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Abstract: The concept of stochastic ordering as introduced by Lehmann (1955)

plays a major role in the theory and practice of statistics, and a large body of

existing statistical work concerns itself with the problem of estimating distribution

functions F and G under the constraint that F (x) ≤ G(x) for all x. Nevertheless

in economic theory, the weaker concept of second order stochastic dominance plays

a prominent role in the general framework of analyzing choice under uncertainty

by considering maximization of expected utilities. More specifically, an investment

portfolio B with random return Y dominates an investment portfolio A with ran-

dom return X if and only if E(U(Y )) ≥ E(U(X)) for all increasing and concave

utility functions U . This condition can be seen to be equivalent to the condition

that the distribution functions of X and Y are ordered according to the second order

stochastic dominance requirement. Here, a family of strongly uniformly consistent

estimators for the survival functions under a second order stochastic dominance

constraint is proposed in the one-sample and the two-sample problems. In the one-

sample problem the new family of estimators dominate the empirical distribution

function with respect to a certain class of loss functions. The asymptotic distri-

butions of the estimators are explored and the new estimators are compared, via

simulations, in terms of Mean Squared Error (MSE) with the empirical distribu-

tion. The case of right-censored data is also considered. Stocks and bonds data

from 1810−1989 are used to illustrate the estimators.

Key words and phrases: Bonds, expected utility, investment portofolio, stocks, weak

convergence.

1. Introduction

The concept of stochastic ordering as proposed by Lehmann (1955) has found
important applications in the theory and applications of statistics. Lehmann and
Rojo (1992) have considered characterizations of stochastic ordering in terms of
a maximal invariant with respect to the group of monotone transformations.
Shaked and Shanthikumar (1994) provide a recent and thorough review of the
literature on stochastic ordering. In the context of the problem of estimating
F and G subject to the stochastic ordering constraint, we mention the work of
Dykstra (1982), Lo (1987), Rojo and Ma (1996) and Rojo (1995).
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In economic theory, however, the weaker concept of second order stochastic
dominance (SSD) plays a major role in developing a general framework for study-
ing choice under uncertainty by the establishment of some criteria to select one
option over another. One such criterion involves the maximization of expected
utility over possible options. (See, e.g., Hadar and Russell (1971) and Porter and
Carey (1974) and, more recently, Levy (1992) and Kijima and Ohnishi (1996)).
Specifically, let U(.) denote an increasing utility function which expresses the
intensity of preferences for the investor. Then, faced with a decision to choose
among n different investments, which generate the random amounts of money
Z1, ., Zn, the investor prefers the investment for which E(U(Zi)) is a maximum.
A risk averter is characterized as having a concave utility function. Several cri-
teria to order investment portfolios have been proposed. This paper focuses on
the following criterion (see, e.g., Porter and Carey (1974)). A risk averter, and
hence every risk averter, prefers the investment portfolio B which generates a
random return of money Y with distribution G, to the investment portfolio A

which generates a random return of money X with distribution F if and only if∫ x

−∞
F (t)dt ≥

∫ x

−∞
G(t)dt for all x. (1.1)

That is, if X denotes the random return of the investment portfolio A, while
Y denotes the random return of the investment portfolio B, and X and Y have
distribution functions given by F and G respectively, then, portfolio B is prefer-
able to portfolio A, by every risk averter, if and only if E(U(X)) ≤ E(U(Y )),
for all increasing and concave utility functions U . Moreover, this criterion is
equivalent to criterion (1.1). (See, e.g., Levy (1992)).

The relationship between F and G defined as (1.1) will be denoted F <SSD

G, and if X and Y are random variables with respective distributions F and G,
we will also write X <SSD Y . This order (<SSD) has been employed by Joy
and Porter (1974) to test the performance of mutual funds relative to the market
as measured by the Dow-Jones Industrial Average. Applications of the ordering
<SSD have also appeared in the diversification of independent portfolios. (See,
e.g., Hong and Herk (1996) and references therein.)

El Barmi (1993) considered the problem of finding the maximum likelihood
estimators of F and G when F and G satisfy (1.1) and F and G are discrete
distributions, but the nonpararametric maximum likelihood estimators for gen-
eral distribution functions satisfying (1.1) have not been derived. Deshpande and
Singh (1985) constructed a test based on the empirical distribution function to
test for second order stochastic dominance in the one-sample problem. Other
references on testing for second order stochastic dominance include McFadden
(1998), and Schmid and Trede (1998).
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The purpose of this paper is to propose a family of new estimators in the
one- and two-sample problems when F and G satisfy (1.1) and are arbitrary
distribution functions. The organization of the paper is as follows. Section 2
considers the one-sample problem : strongly uniformly consistent estimators are
provided and their weak convergence is discussed. For a certain class of loss func-
tions, the new estimators dominate the empirical distribution function in terms
of risk. The two-sample problem is considered in Section 3 : a family of strongly
uniformly consistent estimators for F and G is proposed and their asymptotic
distribution theory is established. Section 4 considers the case of censored data
by replacing the empirical distribution functions Fn and Gm by their Kaplan-
Meier counterparts. Section 5 discusses a family of new estimators in the case
where the inequality in (1.1) is an identity for some values of x. Section 6 illus-
trates the estimators by examining a data set (Taylor (1997)) on total annual
rate of return for bonds and stocks in The United States from 1810−1989. A
simulation is presented in section 7 to compare the new family of estimators with
the empirical distribution function in terms of Mean Squared Error. The simu-
lation work suggests that the proposed estimators behave uniformly better than
the empirical distribution function for a large class of examples. Technicalities
have been relegated to an appendix.

2. One Sample Problem

Let X1, . . . ,Xn be a random sample from F and suppose that G is known,
F and G satisfying (1.1). It is clear that in many situations the empirical distri-
bution function Fn cannot satisfy (1.1) and therefore alternative estimators must
be sought. For that purpose, define

H(x) =
∫ x

−∞
F (t)dt. (2.1)

Motivated by the work of Lo (1987), Rojo and Ma (1996) and Rojo (1995), define

Hn(x) =
∫ x

−∞
Fn(t)dt, (2.2)

Ĥn(x) = max(Hn(x),
∫ x

−∞
G(t)dt). (2.3)

It is easy to see that, under (1.1),

|Ĥn(x) − H(x)| ≤ |Hn(x) − H(x)| for all x. (2.4)

Define now

F̂n(x) = lim
h→0+

Ĥn(x + h) − Ĥn(x)
h

, (2.5)
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so that F̂n is the right derivative of Ĥn. Note that F̂n is well defined since Ĥn is
the maximum of two differentiable functions.

Consider loss functions L(δ, F ) = υ(| ∫ x
−∞ δ(t)dt−∫ x

−∞ F (t)dt|), where υ(0) =
0, and υ is nondecreasing on (0,∞). It follows from (2.4) that F̂n dominates Fn

as an estimator of F with respect to the class of loss functions L(·, ·).
The estimator F̂n defined by (2.5) behaves better than Fn in terms of Mean

Squared Error for many examples. Now define x0 ≡ −∞,

x1 = inf{y ≥ −∞ :
∫ y

−∞
Fn(t)dt >

∫ y

−∞
G(t)dt},

x2 = inf{y > x1 :
∫ y

−∞
Fn(t)dt <

∫ y

−∞
G(t)dt}.

