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Abstract: Variance estimation for the regression estimator for a two-phase sample

is investigated. A replication variance estimator with number of replicates equal to

or slightly larger than the size of the second-phase sample is developed. In surveys

where the second-phase sample is much smaller than the first-phase sample, the

procedure has practical advantages. The method is similar in spirit to one of Fuller

(1998), but is more easily applied and avoids some of that method’s difficulties.

The proposed method can be directly applied to variance estimation for the dou-

ble expansion estimator and the reweighted expansion estimator. In these cases,

the proposed method is asymptotically equivalent to the full jackknife, but uses a

smaller number of replications.
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1. Introduction

It is common in surveys to use two-phase or double sampling when it is rela-
tively inexpensive to draw a large first-phase sample for which a vector auxiliary
variate, x, correlated with the characteristic of interest y, alone is observed. A
second-phase subsample of the initial first-phase sample is then drawn and both y

and x are measured. Various estimation strategies exist for combining the infor-
mation from both phases of sampling to estimate characteristics of the population
based on y or (y,x). In this article, we will focus specifically on two-phase regres-
sion estimation. For more general discussion see Cochran (1977), Wolter (1985),
Särndal, Swensson and Wretman (1992) and Lohr (1999). These references also
give descriptions of linearization variance estimators for this setting.

Jackknife variance estimators for two-phase sampling have been developed
in Rao and Sitter (1995, 1997) and Sitter (1997). These procedures create jack-
knife replicates for each unit in the first-phase sample. Kott (1990) and Kott
and Stukel (1997) consider variance estimation when the second-phase stratifi-
cation differs from the first-phase stratification, and suggest a jackknife variance
estimator for a particular regression estimator which they term the reweighted
expansion estimator (REE). Kim, Navarro and Fuller (2000) develop a jackknife
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variance estimator to handle what Kott and Stukel (1997) term the double ex-
pansion estimator (DEE). It should be noted that some of the ideas for these
jackknife estimators are implicit in Rao and Shao (1992), though they consider
the jackknife for random imputation. For discussion on the connection between
their imputation cells and the second-phase strata, see Kott and Stukel (1997,
p.83). Breidt and Fuller (1993) propose a replication method for multi-phase
sampling.

A key feature of these full jackknife variance estimators is that replicates
are formed for each unit in the first-phase sample. When the first-phase sample
is very large, as is common, and in particular much larger than the second-
phase sample, there are practical reasons why having so many replicates may
be undesirable. When the final user is different than the data provider, it is
common practice to include the set of replicate weights in the data set. Thus a
large number of replicates in a large survey with many measured characteristics
causes what turns out to be unnecessary, computational and storage burdens on
the end user.

Fuller (1998) recognizes this practical issue and proposes a creative solution
whereby the required number of jackknife replicate weights can be reduced in
some cases by considering a decomposition of the variance of the regression es-
timator into two parts. He then argues that if one has a replication variance
estimator for estimating the first term with fewer replicates than the full jack-
knife, then one can intelligently adjust these replicate weights so as to add back
in the second term of the decomposition.

We propose instead to consider the replicates of the full jackknife directly
by viewing those obtained by deleting units in the second phase separately from
those obtained from the first phase but which were not then subsampled in the
second. We can then use a strategy different from that of Fuller to form fewer
replicate weights to capture the second term. The result is a jackknife with fewer
replicate weights which retains the efficiency of the full jackknife. In this way we
can “piggy-back” on the full jackknife. In some common settings this turns out
to be very simple.

In Section 2, we develop the proposal for a general two-phase regression
estimator. In Section 3, we highlight its application by considering the DEE
when the second-phase strata are nested within the first-phase strata. Section 4
discusses the impact of relaxing the nested structure. In Section 5 we consider
cluster sampling at the first phase where the clusters are ignored at the second
phase to illustrate a simple situation where the proposed method applies but it
is difficult to know what one should do in using the Fuller (1998) strategy. A
limited simulation is provided in Section 6.
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2. Reducing the Number of Replicate Weights in the Jackknife for the
Two-phase Regression Estimator

Consider estimation of the population total, Y , of vector y from a two-phase
sample. Let X̂1 be an unbiased estimator of the population total, X, of vector x

constructed from the first-phase sample, A1, X̂2 be an unbiased estimator of the
population total of x constructed from the second-phase sample, A2, and Ŷ 2 be
an unbiased estimator of the population total of y constructed from A2. Write

X̂1 =
∑
i∈A1

wixi and
(
X̂2, Ŷ 2

)
=
∑
i∈A2

wiwi2 (xi,yi) . (2.1)

The first-phase sampling weight, wi, is often the inverse of the inclusion probabil-
ity for the first-phase sampling. The second-phase sampling weight, wi2, is often
the inverse of the conditional selection probability for the second-phase sample
given the first-phase sample.

