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Abstract: Researchers from a variety of disciplines have studied the problem of

estimating the number of distinct classes in a population, known in statistics as

the number of species problem. The topic of this paper is the special case of

the problem in which the population is finite, its size (or the sampling rate) is

known, and auxiliary information correlated to class size is available from sampled

classes. We use this information to improve estimation by linking class size to this

information via a loglinear model. The parameters of the model are estimated from

the sample using conditional maximum likelihood, where the conditioning event is

that the class is observed in the sample. The model is then used to estimate

the probability of observation for every sampled class, which is in turn used in

a Horvitz-Thompson-like estimator of number of classes. The paper shows that

the improvement in estimation over other available estimators can be dramatic,

especially if the class sizes vary widely. The performance of the estimator degrades

when the model is misspecified, but still competes well with alternative estimators.

Key words and phrases: capture-recapture, Horvitz-Thompson estimator, loglinear

model, number of classes.

1. Introduction

The problem of estimating the number of distinct classes in a population,
known as the number of species problem, has been studied by researchers from a
variety of disciplines outside ecology, including archeology and computer science.
A review article by Bunge and Fitzpatrick (1993) reports papers on the topic
from as early as 1948. A special case of the problem is addressed in this paper;
specifically, how can we estimate the number of classes in a finite population
whose size is known? This problem arises in an array of applications other than
the classical number of species, including the following.
(a) Data are organized in tables called relations in relational databases. For ex-

ample, each row of a database, called a record, might represent a telephone
call made, and a column, called an attribute, might represent the originating
time of the call. Processing complex queries to a database efficiently has be-
come more important as they have grown in size. Knowledge of the number
of distinct values of an attribute is vital for determining the most efficient
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algorithm for computing a specified output relation (e.g., Chaudhuri, Mot-
wani and Narassayya (1998)) and is therefore important for good database
performance.

(b) Lists containing overlapping entries may need to be combined and undupli-
cated. Examples of these situations are estimation of the number of valid
signatures in petitions (Smith-Cayama and Thomas (1999)) and the number
of sampling units on combined sampling frames (Deming and Glasser (1959)).

The problem being studied in this paper can be described as follows. A
population of size N consists of D mutually disjoint classes of items, Nj denotes
the size of the jth class, N =

∑D
j=1 Nj. A sample of items is chosen from this

population, and we let fi denote the number of classes represented exactly i
times in the sample and d =

∑N
i=1 fi the total number of classes represented

in the sample. In this paper, we propose a method for estimating D from this
sample. Our innovation is that we allow auxiliary information about the observed
classes to be used in the estimation process.

Throughout our development, we assume the sample of items is selected by
a Bernoulli sample design with a known sampling rate q. A Bernoulli design is
one in which each unit of the population is chosen into the sample independently
and with equal probability. (See, for example, Sarndal, Swensson and Wretman
(1992), Section 3.2.) We assume this design, rather than the more familiar sim-
ple random sampling, for two reasons. First, it is the design actually used for
sampling in some database products, which was the motivating application for
work on this problem. Secondly, it provides an approximation to a simple ran-
dom sample (srs) that proves more tractable for this analysis. If a srs of size n

is the true design, then we set the sampling rate q = n/N in the development
that follows. Thus the assumption of a known sampling rate is equivalent to an
assumption of a known population size N .

The long history for the number of species problem has produced many
estimators, none of which perform well under all circumstances. First consider
the unrealistic special case in which it is known that the class sizes are equal; i.e.,
that N1 = · · · = ND = N = N/D. Under Bernoulli sampling with probability of
selection q, d ∼ Bin(D, 1− (1− q)N ), so that a method of moments estimator of
D is the solution of the equation

d = D[1 − (1 − q)N ]. (1.1)

If q is sufficiently small and N sufficiently large, (1 − q)N ≈ exp(−qN) ≈
exp(−n/D), where n is the number of items selected in the Bernoulli sample.
This leads to the following approximation for the estimating equation in (1.1):

d = D[1 − exp(−n/D)]. (1.2)
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A number of authors (e.g., Good (1950), Lewontin and Prout (1956)) have sug-
gested that the solution of (1.2), denoted D̂eq, be used as an estimator of D in
the case in which multinomial sampling from an equal class-size population is
assumed. This estimator performs well when those assumptions are met, but
underestimates D when class sizes vary.