Having defined x1, . . . , x2k, let

x2k+1 = inf{y > x2k :
∫ y

−∞
Fn(t)dt >

∫ y

−∞
G(t)dt},

x2k+2 = inf{y > x2k+1 :
∫ y

−∞
Fn(t)dt <

∫ y

−∞
G(t)dt},

and stop as soon as xj = +∞ for some j.
Thus,

∫ y
−∞ Fn(t)dt ≤ ∫ y

−∞ G(t)dt on the intervals [x2k−2, x2k−1], while the
inequality is reversed on the intervals [x2k−1, x2k]. It follows from (2.4), and
(2.5) that

Ĥn(x) =
∞∑

j=1

∫ x

−∞
G(t)I{[x2j−2,x2j−1)}dt +

∞∑
j=1

∫ x

−∞
Fn(t)I{[x2j−1,x2j)}dt, (2.6)

F̂n(x) =
∞∑

j=1

Fn(x)I{[x2j−1,x2j)} +
∞∑

j=1

G(x)I{[x2j−2,x2j−1)}, (2.7)

where, I{[∞,∞)} = 0. It can be shown that Ĥn(x) is absolutely continuous and
convex. As a result, Ĥn(x) =

∫ x
−∞ F̂n(t)dt for all x, and F̂n is nondecreasing. It

is not difficult to see that F̂n(x) → 1 as x → ∞, and F̂n(x) → 0 as x → −∞
(Rojo and El Barmi (2001)). Thus, F̂n(x) is a legitimate distribution function
that satisfies (1.1). Alternatively, one may write

F̂n(x) = Fn(x)I{
∫ x

−∞ Fn(t)dt≥
∫ x

−∞ G(t)dt} + G(x)I{
∫ x

−∞ Fn(t)dt<
∫ x

−∞ G(t)dt}. (2.8)

In this paper, attention will be focused on the case where (1.1) is a strict
inequality for every x. A discussion on the strong uniform convergence and
asymptotic distribution of similar estimators when (1.1) is an identity for some
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x may be found at the end of the paper. A detailed account of these estimators
when (1.1) is an identity for some x may be found in Rojo and El Barmi (2001).

Now if
∫ ∞
−∞(F (x)(1 − F (x)))1/2dx < ∞, then

∫ ∞
−∞ |Fn(x) − F (x)|dx =

Op(n−1/2), (see e.g., Serfling (1980)), and hence I{
∫ x

−∞ Fn(t)dt<
∫ x

−∞ G(t)dt} con-

verges to zero in probability. It follows that F̂n is weakly consistent for F (x)
when

∫ ∞
−∞(F (x)(1 − F (x)))1/2dx < ∞.

Under additional conditions, a stronger result is possible. The following
conditions turn out to be sufficient for the strong uniform consistency of F̂n.

F has support (−∞,∞) and for some η>1.5, F (x)=O((−x)−4−η) as x →−∞.

(2.9)
F is continuous with 1 − F (x) > 0 for every x > 0. (2.10)

F (x) < 1 for all x, and for some 0 < δ < 1/2, E|X|2/(1−δ) < ∞. (2.11)

Theorem 2.1. Let F̂n be defined by (2.7), or equivalently by (2.8), and suppose
that F <SSD G, where G is a known distribution function and F is continuous.
Suppose that (1.1) holds strictly for every x. Then any of (2.9), (2.10), or (2.11)
are sufficient for F̂n to be strongly uniformly consistent for F .

In terms of the asymptotic distribution, similar arguments show that under
either (2.9), (2.10), or (2.11)

√
n(F̂n(x) − F (x)) D→ N(0, F (x)(1 − F (x))). (2.12)

A stronger result than (2.12) is possible. Weak convergence of the process
{√n(F̂n(x) − F (x)), 0 < x < 1}, where F̂n is defined by (2.8), can be demon-
strated when (1.1) is a strict inequality for every x. This is the content of the
following theorem which assumes that F (x) = x, 0 < x < 1, and G has support
on (0,1). The general case follows as an easy corollary.

Theorem 2.2. Suppose F (x) = x, 0 < x < 1, and suppose that G is a distri-
bution function with support on (0, 1) and satisfying the condition (1.1) with
strict inequality for every x. Let F̂n be defined by (2.8). Then, the process
{√n(F̂n−F ), 0 < x < 1} converges weakly to W ◦, where W ◦ represents standard
Brownian Bridge.

In the general case, suppose that (1.1) still holds with strict inequality for
every x, and consider

√
n(F̂n(x) − F (x)) =

√
n(Fn(x) − F (x))I{

∫ x

−∞ Fn(t)dt≥
∫ x

−∞ G(t)dt}

+
√

n(G(x) − F (x))I{
∫ x

−∞ Fn(t)dt<
∫ x

−∞ G(t)dt}. (2.13)
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Now, under any of the conditions (2.9), (2.10), or (2.11) on F it follows that
P{∫ x

−∞ Fn(t)dt <
∫ x
−∞ G(t)dt, i.o.} = 0. Therefore, the finite-dimensional dis-

tributions of the process {√n (F̂n(x) − F (x)), −∞ < x < ∞} converge to
the finite-dimensional distributions of {B(t), −∞ < t < ∞}, where B(t) rep-
resents Brownian motion with E(B(t)) = 0 and Cov(B(s), B(t)) = min(F (s),
F (t)) − F (s)F (t).

Thus, to show that {√n(F̂n(x) − F (x)), −∞ < x < ∞} converges weakly
to {B(t), −∞ < t < ∞}, it is enough to prove tightness. However, arguments
similar to the ones used to prove tightness in the previous theorem immediately
guarantee tightness. This is summarized in the following.

Theorem 2.3. Let F satisfy one of the conditions (2.9), (2.10), or (2.11), and
suppose F and G satisfy (1.1) with strict inequality for every x, G known. Let
F̂n be defined by (2.7) or equivalently by (2.8). Then, the process {√n(F̂n(x) −
F (x)), −∞ < x < ∞} converges weakly to {B(x), −∞ < x < ∞}, where B(x)
denotes Brownian motion with E(B(x)) = 0 and Cov(B(s), B(t)) = min(F (s),
F (t)) − F (s)F (t).

In the next section, attention will be shifted to the case where G is also
unknown.

3. Two Sample Problem

In this section, let X1, . . . ,Xn be a random sample from F , and let Y1, . . . , Yk

be an independent random sample from G, where F and G satisfy (1.1).
It is of interest to estimate F and G subject to (1.1). For that purpose,

define Ĝk(x) = Gk(x) as an estimator of G and

H∗
n,k(x) = max{

∫ x

−∞
Fn(t)dt,

∫ x

−∞
Gk(t)dt}, (3.1)

F̂n,k(x) = Fn(x)I{
∫ x

−∞ Fn(t)dt≥
∫ x

−∞ Gk(t)dt} + Gk(x)I{
∫ x

−∞ Fn(t)dt<
∫ x

−∞ Gk(t)dt},

(3.2)
where Gk(·) denotes the empirical cumulative distribution function based on
Y1, . . . , Yk. Clearly, F̂n,k is the result of simply replacing G in (2.8) by the empir-
ical distribution function Gk. It can be shown that H∗

n,k is absolutely continuous,
with H∗

n,k(x) =
∫ x
−∞ F̂n,k(t)dt, so that

∫ x
−∞ F̂n,k(t)dt ≥ ∫ x

−∞ Gk(t)dt. Moreover,
using arguments similar to those used to prove that the estimator F̂n is a distri-
bution function, it can be shown that F̂n,k is also a distribution function.