For simplicity, consider a scalar y variable. The regression estimator of Y

takes the form
Ŷreg = Ŷ2 + (X̂1 − X̂2)′β̂(2), (2.2)

where β̂(2) = (
∑

j∈A2
wjwj2xjx

′
j)

−1∑
j∈A2

wjwj2xjyj , and wjwj2 are the two-
phase weights used in (2.1). If we include 1 as the first component of x, i.e. an
intercept, then we can rewrite Ŷreg as

Ŷreg = X̂
′
1β̂(2). (2.3)

Let us imagine we had the observed y on the entire first-phase sample. Then
the full first-phase sample variance of Ŷ1 =

∑
i∈A1

wiyi can be estimated by a full
jackknife estimator of the form

vJ(Ŷ1) =
∑

k∈A1

ck(Ŷ
(k)
1 − Ŷ1)2, (2.4)

where Ŷ
(k)
1 =

∑
i∈A1

w
(k)
i yi and ck is a factor associated with the sampling design.

For example, in an unstratified setting commonly used replication weights are
w

(k)
i = (n − 1)−1nwi for k �= i and w

(i)
i = 0, and the factor ck is equal to

n−1(n − 1).
Let the two-phase sample variance of Ŷ2 =

∑
i∈A2

wiwi2yi also be estimated
by a full jackknife estimator of the form

vJ(Ŷ2) =
∑

k∈A1

ck(Ŷ
(k)
2 − Ŷ2)2, (2.5)

where Ŷ
(k)
2 =

∑
i∈A2

w
(k)
i w

(k)
i2 yi and w

(k)
i2 is the k-th replicate of the second phase

weighting factor wi2 (see Kim, Navarro and Fuller (2000)).
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Now, given the variance estimators for the first-phase estimator of the form
(2.4) and for the two-phase direct estimator of the form (2.5), replication variance
estimators are available for the two-phase regression estimators because the re-
gression estimator is a smooth function of the direct estimators on the first-phase
sample and the second-phase sample. Thus, one can define for k ∈ A1,

Ŷ (k)
reg =

∑
i∈A2

α
(k)
i yi = X̂

(k)′
1 β̂

(k)

(2) , (2.6)

where X̂
(k)
1 =

∑
i∈A1

w
(k)
i xi and β̂

(k)
(2) = (

∑
j∈A2

w
(k)
j w

(k)
j2 xjx

′
j)

−1∑
j∈A2

w
(k)
j w

(k)
j2

×xjyj. The full jackknife variance estimator would then take the form vJ(Ŷreg) =∑
k∈A1

ck(Ŷ
(k)
reg − Ŷreg)2, and would require the formation of n1 sets of replicate

weights, for n2 records.
When the second-phase sample is much smaller than the first-phase sample,

we may wish to reduce the total number of replicates. Having a smaller num-
ber of replicates is particularly important in practice not only because of faster
computation but also because of the smaller storage needed. When the final
user is different from the data provider, it is a common practice to include the
replication weights in the data set.

Fuller (1998) recognizes this problem and is able to reduce the number of
required replicates in such cases by considering the regression estimator in two
parts, namely as,

Ŷreg
.= (Ŷ2 − X̂

′
2β) + X̂

′
1β,

and decomposing the variance into that corresponding to each term. He then
shows that, if one has a replication method for estimating the variance of the
first term, one can use a simple method to adjust it to add back the variance for
the second term provided the covariance between the terms is negligible. There
are two difficulties in some cases: (i) the covariance between the terms may not be
negligible; (ii) it can be difficult to obtain a replication method for estimating the
unconditional variance of the first term that requires a relatively small number
of replicates.