Haas and Stokes (1998) proposed a family of estimators for D when class
sizes vary, called generalized jackknife estimators. Using this approach, they
attempted to correct the bias of d as an estimator of D after approximating
it by a function that could be more easily estimated. Their “first-order” esti-
mator is D̂uj1 = d/(1 − (1 − q)f1/n); their “second-order” estimator is D̂uj2 =
(D̂uj1/d)[d− f1(1− q) ln(1− q)γ̂2(D̂uj1)/q], where γ̂2(D̂uj1) = max(0, (D̂uj1/n

2)∑n
i=1 i(i − 1)fi + D̂uj1/N − 1) is an estimator of the square of the coefficient

of variation (cv) of the class sizes. Neither of these estimators performs well as
cv increases. D̂uj2 was found to be improved, however, by using a stabilizing
device suggested by Chao, Ma and Yang (1993). First fix c ≥ 1 and remove
any class whose frequency in the sample exceeds c (in the simulations which fol-
low, c = 50). Then compute the estimator D̂uj2 from the reduced sample and
subsequently increment it by the number of large classes removed. We denote
this estimator by D̂uj2a. Haas and Stokes (1998) recommended it as the best
nonparametric non-branching estimator they were able to find.

The population configurations that are especially problematic are those hav-
ing small average class size N . Since D = N/N , a small change in the average
class size, which is hard to detect from the sample, can produce a large change
in D. For some class size configurations, there is simply too little information
available from the sample for estimating D, unless the sampling rate is large.

Because performance of the available nonparametric estimators of D is not
entirely satisfactory, researchers have examined alternatives that attempt to aug-
ment the information available from the sample in various ways. One approach
has been to assume a certain family of distributions for class sizes (e.g., Sichel
(1997)). Here we take an alternative approach. We assume that explanatory
variables for the size of each observed class are available and that a model link-
ing class size to these variables can be determined. In the database application,
the auxiliary information might be the size of the sampled class at some point in
the past when the entire database was processed (as it might be once a year, say).
A similar type of information for the number of species problem may exist in the
form of compilations of counts of “sightings” of species for similar habitats, or
for the same habitat in earlier time periods. In the sampling frame application,
observable characteristics of the sampling units themselves, such as family size,
may be predictive of the number of lists on which the units appear if the lists
are administrative records.

The remainder of the paper will proceed as follows. Section 2 presents the
model for class size, describes the method for estimating it, and examines an
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estimator of D based upon the model. A method for estimating variance is given
in Section 3. The results of a simulation study are presented in Section 4. The
study examines the performance of the new estimator in both correctly specified
and misspecified artificial populations, and in a real population.

2. The Estimator

In this section, we present an estimator for D based on a sample from a finite
population of items. The data are composed of the number of sample items falling
into, as well as a vector of explanatory variables about, each observed class. The
estimation process has two conceptual components, which are summarized and
then considered in detail.
(1) The proposed estimator is

D̂ =
∑

Oj=1

1/π̂j , (2.1)

where Oj = 1 when class j is observed in the sample and = 0 otherwise, and π̂j

is an estimator of πj = Pr[Oj = 1], the probability that class j is observed in the
sample. If the πj ’s were known rather than estimated, D̂ could be recognized
as the Horvitz-Thompson estimator of D, the size of the population of classes.
Haas and Stokes (1998) considered an estimator of the form (2.1) that made use
only of the number of sample observations in each observed class, but not any
auxiliary information, to estimate πj. It performed poorly.
(2) The second component of the estimation process is methodology for estimat-
ing πj. This probability is determined by the size of the jth class, which we link
by a regression model to auxiliary information about the class. The model must
be estimated from the observed classes, which are size-biased, since large classes
are more likely to be observed than small classes. This selection bias must be
taken into account for estimation.

This method is similar in spirit to Alho (1990) and Huggins (1989), who
proposed model-based generalizations of the capture-recapture estimator. Their
methods allowed each individual in a population to have its own capture probabil-
ities on each occasion, modeled by logistic regression as functions of characteris-
tics of the individuals, and estimated from the data of ever-captured individuals.
In their case, πj represented the probability that the jth individual was captured
on either occasion. Our approach is similar, but leads to a different structure for
both the class selection probability πj and for the underlying regression model.
We now describe the assumed structure for our population.