Now note that for each fixed x, the event {∫ x
−∞ Fn(t)dt <

∫ x
−∞ Gk(t)dt} is

equal to the event {∫ x
−∞(Gk(t) − G(t))dt +

∫ x
−∞(F (t) − Fn(t))dt >

∫ x
−∞(F (t) −
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G(t))dt}. It follows that

|F̂n,k(x)−F (x)|
≤|Fn(x)−F (x)|I{∫ x

−∞Fn(t)dt≥
∫ x

−∞Gk(t)dt}+|Gk(x)−F (x)|I{∫ x

−∞Fn(t)dt<
∫ x

−∞Gk(t)dt}
≤ |Fn(x) − F (x)|I{∫ x

−∞ Fn(t)dt≥
∫ x

−∞ Gk(t)dt}
+|Gk(x) − F (x)|(I{∫ x

−∞(Gk(t)−G(t))dt>h(x)/2} + I{
∫ x

−∞(F (t)−Fn(t))dt>h(x)/2}),

where h(x) =
∫ x
−∞(F (t) − G(t))dt > 0 for all x, whenever (1.1) holds with strict

inequality for all x. Now if F satisfies any of (2.9), (2.10), or (2.11) then, as
n → ∞, P (

∫ x
−∞(F (t) − Fn(t))dt> h(x)/2, i.o.) = 0, as demonstrated in the

appendix. Similar assumptions on G then yield the result that P (
∫ x
−∞(Gk(t) −

G(t))dt > h(x)/2, i.o.) = 0. It follows from the above arguments that as n, k →
∞, eventually with probability one for each x,

|F̂n,k(x) − F (x)| ≤ |Fn(x) − F (x)|I{∫ x

−∞ Fn(t)dt≥
∫ x

−∞ Gk(t)dt} ≤ |Fn(x) − F (x)|.
(3.3)

The strong uniform consistency then follows from a lemma in Chung (1974).

Theorem 3.1. Suppose that F and G satisfy (1.1) with strict inequality for all x,
and suppose that F and G satisfy any of the conditions (2.9), (2.10), or (2.11). Let
F̂n,k be defined by (3.2) with F continuous. Then lim

n→∞ lim
k→∞

sup
x

|F̂n,k−F (x)| = 0.

We now discuss the weak convergence of the process {√n(F̂n,k(x) − F (x)),
−∞ < x < ∞}. In what follows, lim

n,k→∞
denotes the iterated limit lim

n→∞ lim
k→∞

.

Theorem 3.2. Let F and G satisfy (1.1) with strict inequality for every x, and
suppose that F satisfies one of the conditions (2.9), (2.10), or (2.11), similarly
G. Then the process {√n(F̂n,k(x) − F (x)), −∞ < x < ∞} converges weakly to
{B(t), −∞<t<∞} as n, k → ∞, where B(t) represents Brownian motion with
E(B(t)) = 0 and Cov (B(t), B(s)) = min(F (t), F (s)) − F (t)F (s).

4. The Case of Censored Data

This case is handled by replacing the empirical distribution functions by the
corresponding Kaplan-Meier estimators. Let X1, . . . ,Xn be a random sample
from the distribution F . In the same set-up as in Csörgő and Horváth (1983),
another random sample Y1, . . . , Yn with (left-continuous) distribution function H

censors on the right the distribution F . As a result, the observations available
consist of the pairs (Zi, δi), i = 1, . . . , n, where Zi is the minimum of Xi and Yi

and δi is the indicator function of the event (Xi ≤ Yi). Let F̂n denote the Kaplan-
Meier estimator of F . For a probability distribution F ∗, define TF ∗ = inf{t :
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F ∗(t) = 1}. The distribution W of Zi is given by 1−W (t) = (1−F (t))(1−H(t))
for each t. It is assumed throughout this section that

F and H do not have jumps in common. (4.1)

Let T ∗ = min(TF , TH). Under (4.1), the strong uniform convergence of the
Kaplan-Meier estimator F̂n on (−∞, T ∗] holds, as demonstrated by Stute and
Wang (1993), if and only if

either F{T ∗} = 0 or F{T ∗} > 0 but H(T ∗−) < 1. (4.2)

Under somewhat stricter conditions on F and H, the weak convergence of the
process {√n(F̂n(x) − F (x)), −∞ < x < T}, for some T , has been proven by
Breslow and Crowley (1974). Henceforth it is assumed, for clarity, that F and
G are survival distributions. The results presented below in Theorems 4.1 and
4.2, however, hold more generally under conditions similar to (2.9) and (2.11).
Consider the one-sample problem first, and define

F̂ ∗
n(x) = F̂n(x)I{

∫ x

0
F̂n(t)dt>

∫ x

0
G(t)dt} + G(x)I{

∫ x

0
F̂n(t)dt≤

∫ x

0
G(t)dt}. (4.3)

It can be seen that the estimator F̂ ∗
n defined by (4.3) is a legitimate distribution

function.

Theorem 4.1. Suppose that (4.1) and (4.2) hold. Then sup0≤x≤T ∗ |F̂ ∗
n(x) −

F (x)| → 0 with probability one. Moreover, if F and H are continuous and T < T ∗

with W (T ) < 1, then the process {√n(F̂ ∗
n(x) − F (x)), 0 < x < T} for T < T ∗

converges weakly to the zero mean Gaussian process Z∗ specified by Breslow and
Crowley.

In the two-sample problem, let X1, . . . ,Xn be a random sample from a dis-
tribution F and let X∗

1 , . . . ,X∗
n be a random sample from a distribution H1 which

censors F on the right, independent from X1, . . . ,Xn. Also let Y1, . . . , Yk be a
random sample from a distribution G and let Y ∗

1 , . . . , Y ∗
k be a random sample in-

dependent from Y1, . . . , Yk, from a distribution H2 which censors G on the right.
Let T ∗ = min(TF , TH1) and let T ∗

2 = min(TG, TH2). Let F̂n and Ĝk denote the
Kaplan-Meier estimators of F and G respectively. Suppose that H1 and H2 are
left-continuous with F and G continuous. Let T ∗ = min(T ∗

1 , T ∗
2 ). Define, on

(0, T ∗),

F̂ ∗
n,k(x) = F̂n(x)I{

∫ x

0
F̂n(t)dt>

∫ x

0
Ĝk(t)dt} + Ĝk(x)I{

∫ x

0
F̂n(t)dt≤

∫ x

0
Ĝk(t)dt}. (4.4)

The following result follows along the lines of the proof of Theorem 4.1, proof
omitted.
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Theorem 4.2. Let T < T ∗, and suppose F and G are continuous with H1 and H2

left-continuous. Let F̂ ∗
n,k be defined by (4.4). Then limn,k→∞ sup0<t≤T ∗ |F̂ ∗

n,k(t)−
F (t)| = 0. Moreover, the process {√n(F̂ ∗

n,k(t) − F (t)), 0 < t < T} converges
weakly as n, k → ∞ to the zero mean Gaussian process {Z∗(t), 0 < t < T} as
specified in Breslow and Crowley (1974).