Instead, note that

vJ(Ŷreg) =
∑

k∈A2

ck(Ŷ (k)
reg − Ŷreg)2 +

∑
k∈A1∩Ac

2

ck(Ŷ (k)
reg − Ŷreg)2

= vJ,2 + vJ,1−2, (2.7)

and consider the second term. It turns out to be possible in many situations to
create fewer replicates than the number of elements in A1 ∩ Ac

2 to capture the
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second term of (2.7). To see this, rewrite

vJ,1−2 = β̂
′
(2)

[ ∑
k∈A1∩Ac

2

ck(X̂
(k)
1 − X̂1)(X̂

(k)
1 − X̂1)′

]
β̂(2)

+
∑

k∈A1∩Ac
2

ck

[
X̂

(k)′
1 (β̂

(k)
(2) − β̂(2))

]2

+2
∑

k∈A1∩Ac
2

ck

[
(X̂

(k)
1 − X̂1)′β̂(2)

][
X̂

(k)′
1 (β̂

(k)
(2) − β̂(2))

]

= β̂
′
(2)Ṽ xβ̂(2) + V2 + 2V12.

Then, in some common cases
β̂

(hi)
(2)

.= β̂(2) (2.8)

for all units (hi) that belong to the first-phase sample but not the second, and
thus V2

.= V12
.= 0. For example, if the first-phase sampling design is simple

random sampling and the second phase sampling design is stratified random
sampling, then including the second phase stratum vector in the column space
of x will make condition (2.8) hold. We will discuss other such situations in the
sequel.

If (2.8) holds, we can employ a tactic similar to that of Fuller (1998) but
applied to this portion of vJ . That is, let δ1, . . . , δn2 be a set of m-dimensional
vectors, where m < n2 is the dimension of x, and

∑n2
j=1 δjδ

′
j = Ṽ x. For example,

let γj be the characteristic vectors of Ṽ x and λj their corresponding roots. Then

define δj = λ
1/2
j γj for j = 1, . . . ,m, and δj = 0 for j = m + 1, . . . , n2.

We obtain a set of 2n2 adjusted replicate weights, α̃
(k)
i , for the set k ∈ A2

such that Ỹ
(k)
reg =

∑
i∈A2

α̃
(k)
i yi = X̂

(k)′
1 β̂

(k)

(2) + c
−1/2
k δ′

kβ̂(2). That is,

α̃
(k)
i = α

(k)
i + c

−1/2
k δ′

k(
∑

j∈A2

wjwj2xjx
′
j)

−1wiwi2xi, (2.9)

for k ∈ A2, where α
(k)
i is given in (2.6). If one repeats this entire process creating

Ỹ
(k)
reg2 = X̂

(k)′
1 β̂

(k)
(2) − c

−1/2
k δ′

kβ̂(2) by subtracting c
−1/2
k δk in the right hand side of

(2.9), for k ∈ A2, then we can define a new jackknife variance estimator as

ṽJ =
∑

k∈A2

ck(Ỹ (k)
reg − Ŷreg)2 +

∑
k∈A2

ck(Ỹ
(k)
reg2 − Ŷreg)2.

If so it follows that ṽJ
.= vJ and, even though only 2n2 replicates are needed, the

efficiency of the full jackknife variance estimator is retained.
Though this is rather cute, it is sometimes advantageous to not try and

combine the replications in this way. Instead, if m is much less than n2 one could



646 J. K. KIM AND R. R. SITTER

use the usual n2 replicate weights, α̃
(k)
i = α

(k)
i , for the set k ∈ A2 to form vJ,2,

that is, Ỹ
(k)
reg =

∑
i∈A2

α̃
(k)
i yi = X̂

(k)′
1 β̂

(k)

(2) , for k ∈ A2 and form another m < n2

replicate weights to capture vJ,1−2, that is, Ỹ
(k)
reg =

∑
i∈A2

α̃
(k)
i yi = c

−1/2
k δ′

kβ̂(2).

This turns out to be particularly advantageous in some cases. In the next section,
we will consider one such case, where the first-phase sample is a stratified sample
and is used to form sub-strata for the second-phase sample.

3. Illustration via Nested-strata Two-phase Estimator

In this section, we illustrate the potential of the proposed method in a sim-
ple situation. Consider stratified simple random sampling, where nh units are
selected with equal probability without replacement from a population of size Nh,
independently across H strata. Let yhi be the value of the study variable of unit
i in stratum h. Instead of observing the yhi’s directly, assume that we observe
xhi = (xhi1, xhi2, · · · , xhiGh

), where xhig takes the value 1 if unit i in stratum h

belongs to group g, and takes the value 0 otherwise. Each unit belongs to one
and only one group. We call group g in stratum h sub-stratum (hg). There are
nhg =

∑
{i:(hi)∈A1} xhig units in sub-stratum (hg).