Recall that Nj denotes the size of the jth class in the population. Assume
that

Nj ∼ P+(λj), (2.2)

λj = exp(xjβ), j = 1, . . . ,D, (2.3)
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and that the Nj ’s are mutually independent. P+ denotes a positive Poisson
distribution, xj is a row of k explanatory variables for the size of class j in the
design matrix X , and β is the k×1 vector of regression coefficients that must be
estimated from the sample. Suppose the resulting population of N =

∑D
j=1 Nj

items is sampled with a Bernoulli design having selection probability q. Then the
number of items in class j in the resulting sample, n′

j, has conditional distribution

n′
j|Nj ∼ Bin(Nj , q) (2.4)

for j = 1, . . . ,D, and are independent. The marginal distribution of n′
j is

fλj
(k) = Pr[n′

j = k]

=
∞∑

r=k

Pr[n′
j = k|Nj = r] Pr[Nj = r]

=

{
e−qλj (qλj)k/k!(1 − e−λj ) for k = 1, . . .

(e−qλj − eλj )/(1 − e−λj ) for k = 0.
(2.5)

Note, however, that n′
j cannot be observed in the sample since it is truncated

when n′
j = 0. Instead, the size of the jth observed class, denoted by nj, has

probability function fλj
(k)/[1− fλj

(0)]. (To aid in notation, we assume that the
n′

j’s have been reordered so that n′
j > 0 for j = 1, . . . , d.) From (2.5), one can

show, that for j = 1, . . . , d,
nj ∼ P+(qλj). (2.6)

The nj’s are conditionally independent, given the classes observed. Under this
model the Oj ’s, j = 1, . . . ,D, are independently distributed as Bernoulli (πj),
and one can show from (2.5) that

πj = Pr[n′
j > 0] =

1 − exp(−qλj)
1 − exp(−λj)

. (2.7)

Therefore, following (2.1), we propose as an estimator

D̂ =
∑

Oj=1

1 − exp(−λ̂j)
1 − exp(−qλ̂j)

, (2.8)

where λ̂j = exp(xjβ̂), and β̂ is the maximum likelihood estimator of β under
(2.6).

From (2.6), the conditional loglikelihood function for the sample of nj’s given
the observed classes is

ln L =
∑

Oj=1

[nj ln λj − ln(exp(qλj − 1))] + constant,



660 S. LYNNE STOKES

with λj defined in (2.3). Thus the likelihood equations can be written as∑
Oj=1

xjnj =
∑

Oj=1

xjE(nj), (2.9)

E(nj) =
qλj

1 − exp(−qλj)
. (2.10)

We solve these equations for β using Newton’s method. The covariance matrix
for n = (n1, . . . , nd), denoted by W , is diagonal with the truncated Poisson
variance as its jth element:

Var (nj) =
qλj

1 − exp(−qλj)

[
1 − qλj exp(−qλj)

1 − exp(−qλj)

]
. (2.11)

Letting β0 denote a starting value, we can solve (2.9) iteratively by computing
βu+1 = βu + (X′W uX)−1X ′ (n − Eu(n)), u = 0, 1, . . ., where W u and Eu(n)
give the estimated values of W and E(n) (from (2.11) and (2.10)) based on the
current value βu. Iteration continues until convergence occurs. An estimator for
the covariance matrix of β̂ is

ˆCov (β̂) = (X′ŴX)−1, (2.12)

where Ŵ is the estimator of W , obtained by substituting λ̂j for λj.
What does this estimator look like when there are no explanatory variables,

i.e., when the design matrix is a vector of 1’s? In that case the mle for λj = λ is
(from (2.9)) the solution of the equation

1 − exp(−qλ) =
qλd

n
, (2.13)

and (from (2.8))

D̂ = d
1 − exp(−λ̂)
1 − exp(−qλ̂)

=
n(1 − exp(−λ̂))

qλ̂
,

where λ̂ is the solution of (2.13). Since Nq ≈ n when N is large, we have

D̂ ≈ N

λ̂/[1 − exp(−λ̂)]
. (2.14)

The denominator of (2.14), which is an estimator of average class size, must
be greater than or equal to 1; thus we are assured that D̂ ≤ N . We now
compare D̂ to D̂eq defined from (1.2). We reparameterize (2.13) by defining
λ = N/x, and again use the approximation Nq ≈ n to obtain the expression
d = x[1 − exp(−n/x)]. Note that the solution to this equation is D̂eq, so that
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D̂eq = D̂/[1 − exp(−λ̂)]. So if there are no explanatory variables, D̂ and D̂eq

are nearly identical when λ̂ is as large as about 4 (when D̂ = (0.98)D̂eq). As
λ̂ → 0 (meaning that the class sizes, following the positive Poisson distribution,
are becoming more uniformly of size 1), the two estimators diverge, with D̂ → N
and D̂eq → ∞, since that estimator was developed for the infinite population
case.

