
cally constant approach to estimate p̄(t). Hence the estimating functions are
gj1(t) = uj(t)−[

∑p
l=0 βl(tj−t)l−M∗

j (t,K)]p̄(t) and gj2(t) = mj(t)−M∗
j (t,K)p̄(t).

In our case, θT = [β0, . . . , βp, p̄(t)]. Now ∂gj1(t)/∂βl = −(tj−t)lp̄(t), l = 0, . . . , p,
∂gj1(t)/∂p̄(t) = −[

∑p
l=0 βl(tj − t)l −M∗

j (t,K)], ∂gj2(t)/∂βl = 0, l = 0, . . . , p, and
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∂gj2(t)/∂p̄(t) = −M∗
j (t,K). Thus for j ∈ Wt, we obtain the conditional expec-

tation Dj and conditional covariance Vj as follows:

Dj =

[
−p̄(t) −(tj−t)p̄(t) . . . −(tj−t)pp̄(t) −[

∑p
l=0 βl(tj−t)l−M∗

j (t,K)]
0 0 . . . 0 −M∗

j (t,K)

]
,

Vj = Ntj p̄(t)[1 − p̄(t)(1 + γ2
t )]

[
1 − Cj−1(t,K) 0

0 Cj−1(t,K)

]
.

After removing terms that do not depend on j, the estimating functions for
the β is the weighted sum of the terms

(
DT

j V −1
j gj

)
β

= −{uj(t) − [
∑p

l=0 βl(tj − t)l − M∗
j (t,K)]p̄(t)}

[1 − Cj−1(t,K)]
∑p

l=0 βl(tj − t)l
Gp(tj − t),

where GT
p (v) = [1, v, v2, . . . , vp]. This yields (1). The estimating function for p̄(t)

is the weighted sum of the terms
(
DT

j V −1
j gj

)
p̄(t)

= −[nj − p̄(t)
∑p

l=0 βl(tj − t)l],

which yields (2).

Appeddix B. Computation of the Estimates

Let Hj−1(t,K) = [1 − Cj−1(t,K)][β(n−1)
0 + β

(n−1)
1 (tj − t)]. Given an initial

value (β(0)
0 , β

(0)
1 ), we can obtain the estimates by solving the following iterative

formulae until convergence:

p̄(n−1)(t) =
∑

j∈Wt
wj(t)nj∑

j∈Wt
wj(t)[β

(n−1)
0 + β

(n−1)
1 (tj − t)]

,

β
(n)
0 =

∑
j∈Wt

wj(t)H−1
j−1(t,K){uj − [β(n−1)

1 (tj − t) − M̂∗
j (t,K)]p̄(n−1)(t)}∑

j∈Wt
wj(t)H−1

j−1(t,K)p̄(n−1)(t)
,

β
(n)
1 =

∑
j∈Wt

wj(t)H−1
j−1(t,K){uj − [β(n−1)

0 − M̂∗
j (t,K)]p̄(n−1)(t)(tj − t)}∑

j∈Wt
wj(t)H−1

j−1(t,K)p̄(n−1)(tj − t)2
.

The resulting estimated population size, slope and mean capture probability thus
are NLL

H̄
(t) = β̂0, β̂1 and ˆ̄p(t) respectively.
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