For the second-phase sampling, we assume that rhg ≥ 2 elements are selected
without replacement with equal probability independently across the sub-strata.
From the selected elements, we observe yhig, where the subscript g is used to
emphasize that unit (hi) belongs to group g. Then, an unbiased estimator for
the total of the y-variable is

Ŷ2 =
∑

(hi)∈A2

Gh∑
g=1

Nh

nh

nhg

rhg
yhig. (3.1)

The first factor n−1
h Nh is the inverse of the inclusion probability for the first-phase

sampling and the second factor r−1
hg nhg is the inverse of the inclusion probability

for the second-phase sampling. The variance of Ŷ2 can be written as

Var
(
Ŷ2

)
= E

{ H∑
h=1

(
Nh

nh

)2

(1−f1h)
nh

nh−1

Gh∑
g=1

[
nhg (ȳhg−ȳh)2 + (nhg−1)s2

hg

] }

+E
{ H∑

h=1

(
Nh

nh

)2 Gh∑
g=1

n2
hg

rhg

(
1 − rhg

nhg

)
s2
hg

}
, (3.2)

where f1h = N−1
h nh is the first phase sampling rate, ȳhg = n−1

hg

∑
{i:(hi)∈A1} yhig is

the first-phase sample mean of sub-stratum (hg), s2
hg = (nhg − 1)−1∑

{i:(hi)∈A1}
(yhig−ȳhg)

2 is the first-phase sample variance of sub-stratum (hg), s2
h =(nh−1)−1
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∑
{i:(hi)∈A1} (yhi − ȳh)2 is the first-phase sample variance of stratum h, and ȳh =

n−1
h

∑Gh
g=1 nhgȳhg is the first-phase sample mean of stratum h. If f1h → 0 and

0 < n−1
hg rhg < 1 for all h and g, then (3.2) is dominated by

E
{ H∑

h=1

N2
hn−2

h

Gh∑
g=1

nhg (ȳhg − ȳh)2 +
H∑

h=1

N2
hn−2

h

Gh∑
g=1

r−1
hg n2

hgs
2
hg

}
. (3.3)

A variance estimator can be easily derived from (3.2) by replacing ȳhg and s2
hg

by their estimates ȳhg2 = r−1
hg

∑
{i:(hi)∈A2} yhig and s2

hg2 = (rhg − 1)−1∑
{i:(hi)∈A2}

(yhig − ȳ2hg)
2, respectively. That is, ignoring the f1h terms, a consistent variance

estimator is

V̂ =
H∑

h=1

N2
hn−2

h

Gh∑
g=1

nhg (ȳhg2 − ȳh2)
2 +

H∑
h=1

N2
hn−2

h

Gh∑
g=1

r−1
hg n2

hgs
2
hg2. (3.4)

Kim, Navarro and Fuller (2000) develop a jackknife variance estimator by
successively deleting units from the entire first-phase sample and then adjusting
the weights. The weights of the two-phase estimator in (3.1) are products of
whi = n−1

h Nh, the first-phase sampling weight, and whgi2 = r−1
hg nhg, the second-

phase sampling weight. The full jackknife replicate weights are given by

w
(h′i′)
hi =




0 if h = h′, i = i′

(nh − 1)−1 nhwhi if h = h′, i �= i′

whi if h �= h′,

(3.5)

w
(h′i′)
hgi2 =




0 if h = h′, i = i′

(rhg−1)−1(nhg−1) if h = h′, i �= i′, xh′i′g =1, and (h′i′)∈A2

r−1
hg (nhg − 1) if h=h′, i �= i′, xh′i′g =1, and (h′i′) /∈A2

r−1
hg nhg otherwise.