5. Extensions and Generalizations

The estimator F̂n defined by (2.8) behaves better than Fn in terms of Mean
Squared Error for many examples except that, on occasion, it may behave poorly
in the left tail. This occurs because F̂n will estimate F as G for all x in a
neighborhood of −∞. Moreover, the theory outlined in the previous sections for
the case where (1.1) is a strict inequality for all x does not go through if (1.1)
is an equality for some values of x. We briefly consider a family of estimators
which satisfy (1.1) and contain F̂n as a special case. The asymptotic theory for
this family of new estimators parallels the theory discussed in previous sections,
but will not be considered here. See Rojo and El Barmi (2001) for a detailed
account. Some of the simulation results presented in Section 7 include a study of
the estimators in this section and the example in the following section illustrates
their use. Define

H∗
n(x) = max(

∫ x

−∞
mn(t)dt,

∫ x

−∞
G(t)dt), (5.1)

where mn(t) = min(Fn(t) + γn(t), 1), γn(t) = εnr(t) where r(t) > 0 and∫ x
−∞ r(t)dt < ∞ for all x, r(t) nondecreasing and continuous, and εn ≥ 0 is

a sequence of real numbers with εn → 0, and where εn may be appropriately se-
lected so that the asymptotic theory goes through. As our family of estimators,
define

F ∗
n(x) = lim

h→0+

H∗
n(x + h) − H∗

n(x)
h

. (5.2)

Note that when εn = 0 for all n, mn(t) = Fn(t) and hence H∗
n = Ĥn and

F ∗
n = F̂n. Our simulation work will also show that F ∗

n has smaller Mean Squared
Error than both Fn and F̂n in various examples. As in Section 2, we may define
the intervals [x2k−2, x2k−1] as those where

∫ y
−∞ mn(t)dt ≤ ∫ y

−∞ G(t)dt, while the
inequality is reversed on the intervals [x2k−1, x2k]. Then it follows from (5.1),
and (5.2) that

H∗
n(x) =

∞∑
j=1

∫ x

−∞
G(t)I{[x2j−2,x2j−1)}dt +

∞∑
j=1

∫ x

−∞
mn(t)I{[x2j−1,x2j)}dt, (5.3)

F ∗
n(x) =

∞∑
j=1

mn(x)I{[x2j−1,x2j)} +
∞∑

j=1

G(x)I{[x2j−2,x2j−1)}, (5.4)
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where I{[∞,∞)} = 0. It can be shown that H∗
n(x) is absolutely continuous and

convex. As a result, H∗
n(x) =

∫ x
−∞ F ∗

n(t)dt for all x and F ∗
n is nondecreasing. Since

r(t) > 0 with
∫ x
−∞ r(t)dt < ∞ for all x, it follows that r(x) → 0 as x → −∞.

Therefore F ∗
n(x) → 0 as x → −∞. It is also easy to see that F ∗

n(x) → 1 as
x → ∞. By (5.4) and the right continuity of mn(t) and G(t), the right continuity
of F ∗

n follows. Thus, F ∗
n is a legitimate distribution function which satisfies (1.1).

In case G is unknown, G may be replaced by Gk – the empirical distributon
based on a sample from G – in both (5.3) and (5.4). Similarly, in the case of
censored data, both Fn and Gk are replaced by their Kaplan-Meier counterparts.
One consequence of the slight perturbation introduced into F̂n by εnr(t) to obtain
F ∗

n , is the separation of
∫ x
−∞ Fn(t)dt from

∫ x
−∞ G(t)dt for the values of x for which

equality holds in (1.1). Then the asymptotic theory goes through as in Sections
2−4. Details about the strong uniform convergence and asymptotic distribution
of the estimators when (1.1) is an equality for some values of x may be found in
Rojo and El Barmi (2001).

6. Stocks and Bonds Annual Return Rate

It is well-established in the financial literature (e.g., Siegel (1995)), that
stocks have outperformed bonds by providing higher returns in the past 200
years. In this section the estimators proposed in previous sections are applied to
financial data on annual total return of stocks and bonds by decade from 1810-
1989. The data comes from Global Financial Data (www.globalfindata.com),
with permission. The table below summarizes annual total return of stocks and
bonds by decade. Decade i indicates the decade starting during the year 1810 +
i ∗ 10.

Table 1. Stocks/Bonds total return by decade.

Decade 1 2 3 4 5 6 7 8 9
Bonds 6.41 5.92 6.25 4.89 5.35 6.65 7.96 5.53 3.92
Stocks 2.68 5.31 4.53 6.73 0.45 15.73 7.58 6.72 5.45

Decade 10 11 12 13 14 15 16 17 18
Bonds 2.60 2.23 5.84 4.20 2.49 0.73 1.96 4.32 13.26
Stocks 9.62 4.69 13.86 -0.17 9.57 18.53 8.17 6.75 16.64

Investors are routinely advised that stocks not only outperform bonds over
the long-term but, during the past century, stocks have been less volatile than
bonds over extended periods of time, and they have been less likely to lose your
money during any given decade.

Therefore a risk averter should invest in stocks rather than bonds. However,
the data does not obey the second order stochastic dominance restriction between
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stocks and bonds as shown by Figure 1. Note that (1.1) is not satisfied for Total
Annual Return in a neighborhood of zero. Figure 2 illustrates the new estimators
satisfying the restriction that bonds <SSD stocks. The empirical distribution
functions for bonds and stocks are plotted together with three estimators for
F − the distribution function for bonds. The three estimators illustrated in
Figure 2 were computed by using (5.4) with εn = 0, εn = e−n, εn = 1/n2.
In all three cases, r(t) was set to one. Note that the new estimators modify the
empirical distribution function for bonds only in that region where the restriction
is violated. Thus the new estimator for the distribution function for bonds with
εn = 0 agrees with its empirical distribution function for Total Annual Return
values greater than 3.525, while agreeing with the empirical distribution function
for stocks for values of Total Annual Return smaller than 3.524. When εn = e−n,
the new estimator takes on the values Fn+e−n except on the interval from −1.699
to 3.525 where it agrees with the empirical distribution function Gk. Finally, the
new estimator with εn = 1/n2 takes on the values Fn+1/n2 except on the interval
from −0.1198 to 3.402, where it agrees with Gk.

7. Simulation Work

With the purpose of studying the Mean Squared Error (MSE) behavior of the
proposed estimators, and comparing this behavior to that of the empirical distri-
bution function, simulations were performed for several examples. Ten thousand
replications were run for each experiment. Note that (2.4) suggests that the es-
timator defined by (2.5) may be uniformly better than the empirical distribution
function in the one-sample case. This provides the motivation for a closer exam-
ination of the Mean Squared Error properties of the estimators defined by (2.7),
or equivalently (2.8), and (5.4) in the one-sample problem, and the estimators
defined by (3.2) in the case of the two-sample problem. The case of censored data
is considered as well. We compare the MSE of the Kaplan-Meier estimator with
the new estimators defined by (4.3) and (4.4). Some simulation results are also
included for the case where (1.1) does not hold strictly for all x. In these cases
the estimator defined by (5.4), and its counterpart in the two-sample problem,
were used for the simulations for various choices of εn: εn = 0, εn = e−n, and
ε = 1/n2.

In the case of nonnegative random variables we used r(t) = 1 and, in the
case of distributions with R1 as their support, we used r(t) = etI{t<0}+I{t>0}. In
the one-sample problem, since G is known, we have selected r(t) = G(t) in a few
cases. As the Mean Squared Error behavior typically depends on the tail behav-
ior of the underlying distributions, probability distributions with various degrees
of tail-heaviness were considered. (See, e.g., Rojo (1988), Rojo (1992) and Rojo
(1996) for a method of classifying distributions by tail behavior). The examples
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presented here are typical of the results obtained. Interested readers may request
all simulation results from the first author. The results suggest that the new esti-
mators uniformly dominate the empirical distribution function in terms of MSE
in all the examples considered in the one-sample case. In the two-sample case,
the estimators compare well with the empirical distribution function (Kaplan-
Meier) except in a neighborhood of zero. Comparing the new estimators among
themselves, simulations show that, although there is no uniform winner, the new
estimator with εn = e−n gives good results overall, and in some cases dominates
uniformly the estimators with εn = 0 and ε = 1/n2. The examples considered for
the case of censored data similarly show that the estimator with εn = e−n has
good overall results while being the best choice in some of the examples, although
the improvement over the case with εn = 0 is not substantial, as expected. All
in all, computational ease, availability of asymptotic distributional theory, and
performance in terms of MSE, the new estimators seem to fare rather well. The
simulation results are presented in Figure 3. The graphs show the ratio of the
Mean Squared Errors of the new estimators to the Mean Squared Error of the
empirical distribution function. In all cases, the solid black line indicates the
ratio of MSE of the new estimator to the Empirical (or Kaplan-Meier estimator)
when εn = 0. The red line indicates the ratio of the MSE of the new estimator,
with εn = e−n, to the MSE of the empirical distribution. The dashed line indi-
cates the ratio of the MSE of the new estimator with εn = 1/n2 to the MSE of
the empirical distribution function.