The estimator D̂ can be thought of as a generalization of a post-stratified
version of the equal class-size estimator of D, in the same way that Alho’s estima-
tor is a generalization of Sekar and Deming’s (1949) post-stratified dual system
estimator. If one knew that the set of classes could be divided into strata of
nearly equal-sized classes based on some observable characteristic of the sampled
class, one could estimate D by D̂ps =

∑H
h=1 D̂eq,h, where D̂eq,h is calculated from

those classes that fall into stratum h. This would yield approximately the same
estimator as D̂ if the only explanatory variables were the indicator variables for
post-stratum membership.

3. Asymptotic Properties and Variance Estimation

In this section we examine some large sample properties of D̂ and develop
an estimator for its standard error. Discussion of asymptotic properties of an
estimator of parameters of a finite population requires an artificial structure to
make the concept of an increasing sample size meaningful. The approach we
take here is similar to that of Huggins (1989) in his development of large sample
properties of an estimator of population size in a capture-recapture setting.

Consider a sequence {U1, U2, . . .}, where Ur is a population consisting of Dr

classes and Dr → ∞ as r → ∞. We do not assume that the populations are
nested (U1 ⊂ U2 ⊂ · · ·) although we could; that is sometimes done for consistency
arguments in finite populations. We do assure the similarity of the populations
by assuming that the vectors of covariates xrj (for the jth class in population
r) are independent and identically distributed within each population, and that
they have come from a common underlying distribution for all r. Further we
assume that the structure of the class size configuration and the sample drawn
from each population is determined as shown in (2.2)−(2.4). We assume that β
and q remain constant over all r.

The derivative of the loglikelihood function (2.9) can be written for the rth
sample as d ln Lr/dβ = Sr(β) =

∑Dr
j=1 xjOj(n′

j−qλj/(1 − e−qλj )). (For simplicity
of notation, suppress the subscript r for the parameters and random variables
associated with each class in population r.) From (2.7) we have E(Oj) = πj and,
from (2.5), one can show that E(Ojn

′
j) = E(n′

j) = qλj/(1 − e−λj ). Therefore
Sr(β) is the sum of Dr i.i.d. terms, each of which has expectation 0. To find the
variance-covariance matrix of each term, denoted by iβ, we calculate

E

{[
Oj

(
n′

j −
qλrj

1 − e−qλj

)]2
∣∣∣∣∣ xj

}
=

qλj

1 − e−λj

[
1 − qλje

−qλj

1 − e−qλj

]
= cj .
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Thus
iβ = E[xjx

′
jcj], (3.1)

where the expectation is taken over the distribution of the covariates.
Let D̂r(β) =

∑Dr
j=1 Oj/πj . Though this cannot be considered an estimator

since β is unknown, it would be the proposed estimator if β were replaced by
β̂. We first investigate the properties of D̂r(β). Observe that D̂r(β) − Dr =∑Dr

j=1[(Oj − πj)/πj ] is the sum of Dr i.i.d. random variables, each with mean 0
and variance

vβ = E

{
Var

[
Oj

πj

∣∣∣∣∣ xj

]}
= E

[
1 − πj

πj

]
. (3.2)

We assume that this expectation exists, which can be assured by requiring that
the probability of sampling a class does not become too small. For example, we
can require that the distribution of the covariates be bounded. It is easy to show
that the covariance between Sr(β) and D̂r(β) is 0. Thus from the Central Limit
Theorem, as r → ∞,

D−1/2
r (S′

r(β), D̂r(β) − Dr) → Multinormal(0, Diag(iβ, vβ)). (3.3)

One can also show that −E[dSr(β)/dβ] = E[Sr(β)][Sr(β)]′, so that the con-
sistency and asymptotic normality of the solution of the likelihood equations
for the rth sample (β̂r) is assured. Specifically, we have that

√
Dr(β̂r − β) is

asymptotically multivariate normal with covariance matrix i−1
β . This allows us

to determine that as r → ∞,(√
Dr(β̂r − β),D−1/2

r (D̂r(β) − Dr)
)
→ Multinormal(0, Diag(i−1

β , vβ)).
(3.4)