(3.6)

The full jackknife variance estimator of the form V̂J =
∑

(hi)∈A1
[(nh − 1)/nh]

(Ŷ (hi)
2 − Ŷ2)2, where Ŷ

(h′i′)
2 =

∑
(hi)∈A2

∑Gh
g=1 w

(h′i′)
hi w

(h′i′)
hgi2 yhig, is asymptotically

equivalent to the variance estimator in (3.4), with total number of replicates
n =

∑H
h=1

∑Gh
g=1 nhg for r records. To apply the idea proposed in the previous

section, note that

Ŷ
(hi)
2 − Ŷ2 =




Nh

nh − 1
(ȳh2 − ȳhg2) +

Nh

nh − 1
nhg − 1
rhg − 1

(ȳhg2 − yhig) if (hi) ∈ A2

Nh

nh − 1
(ȳh2 − ȳhg2) if (hi) /∈ A2
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for unit (hi) in group g, which makes the decomposition of the full jackknife
variance estimator as in (2.7) particularly simple:

V̂J = vJ,2 + vJ,1−2

=
∑

(hi)∈A2

nh − 1
nh

(Ŷ (hi)
2 − Ŷ2)2 +

∑
(hi)∈A1∩Ac

2

nh − 1
nh

(Ŷ (hi)
2 − Ŷ2)2

.=
∑

(hi)∈A2

nh − 1
nh

(Ŷ (hi)
2 − Ŷ2)2 +

H∑
h=1

(
Nh

nh

)2 Gh∑
g=1

(nhg − rhg) (ȳhg2 − ȳh2)
2 .

Thus, deleting a unit which is in the first-phase sample but not in the second-
phase sample does not contribute to the method’s capturing of the second com-
ponent of (3.4).

Using the full jackknife method directly uses r replicates to calculate vJ,2 and
n−r replicates to calculate vJ,1−2. Our proposed method amounts to calculating
vJ,2 from the full jackknife method using the same r replicates, but calculating
vJ,1−2 using a smaller number of replicates. In this simple setting, it is quite
easy to create replicates for vJ,1−2. To see this, note that we can write vJ,1−2 =∑H

h=1

∑Gh
g=1 chg(Ŷ

(hg)
2 − Ŷ2)2, where Ŷ

(hg)
2 = Ŷ2 + c

−1/2
hg (nhg − rhg)

1/2 Nh(ȳhg2

−ȳh2)/nh for any chg ≥ (nhg − rhg), where condition chg ≥ (nhg − rhg) guaran-
tees nonnegative replication weights for all records. Therefore, the total number
of replicates is reduced to r + G, where the first r replicates are used to estimate
vJ,2 and the last G < r replicates are used to estimate vJ,1−2.

4. Non-nested-strata Two-phase Estimator

We now consider the case where the second-phase strata can cut across the
first-phase strata. Assume that, in the first phase sample, we observe the group
vector xhi = (xhi1, xhi2, · · · , xhiG), where xhig takes the value 1 if unit i in stratum
h belongs to group g, and takes the value 0 otherwise. The group is used to form
the stratum variable for the second-phase sampling and may cut across the first-
phase sampling strata. There are mg =

∑H
h=1

∑
{i:(hi)∈A1}xhig units in group g.

For the second-phase sampling, we assume that rg ≥ 2 elements are selected
without replacement with equal probability independently across the groups.
From the selected elements, we observe yhig. Then, an unbiased estimator for the

total of y is Ŷ2 =
∑

(hi)∈A2

∑G
g=1(Nh/nh)(mg/rg)yhig

(let)
=
∑

(hi)∈A2

∑G
g=1 whiwhig2

yhig, where the first factor whi = n−1
h Nh is the inverse of the inclusion probability

for the first-phase sampling and the second factor r−1
g mg is the inverse of the in-

clusion probability for the second-phase sampling. Kott and Stukel (1997) called
Ŷ2 the double expansion estimator. Another commonly used estimator, termed
the reweighted expansion estimator by Kott and Stukel (1997), is essentially the
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regression estimator using the indicator vector for the groups as the auxiliary
variable.

Now consider the full jackknife variance estimator. Let ahig = 1 if unit
(hi) in group g is selected in the second-phase sample and ahig = 0 otherwise.
According to Kim, Navarro and Fuller (2000), the full jackknife replicate weights
for the second-phase sample are

w
(h′i′)
hig2 = xhig

∑
(hi)∈A1

w
(h′i′)
hi w−1

hi xhig∑
(hi)∈A1

w
(h′i′)
hi w−1

hi xhigahig

= xhig

mg − mh′g +
(
mh′g − xh′i′g

) nh′

nh′ − 1

rg − rh′g +
(
rh′g − xh′i′gah′i′g

) nh′

nh′ − 1

,

where mhg =
∑

{i:(hi)∈A1} xhig and rhg =
∑

{i:(hi)∈A2} xhig. Thus, if nh′ is large
for all (h′, i′), we have

w
(h′i′)
hig2

.=




xhig (rg − 1)−1 (mg − 1) if ah′i′g = 1 and xh′i′g = 1
xhigr

−1
g (mg − 1) if ah′i′g = 0 and xh′i′g = 1

xhigr
−1
g mg if ah′i′g = 0 and xh′i′g = 0,

(4.1)

which is exactly the same as the replicate weights in (3.6) except for the case of
(h′, i′) = (h, i). Since w

(hi)
hi = 0, the replicate weights in (4.1) have the same effect

as the replicate weights in (3.6), and therefore, provided we have a large enough
sample size in the first-phase strata, we can still apply the methods discussed in
Section 3.