Figure 1. Empirical annual total return for stocks and bonds: 1810−1989.
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Figure 2. New estimators for annual total return for bonds: 1810−1989.

Table 2. Summary of distributions, sample sizes and functions r(t).

Label F-Censor Dist. G-Censor Dist. Sample Size r(t)
1s-short-30-2 1 − 1/(1 + x)7 Exp(6) 30 1
1s-short-10-2G ′′ ′′ 10 G
2s-short-10-10-2 ′′ ′′ 10,10 1
2s-short-30-30-2 ′′ ′′ 30,30 1
Pareto-1s-30 Pareto, θ = 1.5 Pareto, θ = 1.0 30 1
Exp-1s-10 Exp, λ = 1.5 Exp, λ = 1.0 10 1
Exp-2s-50-30 ′′ ′′ 50, 30 1

Normal-2s-30-30 N(0, 1.21) N(0, 1.0) 30, 30
etI{t<0}
+I{t>0}

t-2s-30-30 t dist, 10 df t dist, 4 df 30, 30 ′′

Dexp-1s-10 Double Exp, λ = 1.5 Double Exp, λ = 1.0 10 ′′

Dexp-2s-30-30 ′′ ′′ 30, 30 ′′

cexp1s1030 Exp(1.5) - - Exp(1/6) Exp(1.0) 10 1
cexp1s2510 Exp(1.5) - - Exp(1/2) Exp(1.0) 10 1
cexp2s103030 Exp(1.5) - - Exp(1/6) Exp(1.0) - - Exp(1/3) 30, 30 1
cexp2s103050 Exp(1.5) - - Exp(1/6) Exp(1.0) - - Exp(1/3) 30, 50 1

Dble Exp(1.5) Dble Exp(1.0) etI{t<0}cde2s3050 30, 50
- - Exp(3/13) - - Exp(1/4) +I{t>0}

cnormal2s3050 N(0, 1.21) - - 1−exp(−x2) N(0, 1) - - 1−exp(−x2) 30, 50 ′′
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Figure 3. Simulation results for the censored and uncensored data cases.
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Table 2 summarizes the distributions, sample sizes, and the parameters used
for the simulations. In all examples the distribution F is the one being estimated.
The table refers to the distribution function given by F (x) = 1−x−θ, x > 1 as the
Pareto distribution with parameter θ > 0. A ”c” in front of the label indicates a
censored case.
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Appendix

Proof of Theorem 2.1. Pointwise convergence with probability one is demon-
strated first. Suppose that (2.9) holds. It follows from (2.8) that for each x,

|F̂n(x) − F (x)| = |Fn(x) − F (x)|I{∫ x

−∞ Fn(t)dt≥
∫ x

−∞ G(t)dt}
+|G(x) − F (x)|I{∫ x

−∞ Fn(t)dt<
∫ x

−∞ G(t)dt}. (A.1)

The first term in the right side of (A.1) is bounded above by |Fn(x) − F (x)|,
and hence converges to zero with probability one for each x. It follows that
to show almost sure pointwise consistency of F̂n, it is enough to show that
I{

∫ x

−∞ Fn(t)dt<
∫ x

−∞ G(t)dt} converges to zero with probability one for each x. Thus,

it is enough to show that the probability of A(x)={∫ x
−∞Fn(t)dt<

∫ x
−∞G(t)dt, i.o.}

equals zero for every x. Note that

An(x) = {
∫ x

−∞
Fn(t)dt <

∫ x

−∞
G(t)dt} = {

∫ x

−∞
(F (t)−Fn(t))dt>

∫ x

−∞
(F (t)−G(t))dt}.

Therefore, w ∈ limAn(x) = A(x) if and only if
∫ x
−∞(F (t) − Fn(w, t))dt ≥∫ x

−∞(F (t)−G(t))dt infinitely often. Here we have emphasized the dependence of
Fn on w for clarity. Now consider

P{
∫ x

−∞
(F (t) − Fn(t))dt ≥ h(x)}, (A.2)



918 JAVIER ROJO JIMÉNEZ AND HAMMOU EL BARMI

where h(x) =
∫ x
−∞(F (t) − G(t))dt > 0. It follows from (A.2) that we only need

to show
∞∑

n=1

P{
∫ x

−∞
(F (t) − Fn(t))dt ≥ h(x)} < ∞. (A.3)

Let Bn(x) = {∫ x
−∞(F (t) − Fn(t))dt ≥ h(x)}, and write

∞∑
n=1

P{Bn(x)} =
∞∑

n=1

P{Bn(x), x < X(1)} +
∞∑

n=1

P{Bn(x), x ≥ X(1)}.

The second sum above is bounded above by
∑∞

n=1 P{x < X(1)} =
∑∞

n=1(F̄ (x))n

< ∞. Therefore we need only to consider the third sum. Hence write, for x >

X(1),

∫ x

−∞
(F (t) − Fn(t))dt ≤

∫ X(1)

−∞
(F (t) − Fn(t))dt + (x − X(1)) sup

x
|Fn(x) − F (x)|.

Choose δ so that 3/(18 + 4η) < δ < η/(2η + 8), and set c = 1/2 − δ and
l = (1 + c)/(4 + η). Then 0 < δ < 1/2 and, eventually, with probability one,

∫ X(1)

−∞
(F (t) − Fn(t))dt ≤ (sup

x
|F (x) − Fn(x)|)1−l

∫ X(1)

−∞
|Fn(t) − F (t)|ldt

≤ K(sup
x

|F (x) − Fn(x)|) 3+η−c
4+η

∫ X(1)

−∞
dt

(−t)1+c

= K(sup
x

|F (x) − Fn(x)|) 3+η−c
4+η /c(−X(1))

c.

Therefore eventually, with probability one,
∫ X(1)

−∞ (F (t)− Fn(t))dt≤(supx |F (x)−
Fn(x)|) 3+η−c

4+η (−X(1)). Hence, and abbreviating “infinitely often” to i.o.,

P (
∫ x

−∞
(F (t) − Fn(t))dt ≥ h(x), x ≥ X(1), i.o.)

≤ P ((sup
y

|F (y) − Fn(y)|) 3+η−c
4+η (−X(1)) ≥ h(x)/2, x ≥ X(1), i.o.)

+P ((x − X(1)) sup
y

|F (y) − Fn(y)|) ≥ h(x)/2, i.o.). (A.4)

Now, by the conditions on δ and η, nc(supx |Fn(x)−F (x)|) 3+η−c
4+η converges to zero

with probability one. Also eventually, with probability one, (x−X(1)) supy |F (y)
−Fn(y)| ≤ −2X(1) supy |F (y) − Fn(y)|, and nc supx |Fn(x) − F (x)| converges to
zero with probability one. Therefore, to show that the right side of (A.4) is zero,
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it is enough to show that P (−X(1)n
δ−1/2 ≥ h(x)/2, i.o.) = 0. For that purpose,

consider

P (−X(1)n
δ−1/2 ≥ h(x)/2) = P (X(1) < −n1/2−δh(x)/2)

= 1 − (1 − F (−n1/2−δh(x)/2))n

=
n−1∑
j=0

(1 − F (−n1/2−δh(x)/2))jF (−n1/2−δh(x)/2)

≤ nF (−n1/2−δh(x)/2).