Now we need to evaluate the behavior of D̂r(β) when β is replaced by β̂.
To distinguish the two, we denote the latter as D̂r(β̂r). We can write the first
order Taylor approximation as

D̂r(β̂r) − Dr = D̂r(β) − Dr + (β̂r − β)′
[

d

dβ
D̂r(β)

]
β∗

, (3.5)

where β∗ lies between β̂r and β. After some algebra,

1
Dr

[
d

dβ
D̂r(β)

]
= − 1

Dr

Dr∑
j=1

Oj

π2
j

dπj

dβ

=
1

Dr

Dr∑
j=1

Ojλjxj

πj

[
exp(−λj)

1 − exp(−λj)
− q exp(−qλj)

1 − exp(−1λj)

]
. (3.6)
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Since this is a sample mean of i.i.d. random variables, it converges in probability
(for any value of β) to a vector we denote by u. Thus we can show from (3.5)
that, as r → ∞,

1√
Dr

(D̂r(β̂r) − Dr) → Normal(0, vβ + u′i−1
β u). (3.7)

This suggests that for populations in which D is sufficiently large, the stan-
dard error of D̂ can be obtained by separately estimating the two components
of its approximate variance which (from (3.7)) can be written as V (D̂) ≈ Vβ +
U ′I−1

β U , where Vβ = Dvβ, U = Du and Iβ = Diβ. Note that if β were known

and x fixed, we could estimate Vβ unbiasedly by
∑D

j=1 Oj(1 − πj)/π2
j . Since we

do not know β, we substitute its estimator in this expression to obtain

V̂β =
D∑

j=1

Oj(1 − π̂j)
π̂2

j

. (3.8)

For estimation of the second component of the variance, we observe from (3.6)
that a reasonable estimator of U is

Û =
D∑

j=1

Oj λ̂jxj

π̂j

[
exp(−λ̂j)

1 − exp(−λ̂j)
− q exp(−qλ̂j)

1 − exp(−qλ̂j)

]
. (3.9)

For estimation of Iβ, we use (based on (3.1))

Îβ =
D∑

j=1

Ojxjx
′
j ĉj

π̂j
=

D∑
j=1

Ojxjx
′
j

qλ̂j

1 − e−qλ̂j

[
1 − qλ̂je

−qλ̂j

1 − e−qλ̂j

]
.

Note that Î
−1
β can be written as (X′ŴX)−1, which matches the previously

proposed variance estimator for β̂ shown in (2.12). Therefore, we can write the
estimator of the variance of D̂ as

V̂ (D̂) = V̂β + Û
′
(X′ŴX)−1Û , (3.10)

where components are defined in (3.8), (3.9) and (2.12).

4. Simulation Results

A simulation study was conducted to compare the performance of D̂ with
that of two estimators that do not make use of auxiliary information, D̂eq and
D̂uj2a. These two were chosen because one or the other would be expected to
perform about as well as known estimators for any population configuration.
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When the cv of class size is small, we would expect D̂eq to dominate; else the
stabilized jackknife would be expected to perform best.

Three experiments were performed. One studied the benefits of the new
estimator in its most favorable light, that is, when (2.6) holds. The other two
were designed to assess its performance under more realistic conditions. The first
simulates estimation when the model is misspecified in a particular way, and the
second simulates sampling from a real population.

4.1. Performance of D̂ under assumed model

The estimators of D were studied for different populations, generated by
manipulating parameters in (2.2)−(2.4). The experiment used three two-level
factors to control the characteristics of the population. These factors were: size
of D (100 and 1000); coefficient of variation of class size (small (cv2 < 0.25)
and large (cv2 ≈ 1.7)); average class size (small (N ≈ 6) and large (N ≈ 22)).
Eight (2 × 2 × 2) populations were generated, each having one combination of
the three characteristics. Samples were repeatedly selected from each population
according to one of several Bernoulli designs.