That is, under the assumption of n−1
h (nh−1) → 1, we have Ŷ

(hi)
2 −Ŷ2

.= whi

(ȳh2 − ȳhg2) if ahig = 0, for unit (hi) in group g, where ȳhg2=r−1
hg

∑
{i;(hi)∈A2} yhig

and ȳh2 = r−1
h

∑G
g=1 rhgȳhg2. Thus, the total contribution of the full jackknife

variance estimator for deleting the units not in the second phase sample is

vJ,1−2 =
∑

(hi)∈A1∩Ac
2

nh − 1
nh

(
Ŷ

(hi)
2 − ŷ2

)2

.=
H∑

h=1

(
Nh

nh

)2 Gh∑
g=1

(mhg − rhg) (ȳhg2 − ȳh2)
2 , (4.2)

and a set of G replicates to estimate this component can be constructed in the
same way as in Section 3. The variance estimator for REE can be constructed
easily because the REE is a function of several DEEs.

5. Cluster Sampling in the First Phase

So far, we have covered the cases in which both the method of Fuller (1998)
and the proposed method are equally applicable. In this section, we consider
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an example where the Fuller method is hard to construct, while the proposed
method is relatively easy to apply, that is, when the primary sampling unit for
the first-phase sample is different from the primary sampling unit for the second-
phase sample. Often clusters are selected in the first-phase sample and units
are selected in the second-phase sample. Then, condition (2.10) in Fuller (1998)
is not satisfied and hence we cannot directly apply his method. Furthermore,
it is hard to conceptualize the unconditional variance in this situation. On the
other hand, the full jackknife method still applies to this case and we can expect
to reduce the number of replicates in the full jackknife method if some of the
clusters selected in the first-phase sample do not have any units selected in the
second-phase sample.

For simplicity of presentation, we assume that n clusters are selected with
equal probability from the N clusters in the first-phase sample. Let yij be
the value of the y-variable associated with element j in cluster i and Mi be
the size of cluster i. From the selected first-phase sample, we observe xij =
(xij1, xij2, · · · , xijG), where xijg takes the value 1 if element j in cluster i be-
longs to group g, and takes the value 0 otherwise. There are mg =

∑
(ij)∈A1

xijg

elements in group g.
For the second-phase sample, we assume that rg ≥ 2 elements are selected

without replacement with equal probability independently across the groups.
From the selected elements, we observe yijg. An unbiased estimator for the total
of the y-variable is

Ŷ2 =
∑

(ij)∈A2

G∑
g=1

N

n

mg

rg
yijg =

∑
(ij)∈A2

G∑
g=1

wiwijg2yijg, (5.1)

where wi is the first-phase sampling weight of cluster i and wijg2 = r−1
g mg is the

second-phase weighting factor in group g. Note that the estimator (5.1) is both
a DEE and REE because the first-phase sampling weight wi is constant.

The full jackknife method for the first-phase sample deletes one cluster suc-
cessively and increases the weight of the remaining clusters by n/(n − 1). The
jackknife replicate weights for the second-phase are

w
(k)
ijg2 = xijg

∑
(ij)∈A1

w
(k)
i xijg∑

(ij)∈A2
w

(k)
i xijg

= xijg
mg − mkg

rg − rkg
,

where mkg =
∑Mk

j=1 xkjg is the number of first-phase sample elements in cluster k

that belong to group g and rkg =
∑

j;(kj)∈A2
xkjg is the number of second-phase

sample elements in cluster k that belong to group g.
Let Aa

1 = {k : rkg > 0 for some g} and Ab
1 = {k : rkg = 0 for all g}. Then,

for k ∈ Ab
1, we have Ŷ

(k)
2 − Ŷ2 = N (ȳ2 − ỹ∗k) /(n − 1) where ŷ∗k =

∑G
g=1 mkgȳg2,
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ȳg2 = r−1
g

∑
(ij)∈A2

yijg, and ȳ2 = n−1∑
k∈A1

ŷ∗k. Thus, for sufficiently large n,

vJ,1−2
.=
∑

k∈Ab
1
N2 (ȳ2 − ŷ∗k)

2 /n2 = β̂
′
Ṽxβ̂, where β̂ = (ȳ12, ȳ22, · · · , ȳG2). Thus,

we can apply the tactics discussed in Section 2 to get G replicates for estimating
vJ,1−2.