Since F (x) = O(| − x|−4−η) as x → −∞, nF (−n1/2−δh(x)/2) = nO((n1/2−δh(x)
/2)−4−η) = M24+ηn4δ−η/2+ηδ−1/(h(x))4+η , where M < ∞. Since 4δ − η/2 +
ηδ − 1 < −1, it follows that

∑∞
n=1 P (−X(1)n

δ−1/2 > h(x)/2) < ∞, and hence
the probability that −X(1)n

δ−1/2 > h(x)/2 i.o. is zero. Therefore, limn→∞An

has probability zero, and strong pointwise convergence follows. The uniform
convergence then follows from a lemma in Chung (1974) at p.133.

If (2.10) holds, the proof of (A.3) is immediate since, by a result of (DKW)
Dvoretzky, Kiefer, and Wolfowitz (1956),

P
{ ∫ x

0
(F (t)−Fn(t))dt > h(x)

}
≤ P{x sup

t
|Fn(t)−F (t)| > h(x)} ≤ e−2n(h(x)/x)2 .

It follows that,
∑∞

n=1 P{supt |Fn(t) − F (t)| > h(x)} ≤ C
∑∞

n=1 e−2n(h(x)/x)2 < ∞
and, as a consequence, P{∫ x

0 Fn(t)dt <
∫ x
0 G(t)dt i. o.} = 0. Therefore, F̂n(x) →

F (x) with probability one, for any x > 0. The result then follows by a lemma in
Chung (1974) at p.133.

If (2.11) holds, it follows from (A.2) that it is enough to show P{∫ x
−∞(F (t)−

Fn(t))dt > h(x), i.o.} = 0. Note that
∫ x
−∞(F (t)−Fn(t))dt=(1/n)

∑n
i=1 XiI{Xi≤x}

−E(XI{X≤x}) + x(F (x) − Fn(x)). Thus it is enough to show that for every x,
P (|E(XI{X≤x}) − (1/n)

∑n
i=1 XiI{Xi≤x}| ≥ h(x)/2, i.o.) = 0 and P (|x(F (x) −

Fn(x))| ≥ h(x)/2, i.o.) = 0. It follows from the DKW (1956) inequality that
P (|F (x) − Fn(x)| ≥ h(x)/(2|x|), i.o.) = 0 for every x. By a result due to Katz
(see, e.g., Shorack and Wellner (1986, p.84)), if E|X|r < ∞, then for a > 1/2
with ra > 1, and Sn =

∑n
i=1 Xi, where X1,X2, . . . are i.i.d. random variables,

∞∑
n=1

nra−2P (
|Sn|
n

> na−1ε) < ∞ for all ε > 0.

Setting r = 2/(1 − δ), a = 1− δ, it follows that P (|E(XI{X≤x})− (1/n)
∑n

i=1 Xi

I{Xi≤x}| ≥ h(x)/2 i.o.) = 0, and hence, invoking the lemma at p.133 of Chung
(1974), F̂n is uniformly strongly consistent.
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Proof of Theorem 2.2. Write
√

n(F̂n(x) − F (x)) =
√

n(Fn(x) − x)
I{

∫ x

0
Fn(t)dt>

∫ x

0
G(t)dt} +

√
n(G(x) − x)I{

∫ x

0
Fn(t)dt≤

∫ x

0
G(t)dt}. The fact that P{∫ x

0

Fn(t)dt ≤ ∫ x
0 G(t)dt, i.o.} = 0 for each fixed x, implies that the finite dimen-

sional distributions of {√n(F̂n(x) − x), 0 < x < 1} equal the finite-dimensional
distributions of {√n(Fn(x)−x), 0 < x < 1} eventually and with probability one,
and these in turn converge to the finite-dimensional distributions of the process
{W ◦(x), 0 < x < 1}.

The result will follow if the sequence of stochastic processes {√n(F̂n(t) −
t) : 0 < t < 1} is tight. Following Billingsley (1968), p.137, define Wn(t) =√

n(F̂n(t) − t), 0 < t < 1. Since Wn(0) = 0, it is enough to show that for every
ε∗ > 0, and η > 0, there exists a 0 < δ∗ < 1, and an integer n0 such that

P{ sup
t≤s≤t+δ∗

|Wn(s) − Wn(t)| ≥ ε∗} ≤ ηδ∗ (A.5)

for all n ≥ n0 and each 0 < t < 1, where t + δ∗ is replaced by 1 if t + δ∗ > 1.
Now consider

sup
t≤s≤t+δ∗

|√n(F̂n(s) − s) −√
n(F̂n(t) − t)|

≤ sup
t≤s≤t+δ∗

|√n(Fn(s) − s)I{
∫ s

0
Fn(x)dx>

∫ s

0
G(x))dx}

−√
n(Fn(t) − t)I{

∫ t

0
Fn(x)dx>

∫ t

0
G(x)dx}|

+ sup
t≤s≤t+δ∗

√
n|G(t) − t|I{∫ t

0
Fn(x)dx≤

∫ t

0
G(x)dx}

+ sup
t≤s≤t+δ∗

√
n|G(s) − s|I{∫ s

0
Fn(x)dx≤

∫ s

0
G(x)dx}. (A.6)

The function g :
√

n(Fn(t)− t) → √
n(Fn(t)− t)I{

∫ t

0
Fn(x)dx>

∫ t

0
G(x)dx} is con-

tinuous with respect to the sup norm and, since the sequence {√n(Fn(t)− t), 0 <

t < 1} satisfies (A.5), then the sequence {√n(Fn(t)−t)I{
∫ t

0
Fn(x)dx>

∫ t

0
G(x)dx}, 0 <

t < 1} also satisfies (A.5). Therefore, to prove tightness of {Wn(t), 0 < t < 1},
it is enough to show that the last two terms on the right side of the inequality
(A.6) converge to zero in probability.

In fact, a stronger result holds. Note that

P{ sup
t≤s≤t+δ∗

√
n|G(t) − t|I{∫ t

0
Fn(x)dx≤

∫ t

0
G(x)dx} > ε∗}

= P{√n|G(t) − t|I{∫ t

0
Fn(x)dx≤

∫ t

0
G(x)dx} > ε∗}

≤ P{
∫ t

0
Fn(x)dx ≤

∫ t

0
G(x)dx} = P{

∫ t

0
(x − Fn(x))dx ≥

∫ t

0
(x − G(x))dx}.
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Since
∫ t
0 (x−Fn(x))dx ≤ t sup0≤x≤t |x−Fn(x)| and

∫ t
0(x−G(x))dx > 0 for every

t, in fact supt≤s≤t+δ∗
√

n|G(t)−t|I{∫ t

0
Fn(x)dx≤

∫ t

0
G(x)dx} → 0 with probability one.

Similarly,

P{ sup
t≤s≤t+δ∗

√
n|G(s) − s|I{∫ s

0
Fn(x)dx≤

∫ s

0
G(x)dx} > ε∗}

≤ P{ sup
t≤s≤t+δ∗

(
∫ s

0
G(x)dx −

∫ s

0
Fn(x)dx) ≥ 0}

= P{ sup
t≤s≤t+δ∗

{−
∫ s

0
(x − G(x))dx +

∫ s

0
(x − Fn(x))dx} ≥ 0}

≤ P{ sup
t≤s≤t+δ∗

∫ s

0
(G(x) − x)dx + sup

t≤s≤t+δ∗

∫ s

0
(x − Fn(x))dx ≥ 0}

= P{ sup
t≤s≤t+δ∗

∫ s

0
(x − Fn(x))dx ≥ inf

t≤s≤t+δ∗

∫ s

0
(x − G(x))dx}. (A.7)