The simulation was conducted as follows. For each of the eight populations,
a set of D independent variables X1, . . . ,XD was generated as independent with
Xj ∼ Uniform (0, 1). Next the D class sizes N1, . . . , ND were generated, where
Nj ∼ P+(λj), with ln(λj) = β0 + β1xj , and (β0, β1) = (1.6, 0.6) (small cv,
small N); (3.1, 0.6) (small cv, large N); (-1.5, 5) (large cv, small N); (-0.2, 5)
(large cv, large N). Then 1000 Bernoulli samples were drawn from the generated
population with each sampling rate. Sampling rates examined ranged from q =
0.10 (0.05 for D = 1000) to q = 0.50 (q = 0.25 for small cv, large N populations).
D̂, D̂eq and D̂uj2a were computed from each sample. The estimated variance of
D̂ (3.10) and its nominal 95% confidence interval

D̂ ± 1.96
√

V̂ (D̂) (4.1)

were also computed from each sample.
Table 1 summarizes the results for D = 1000 and for q = 0.05, 0.10, 0.25

and 0.50. The first entry in the cells labeled by estimator names is the simulated
estimate of relative bias, that is, the average of each estimator as a fraction of
D:

RB =
1

1000

1000∑
s=1

D̂s/D, (4.2)

where D̂s is the estimate from one of the three estimators on sample replicate
s. The second entry in each cell is the simulated estimate of the relative root
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mean squared error, defined as the square root of the average squared error of
each estimator as a fraction of D:

√
RMSE =

[
1

1000

1000∑
s=1

(D̂s − D)2
]1/2

/D. (4.3)

Estimates of the simulated standard error of the relative bias and relative average
squared error were both less than 0.01 for each cell entry. The table also shows
the average values of sample size and number of species observed in the sam-
ples for the various simulated populations and sampling rates. The table shows
that the proposed estimator provides marked improvement over the alternatives
considered when cv is large. Surprisingly, the improvement was at least as great
when average cell size was large as when it was small. When cv is small, D̂ and
D̂eq are nearly identical in performance, with D̂uj2a generally slightly worse. The
results for the D = 100 case show similar relative performance of the estimators
but are not displayed.

Table 1. RB(4.2) and
√

RMSE(4.3) of estimators for correctly specified
model for population having D = 1000.

N Small N Large

q cv n D̂eq D̂uj2a D̂ n D̂eq D̂uj2a D̂

d d

333 0.46 0.52 1.05 1195 0.52 0.64 1.00
Large 237 0.54 0.49 0.18 467 0.48 0.36 0.09

0.05 332 0.89 0.90 1.03 1493 1.01 1.00 1.01
Small 277 0.14 0.15 0.14 780 0.02 0.03 0.03

666 0.51 0.62 1.03 2389 0.61 0.78 1.00
Large 372 0.49 0.39 0.10 598 0.39 0.23 0.05

0.10 665 0.97 0.92 1.00 2987 1.00 1.00 1.00
Small 481 0.06 0.10 0.06 950 0.01 0.01 0.01

1666 0.63 0.84 1.02 5973 0.77 0.96 1.00
Large 585 0.37 0.17 0.04 770 0.23 0.05 0.02

0.25 1662 0.98 0.97 1.00 7467 1.00 1.00 1.00
Small 800 0.02 0.04 0.02 999 0.00 0.00 0.00

3332 0.79 1.05 1.01 11945 0.90 1.05 1.00
Large 778 0.21 0.05 0.02 900 0.10 0.05 0.01

0.50 3324 0.99 0.99 1.00
Small n.a. n.a. n.a. n.a.956 0.01 0.01 0.01

n.a. Not available. Simulations were not conducted for this case, since
q = 0.25 resulted in virtually perfect estimation by all estimators.
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Table 2 summarizes the performance of the variance estimator for D̂ (3.10)
and the confidence interval procedure (4.1) for D = 100 and D = 1000. The first
entry in each cell of this table shows the square root of the relative bias of the
estimated variance of D̂,

√
RB(V ) =

[
1

1000

1000∑
s=1

V̂s(D̂)/
1

1000

1000∑
s=1

(D̂s − D̂)2
]1/2

. (4.4)

The relative bias is the ratio of the average estimated variance of D̂ to the actual
variance of D̂, as assessed from the simulation. The second entry in each cell
is the actual coverage of the nominal 95% confidence interval for D. The table
shows that the variance estimator is nearly unbiased, even for D = 100. It tends
to overestimate the true variance only slightly, except in those cases where the
true variance is extremely small, such as when the average class size and the
sampling rate are large. The confidence interval procedure seems to work well,
having coverage near the nominal level.

Table 2.
√

RB(V )(4.4) and coverage of nominal 95% CI for correctly spec-
ified model.