6. Simulation Studies

Here are some results from a limited simulation study. We consider a strat-
ified population with two strata and two groups, where the groups cut across
the strata. Each group is 50% of the population in each stratum. From an ar-
tificial population of size N=50,000, a simple random sample of size nh = 500
is selected as a first-phase sample from the Nh population elements in stratum
h for h = 1, 2, independently across the strata. We used several values of Nh’s
but reported only the case of N1 = 40, 000 and N2 = 10, 000 for brevity. Other
simulations have similar results. A single set of study variables is generated from
a normal distribution, where the parameters for a population of size N = 50, 000
are given in Table 6.1. From the generated population, B = 5, 000 two-phase
samples are independently drawn. Instead of observing the study variable di-
rectly, the first-phase samples are re-stratified according to group and a simple
random sample of size rg = 30 is selected as a second-phase sample from the
first-phase sample within group g = 1, 2, independently across the groups.

Table 6.1. Parameter set.

Stratum Group One Group Two
Stratum Weight Mean Variance Mean Variance
1 0.8 7.0 1.0 12.0 1.0
2 0.2 12.0 1.0 17.0 1.0

Two types of point estimators, REE and DEE, are calculated and two types
of variance estimators, full jackknife and the proposed new method with fewer
replicates described in Section 4, are calculated separately for each of the point
estimators. The full jackknife method uses 1,000 replicates because we have
n = 1, 000 first-phase sample units. The new method uses 64 replicates, where
the first 60 represent the size of the second-phase sample and the other 4 represent
the number of groups by strata.

The Monte Carlo result for 5, 000 samples generated using the parame-
ters in Table 6.1 are given in Table 6.2 and Table 6.3. Table 6.2 shows the
mean and variance of the two point estimators and Table 6.3 shows the rel-
ative bias (RB) and coefficient of variation (CV) of the two variance estima-
tors. The RB of V̂ as an estimator of the mean squared error of ȳ is calcu-
lated by [MSEB(ȳI)]−1[EB(V̂ ) − MSEB(ȳI)] and the CV of V̂ is calculated by
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[MSEB(ȳI)]−1{Var B(V̂ ) + [EB(V̂ ) − MSEB(ȳI)]2}1/2, where the subscript B

denotes the distribution generated by the Monte Carlo simulation.
The following remarks can be made about Table 6.2 and Table 6.3.

Remark 1. For point estimation, the REE is significantly more efficient than
the DEE for this population. The REE will be more efficient than the DEE
if the study variables are more homogenous within each group. On the other
hand, the REE has a slight bias for the population mean. The t-statistics for the
significance of the bias are 0.65 for DEE and 3.26 for REE, respectively. The bias
for REE is essentially the ratio bias and will be reduced for large second-phase
sample sizes.

Remark 2. For variance estimation, the new variance estimator performs
slightly better than the full jackknife variance estimator for DEE. For variance
estimation of the REE variance, there is no significant difference.

Table 6.2. Mean and variance of the point estimators (5,000 samples).

Estimator Mean Variance
DEE 12.008 0.7591
REE 12.018 0.1522

Table 6.3. Relative bias (RB) and coefficient of variation (CV) for the vari-
ance estimators (5,000 samples).

Estimator Method RB (%) CV (%)
DEE Full jackknife 6.88 9.69

New method 4.01 7.64
REE Full jackknife 2.96 9.99

New method 2.46 9.95

Acknowledgements

The research of the first author was mostly done when he was working for
Westat Inc, and supported partially by a grant from U.S. Bureau of Census and
by Hankuk University of Foreign Studies Research Fund of 2002. The second au-
thor was support by a grant from the Natural Science and Engineering Research
Council of Canada and by Westat Inc.

References

Breidt, F. J. and Fuller, W. A. (1993). Regression weighting for multiphase samples. Sankhyā
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