Since
∫ s
0 (x − G(x))dx is continuous on [t, t + δ∗], inft≤s≤t+δ∗

∫ s
0 (x − G(x))dx =∫ s∗

0 (x − G(x))dx with
∫ s∗
0 (x − G(x))dx > 0 for some s∗ in [t, t + δ∗]. Therefore

the last term in the string of expressions given by (A.7) is bounded above by
P{supt≤s≤t+δ∗

∫ s
0 (x−Fn(x))dx ≥ ∫ s∗

0 (x−G(x))dx} and, since supt≤s≤t+δ∗
∫ s
0 (x−

Fn(x))dx converges to zero with probability one, it follows that the last term
in the right side of (A.6) converges to zero in probability. Thus the process
{√n(F̂n(t) − t), 0 < t < 1} converges weakly to {W ◦(t), 0 < t < 1} where W ◦

denotes Brownian Bridge.

Proof of Theorem 2.3. This proof follows immediately from the proof of
Theorem 2.2 and hence is not included here.

Proof of Theorem 3.1. The proof follows immediately from the discussion
leading to (3.3) and the proof of Theorem 2.1.

Proof of Theorem 3.2. For fixed x as n, k → ∞, the proof of the point-
wise strong consistency of F̂n,k(x) shows that eventually, with probability one,
F̂n,k(x) = Fn(x). This fact in turn implies that the finite-dimensional distri-
butions of the process {√n(F̂n,k(x) − F (x)), −∞ < x < ∞} converge to the
finite-dimensional distributions of {B(t),−∞ < t < ∞}. It remains to prove the
tightness of the process {√n(F̂n,k(x) − F (x)),−∞ < x < ∞}. Note that

√
n(F̂n,k(t) − F (t)) =

√
n(Fn(t) − F (t)) +

√
n(F̂n,k(t) − Fn(t))

=
√

n(Fn(t) − F (t)) +
√

n(Gk(t) − Fn(t))I{
∫ x

−∞ Fn(t)dt≤
∫ x

−∞ Gk(t)dt}.
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Therefore,

sup
t≤s≤t+δ

|√n(F̂n,k(s) − F (s)) −√
n(F̂n,k(t) − F (t))|

≤ sup
t≤s≤t+δ

|√n(Fn(s) − F (s)) −√
n(Fn(t) − F (t))|

+ sup
t≤s≤t+δ

|√n(Gk(t) − Fn(t))|I{∫ t

−∞ Fn(x)dx≤
∫ t

−∞ Gk(x)dx}

−√
n(Gk(s) − Fn(s))I{

∫ s

−∞ Fn(x)dx≤
∫ s

−∞ Gk(x)dx}|.

Since {√n(Fn(t)−F (t)), −∞<t<∞} is tight, to prove tightness for {√n(F̂n,k(t)
−F (t)), −∞ < t < ∞} it is enough to prove that

lim
n→∞ lim

k→∞
sup

t≤s≤t+δ
|√n(Gk(t) − Fn(t))I{

∫ t

−∞ Fn(x)dx≤
∫ t

−∞ Gk(x)dx}

−√
n(Gk(s) − Fn(s))I{

∫ s

−∞ Fn(x)dx≤
∫ s

−∞ Gk(x)dx}| = 0

with probability one. To see this, note that

sup
t≤s≤t+δ

|√n(Gk(t) − Fn(t))I{
∫ t

−∞ Fn(x)dx≤
∫ t

−∞ Gk(x)dx}

−√
n(Gk(s) − Fn(s))I{

∫ s

−∞ Fn(x)dx≤
∫ s

−∞ Gk(x)dx}|
≤ 2

√
nI{

∫ t

−∞ Fn(x)dx≤
∫ t

−∞ Gk(x)dx}+2
√

n sup
t≤s≤t+δ

I{
∫ s

−∞ Fn(x)dx≤
∫ s

−∞ Gk(x)dx}. (A.8)

Now, for fixed t, previous arguments yield the result that
∫ t
−∞ Fn(x)dx >

∫ t
−∞

Gk(x)dx eventually with probability one, and therefore the first term on the right
side of (A.8) is zero eventually and with probability one.

Consider now the second term on the right side of (A.8):

P (2
√

n sup
t≤s≤t+δ

I{
∫ s

−∞ Fn(x)dx≤
∫ s

−∞ Gk(x)dx} ≥ ε)

= P ( sup
t≤s≤t+δ

(
∫ s

−∞
Fn(x)dx−

∫ s

−∞
Gk(x)dx) ≤ 0)≤P (

∫ t

−∞
Fn(x)dx≤

∫ t

−∞
Gk(x)dx).

It follows that eventually, with probability one,

sup
t≤s≤t+δ

|√n(Gk(t) − Fn(t))I{
∫ t

−∞ Fn(x)dx≤
∫ t

−∞ Gk(x)dx}

−√
n(Gk(s) − Fn(s))I{

∫ s

−∞ Fn(x)dx≤
∫ s

−∞ Gk(x)dx}| = 0.

Therefore, the sequence {√n(F̂n,k − F )}∞n,k=1 is tight and weak convergence fol-
lows.
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Proof of Theorem 4.1. We prove strong uniform convergence first. Note that
for each x < T ∗,

|F̂ ∗
n(x) − F (x)| = |F̂n(x) − F (x)|I{∫ x

0
F̂n(t)dt>

∫ x

0
G(t)dt}

+|G(x) − F (x)|I{∫ x

0
F̂n(t)dt≤

∫ x

0
G(t)dt}

≤ |F̂n(x) − F (x)| + I{
∫ x

0
F̂n(t)dt≤

∫ x

0
G(t)dt}. (A.9)

Now for each ε > 0, eventually,

P (I{
∫ x

0
F̂n(t)dt≤

∫ x

0
G(t)dt} ≥ ε) ≤ P (x sup

0≤t≤x
|F (t) − F̂n(t)| ≥

∫ x

0
(F (t) − G(t))dt).

(A.10)
Since

∫ x
0 (F (t)−G(t))dt > 0 and sup0≤t≤x |F (t)−F̂n(t)| → 0 with probability

one, it follows that P{x sup0≤t≤x |F (t) − F̂n(t)| ≥ ∫ x
0 (F (t) − G(t))dt, i.o.)} = 0,

and therefore I{
∫ x

0
F̂n(t)dt≤

∫ x

0
G(t)dt} = 0 eventually with probability one. It follows

from (A.9) that |F̂ ∗
n(x)− F (x)| → 0 with probability one. One more application

of a Lemma of Chung (1974) yields the desired result.
Turning our attention to the weak convergence of {√n(F̂ ∗

n(t)−F (t),−∞<

t<∞}, let 0= t1 <t2 < · · ·<tk =T , and consider the random vectors with com-
ponents (An(t1), . . . , An(tk)) and (Z∗

n(t1), . . . , Z∗
n(tk)), where Z∗

n(t)=
√

n(F̂n(t)−
F (t)), and An(t) =

√
n(F̂ ∗

n(t)−F (t)) =
√

n(F̂n(t)−F (t))I{
∫ t

0
F̂n(s)ds>

∫ t

0
G(s)ds} +

(G(t)−F (t))I{
∫ t

0
F̂n(s)ds≤

∫ t

0
G(s)ds}. As argued in the proof of the strong uni-

form convergence of F̂ ∗
n , I{

∫ t

0
F̂n(s)ds≤

∫ t

0
G(s)ds} equals zero eventually with prob-

ability one. Therefore eventually, with probability one, (An(t1), . . . , An(tk)) =
(Z∗

n(t1), . . . , Z∗
n(tk)). Therefore, the finite-dimensional distributions of {√n(F̂ ∗

n(t)
−F (t)), 0 < t < T} converge to the finite-dimensional distributions of the process
Z∗. It remains to prove tightness of the sequence {√n(F̂ ∗

n(t)−F (t)), 0 < t < T}.
For that purpose, let ε > 0, and η > 0. It is enough to show that there exists
δ > 0, and an integer n0 such that