N Small N Large
q cv

D = 100 D = 1000 D = 100 D = 1000
1.01 1.04

Large n.a. n.a.0.96 0.95
0.05 1.01 1.01

Small n.a. n.a.0.96 0.95
1.03 1.01 1.04 1.04

Large 0.94 0.95 0.93 0.95
0.10 1.01 1.02 1.07 1.07

Small 0.95 0.95 0.96 0.93
0.99 1.02 1.05 1.05

Large 0.93 0.94 0.94 0.96
0.25 1.02 1.03 1.42 1.29

Small 0.94 0.95 0.96 0.99
1.02 1.06 1.06 1.07

Large 0.95 0.96 0.95 0.97
0.50 0.96 1.08

Small n.a. n.a.0.93 0.95

4.2. Performance of D̂ under misspecified model

The purpose of this experiment was to examine the robustness of D̂ to model
misspecification. In this simulation, it is assumed that a model of the form
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(2.2)−(2.3) exists, but the exact explanatory variables are not available to the
analyst. The experiment was structured like the previous one, except that only
the large cv, small N population was examined. The two (D = 100 and 1000)
populations generated were identical to those of the previous simulation, and the
same 1000 Bernoulli samples (q = 0.10 and 0.25 for D = 100, q = 0.05, 0.10
and 0.25 for D = 1000) were used. The difference here was that the vector of
independent variables used in estimation was not the one used to generate the
population. Instead we used for estimation X ′

j = Xj + ασXεj, with εj ∼ N(0, 1)
independent of the Xj , mutually independent, and with α taking on a range of
values from 0.05 to 1.0. Since Xj was a uniform random variable, σX =

√
1/12.

This produced an independent variable that explained between 50% (for α = 1.0)
and 99% (for α = 0.05) of the variability in the true independent variable. D̂ was
calculated for each sample. D̂eq and D̂uj2a are not affected by the new values of
the explanatory variables.

Figures 1 and 2 display the results. In each figure, the estimated relative
efficiency of D̂ to each of the other estimators is shown. Estimated relative
efficiency is calculated as the ratio of the average squared errors of the estimators.
For example,

RE(D̂, D̂uj2a) =
∑1000

s=1 (D̂uj2a,s − D)2∑1000
s=1 (D̂s − D)2

.

Comparison of D̂ with other estimators when model is misspecified and D = 100.

Figure 1. This figure shows
√

RE(D̂, D̂eq) and
√

RE(D̂, D̂uj2a) under in-
creasing model misspecification. The comparison is shown for two sampling
rates: q = 0.10 and q = 0.25, and for a simulated population for which
D = 100.
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Comparison of D̂ with other estimators when model is misspecified and D =1000.

Figure 2. This figure shows
√

RE(D̂, D̂eq) and
√

RE(D̂, D̂uj2a) under in-
creasing model misspecification. The comparison is shown for two sampling
rates: q = 0.05 and q = 0.25, and for a simulated population for which
D = 1000.

In Figure 1,
√

RE(D̂, D̂eq) and
√

RE(D̂, D̂uj2a) are shown for the two sampling
rates q = 0.10 and q = 0.25 for the high cv, low N population with D = 100.
In Figure 3,

√
RE(D̂, D̂eq) and

√
RE(D̂, D̂uj2a) are shown for the two sampling

rates q = 0.05 and q = 0.25 for the high cv, low N population with D = 1000.

Comparisons of D̂ with other estimators for Christmas Bird data.

Figure 3. This figure shows
√

RE(D̂, D̂eq) and
√

RE(D̂, D̂uj2a) as functions
of sampling rate for the Christmas Bird Count population.
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The figures show that the new estimator performed better than D̂eq even
with model misspecification, and the advantage for D̂ was larger for the larger
sample size. They also show that when there was little sample information (small
q), D̂ had an advantage over D̂uj2a as well, even with substantial model misspec-
ification. The advantage diminished when the amount of sample information or
the degree of misspecification increased. It never did completely disappear for
the population having D = 1000 when q = 0.05.

4.3. Performance of D̂ in a real population

The purpose of this experiment was to examine the performance of the new
estimator in a real population, in which it is known that not all relevant inde-
pendent variables are available. Table 3 is an excerpt from a table of counts of
bird species observed in the 2001 Christmas Bird Count (CBC) in the Austin,
Texas circle. These data can be found at www.audubon.org/bird/cbc. For pur-
poses of this example, the birds observed were considered to be the population
of interest, even though in reality the observed birds themselves are a sample of
all birds present at the site on the day of the count (though hopefully one with a
very large sampling rate!). We further modified this population to contain only
those bird species with counts (class sizes) less than 150, since larger class sizes
would be almost certain to be observed at the sampling rates considered in the
simulation. Table 3 shows the five most frequent species in our population and
five of the 23 least frequent (singleton) observed in 2001. The objective of this
example is to estimate the number of distinct species in the area from a Bernoulli
sample of the birds in the population. This population contains N = 2916 birds
of D = 110 species. The average class size is large (N = 26.5) and fairly variable
(cv2 = 1.7).

Table 3. Most and least frequent bird species in population.

Common Name of Species Count 2001 Count 2000 Count 1999 Count 1998
Bufflehead 138 200 152 155
Carolina Wren 130 235 337 186
White-crowned Sparrow 127 444 435 275
Eastern Phoebe 116 66 86 82
Pied-billed Grebe 110 102 107 86

· · ·
Black-and-white Warbler 1 0 0 0
Blue Grosbeak 1 0 0 0
Barn Owl 1 2 6 2
Brown Thrasher 1 6 1 1
Canada Goose 1 0 0 0
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We attempt to improve estimation of D in this example by using auxiliary
information about the size of each class. A useful predictor would be a variable
that measures the rareness of each bird species in the circle. Range maps could
provide this information, but I used historical data from previous Christmas Bird
Counts. For each species, I recorded the number of birds observed in the Austin,
Texas circle during the three previous CBC’s (2000, 1999 and 1998). These
counts are shown for the extreme class sizes in Table 3. This information was
summarized into two predictor variables: X1j = ln(0.1+ count in 1998) and

X2j =




1 if there were fewer than 3 birds of species j counted
in both 2000 and 1999

0 otherwise.

One thousand Bernoulli samples with each of the sampling rates q = 0.10,
0.15, 0.20, 0.25, 0.30, 0.40 and 0.50 were drawn from the population of birds. D̂,
D̂uj2a and D̂eq were computed from each sample, along with their MSE over the

1000 trials. Figure 3 shows
√

RE(D̂, D̂eq) and
√

RE(D̂, D̂uj2a) plotted as func-
tions of the sampling rate q. We see that the new estimator is an improvement
over D̂eq and D̂uj2a for every sample size considered. However its advantage over
the second order estimator is not monotonic over the range of sampling rates,
but is greatest at both ends of the range of rates considered. The reason for this
lack of monotonicity is that D̂uj2a does not improve smoothly with increasing
sample size. Table 4 shows the mean and standard deviation of D̂, D̂uj2a and
the three components of β̂ over the 1000 simulated values for each sample size.
It shows that the bias of D̂ is consistently small, but its standard deviation is
large for small sampling rates. This is likely because of the high variability in
β̂2 for small sample sizes. (Few species were as rare as X2j required, so small
samples had little information about β2.) By contrast, the bias of D̂uj2a is large

Table 4. Sample characteristics for simulation of sampling from Christmas
Bird counts for varying sampling rates (D = 110, N = 2916).

q avg(d) avg(n) avg(D̂) avg(D̂uj2a) avg(β̂0) avg(β̂1) avg(β̂2)
SD(D̂) SD(D̂uj2a) SD(β̂0) SD(β̂1) SD(β̂2)

0.10 65 292 107.3 81.8 2.0 0.49 -3.3
21.4 8.2 0.3 0.06 6.0

0.20 78 594 105.8 96.5 1.9 0.51 -0.84
10.2 8.0 0.2 0.04 0.67

0.30 85 875 106.2 104.9 1.9 0.52 -0.76
7.1 7.6 0.1 0.03 0.26

0.40 91 1167 106.6 109.8 1.8 0.53 -0.72
5.4 7.1 0.1 0.03 0.19

0.50 95 1459 107.4 113.1 1.8 0.54 -0.71
4.4 6.5 0.1 0.02 0.15
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until the sampling rate is high, but its standard deviation is low for all sampling
rates. However, it has the peculiar characteristic that its standard deviation
diminishes only slightly over the range of sampling rates considered (from 8.2
to 7.6 as sample size increases from about 292 to about 1459). We conclude
that D̂uj2a performs worse than D̂ for small sampling rates because of its large
bias, and for large sampling rates because of its large standard deviation. In the
middle of the range, both are moderate and D̂uj2a enjoys its best performance
against D̂.
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