P ( sup
t≤s≤t+δ

|An(t) − An(s)| ≥ ε) ≤ ηδ, (A.11)

for all n ≥ n0, and each 0 < t < T − δ. Note that

sup
t≤s≤t+δ

|√n(F̂ ∗
n(t) − F (t)) −√

n(F̂ ∗
n(s) − F (s))|

≤ sup
t≤s≤t+δ

|√n(F̂n(t) − F (t)) −√
n(F̂n(s) − F (s))|

+ sup
t≤s≤t+δ

|√n(F̂n(t) − F (t))I{
∫ t

0
F̂n(x)dx≤

∫ t

0
G(x)dx}
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−√
n(F̂n(s) − F (s))I{

∫ s

0
F̂n(x)dx≤

∫ s

0
G(x)dx}|

+ sup
t≤s≤t+δ

|√n(G(s) − F (s))I{
∫ s

0
F̂n(x)dx≤

∫ s

0
G(x)dx}

+
√

n|G(t) − F (t)|I{∫ t

0
F̂n(x)dx≤

∫ s

0
G(x)dx}. (A.12)

An argument similar to arguments used previously, immediately shows that
the last term on the right side of (A.12) is zero eventually with probability one.
Also, for any ε∗ > 0,

P ( sup
t≤s≤t+δ

I{
∫ s

0
F̂n(x)dx≤

∫ s

0
G(x)dx} > ε∗, i.o.)

= P ( sup
t≤s≤t+δ

(
∫ s

0
G(x)dx −

∫ s

0
F̂n(x)dx) ≥ 0, i.o.)

= P ( sup
t≤s≤t+δ

(
∫ s

0
(G(x) − F (x))dx −

∫ s

0
(F̂n(x) − F (x))dx ≥ 0, i.o.)

≤ P ( sup
t≤s≤t+δ

(
∫ s

0
(G(x) − F (x))dx + s sup

0≤x≤s
|F̂n(x) − F (x)|) ≥ 0, i.o.)

≤ P ((t + δ) sup
0≤s≤T

|F̂n(x) − F (x)| ≥ −a i.o.) = 0,

where a = supt≤s≤t+δ

∫ s
0 (G(x) − F (x)) < 0.

Therefore, eventually with probability one, the second and third terms on
the right side of (A.12) are zero so that eventually with probability one,

sup
t≤s≤t+δ

|√n(F̂ ∗
n(t) − F (t)) −√

n(F̂ ∗
n(s) − F (s)|

≤ sup
t≤s≤t+δ

|√n(F̂n(t)−F (t))−√
n(F̂n(s) − F (s))|.

It follows that, since {√n(F̂n(t) − F (t)), 0 < t < T} satisfies (7.11) then so
does {√n(F̂ ∗

n(t) − F (t)), 0 < t < T}, and weak convergence follows.

References

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.

Breslow, N. and Crowley, J. (1974). A large sample study of the life table and product limit

estimators under random censorship. Ann. Statist. 2, 437-453.

Chung, K. L. (1974). A Course in Probability Theory. Academic Press, New York.

Csörgő, S. and Horváth, L. (1983). The rate of strong uniform consistency for the product-

limit estimator. Z. Wahrsch verw. Gebiete 62, 411-426.

Deshpande, J. V. and Singh, H. (1985). Testing for second order stochastic dominance. Comm.

Statist. Theory Method 14, 887-893.

Dvoretzky, A., Kiefer, J. and Wolfowitz, J. (1956). Asymptotic minimax character of the sample

distribution functions and of the classical multinomial estimator. Ann. Math. Statist. 27,

642-669.



ESTIMATION OF DISTRIBUTION FUNCTIONS 925

Dykstra, R. L. (1982). Maximum Likelihood Estimation of the survival functions of two stochas-

tically ordered random variables. J. Amer. Stat. Assoc. 77, 621-628.

El Barmi H. (1993). Inference under convex constraints. Unpublished Ph.D. dissertation, Dept.

of Statistics, Univ. of Iowa.

Hadar, J. and Russell, W. R. (1971). Stochastic dominance and diversification. J. Econom.

Theory 3, 288-305.

Hong, C. S. and Herk, L. F. (1996). Incremental risk aversion and diversification preference. J.

Econom. Theory 70, 180-200.

Joy, 0. M., and Porter, R. B. (1974). Stochastic dominance and mutual fund performance. J.

Financial Quantitative Analy. 9, 25-31.

Kijima, M. and Ohnishi, M. (1996). Portfolio selection problems via the bivariate characteriza-

tion of stochastic dominance relations. Math. Finance 6, 237-277.

Lehmann, E. L. (1955). Ordered families of distributions. Ann. Math. Statist. 26, 399-419.

Lehmann, E. L. and Rojo, J. (1992). Invariant directional orderings. Ann. Statist. 20, 2100-

2110.

Levy, H. (1992). Stochastic dominance and expected utility: survey and analysis. Management

Sci. 38, 555-593.

Lo, S. H. (1987). Estimation of distribution functions under order restrictions. Statist. Deci-

sions 5, 251-262.

McFadden, D. (1989). Testing for stochastic dominance. In Studies in Economics of Uncertainty

(Edited by T. Fombay and T. K. Seo). New York.

Porter, R. B. and Carey, K. (1974). Stochastic dominance as a risk analysis criterion. Decisions

Sci. 5, 10-21.

Rojo, J. (1988). On the concept of tail-heaviness. Technical report 175, Department of Statis-

tics, University of California, Berkeley.

Rojo, J. (1992). A pure-tail ordering based on the ratio of the quantile functions. Ann. Statist.

20, 570-579.

Rojo, J. (1996). On tail categorization of probability laws. J. Amer. Statist. Assoc. 91,

378-384.

Rojo, J. and Ma, Z. (1996). On the estimation of stochastically ordered survival functions. J.

Statist. Comput. Simulation 55, 1-21.

Rojo, J. (1995). On the weak convergence of certain estimators of stochastically ordered survival

functions. J. Nonparametr. Statist. 4, 349-363.

Rojo, J. and El Barmi, H. (2001). Estimation of distribution functions under second order

stochastic dominance. Tech. report 01-1, Statistics Department, Rice University, Houston,

TX.

Schmid, F. and Trede, M. (1998). A Kolmogorov-type test for second order stochastic domi-

nance. Statist. Probab. Lett. 37, 183-193.

Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. John Wiley and

Sons, New York.

Shaked, M. and Shanthikumar, J. G. (1994). Stochastic Orders and Their Applications. Aca-

demic Press, San Diego.

Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics.

John Wiley and Sons, San Diego.

Stute, W. and Wang, J. L. (1993). The strong law under random censorship. Ann. Stat. 21,

1591-1607.

Taylor, B. (1997). Global Financial Data. www.globalfindata.com.
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