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Abstract: Function estimation over the Besov spaces under pointwise �r (1 ≤ r <

∞) risks is considered. Minimax rates of convergence are derived using a con-

strained risk inequality and wavelets. Adaptation under pointwise risks is also con-

sidered. Sharp lower bounds on the cost of adaptation are obtained and are shown

to be attainable by a wavelet estimator. The results demonstrate important differ-

ences between the minimax properties under pointwise and global risk measures.

The minimax rates and adaptation for estimating derivatives under pointwise risks

are also presented. A general �r-risk oracle inequality is developed for the proofs

of the main results.
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1. Introduction

Besov spaces occur naturally in many fields of analysis. They contain as spe-
cial cases a number of traditional smoothness spaces such as Hölder and Sobolev
spaces. The Besov space Bα

p,q, defined in detail in Section 2, contains functions
having α bounded derivatives in Lp norm, the third parameter q gives a finer gra-
dation of smoothness. Over the last few years, with the development of wavelet
thresholding techniques, statistical function estimation over the Besov spaces has
been of considerable interest. Most of the research, however, is focused on esti-
mation under global risk measures, especially the mean integrated squared error
(MISE). Asymptotic properties under pointwise risk measures are still mostly
unknown.

Minimax rates of convergence over a ball in the Besov space Bα
p,q under MISE

are derived in Donoho and Johnstone (1998) for the white noise model, and in
Donoho (1995) for inverse problems. In all these cases, the global minimax rates
of convergence depend solely on one smoothness parameter, α. It is also known
that under MISE it is possible to have rate-optimal estimators converging faster
than the minimax rate at some points in the parameter space. Indeed, it is even
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possible to be superefficient at every point in a Besov ball, see Cai (2000) and
Zhang (2000). See also Brown, Low and Zhao (1997).

In this paper we consider function estimation over Besov classes under point-
wise �r risk for all 1 ≤ r <∞. The results reveal some interesting features about
minimax properties under pointwise risk measures which are significantly differ-
ent from minimax properties under the global MISE. Unlike the global minimax
rates, pointwise minimax convergence rates over a ball in the Besov space Bα

p,q

depends not only on α but on p as well. More interestingly, in a sharp contrast
to the global risk measure, under pointwise �r risks any rate-optimal estimator
must uniformly attain the same “flat” rate at every f in the parameter space.
Thus superefficiency without penalty is impossible. That is, if an estimator has
risk converging faster than the minimax rate at some f in the parameter space,
the risk of the estimator must converge at slower than the minimax rate at other
functions in the parameter space.

We take a new approach in deriving pointwise minimax lower bounds in this
paper. There are several existing methods: modulus of continuity, metric entropy,
information inequality, and renormalization. See, e.g., Farrell (1972), Hasminskii
(1979), Stone (1980), Ibragimov and Hasminskii (1984), Donoho and Liu (1991),
Brown and Low (1991), Low (1992), Donoho and Low (1992) and Birgé and
Massart (1995). Our method is based on a constrained �r-risk inequality which
is a generalization of an �2 version introduced in Brown and Low (1996b). The
constrained risk inequality specifies, in a general setting, a lower bound on the �r

risk at one parameter point subject to the constraint of a given risk at another
parameter point. This approach has the advantage of allowing for simultaneous
study of lower bounds on minimax rate of convergence and the cost of adaptation.
To establish the minimax upper bounds, we use wavelet estimators.

Adaptation is now an important part of nonparametric function estimation
problems. In virtually all practical situations, the smoothness parameters are un-
known. Therefore, adaptation to unknown smoothness is essential. In the case
of more traditional smoothness spaces such as Lipschitz and Sobolev classes,
the adaptation problem has been considered by Lepski (1990), Brown and Low
(1996b), Lepski and Spokoiny (1997) and Tsybakov (1998) under squared error
loss. In this paper, we consider the adaptability problem under pointwise �r risk
over Besov classes. It is shown that, with a certain condition on the smoothness
parameters α and p, adaptation can be achieved without cost over a collection
of Besov classes. That is, the exact minimax rate of convergence can be attained
simultaneously by a single estimator over each of the Besov classes in the col-
lection. Under such a condition a wavelet projection estimator can attain the
optimal rate over all the Besov classes in the collection. In general, however,
adaptation for free is impossible and one has to pay a penalty for not knowing
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the underlying smoothness. Lower bounds on the cost of adaptation are derived
using the constrained �r-risk inequality.

Wavelet estimators are used to show that the lower bounds are sharp. That
is, it is possible to achieve adaptation with the minimum cost given by the lower
bounds. The approach we take can be applied to other function estimation prob-
lems as well. The minimax rates of convergence and adaptation for estimating
derivatives under pointwise �r risk are also considered.

It is now well understood that oracle inequalities are an effective tool to study
asymptotic properties of wavelet estimators. See, e.g., Donoho and Johnstone
(1994), Cai (1999), Antoniadis and Fan (2001) and Johnstone (1998). However,
most of the discussions have so far been restricted to the standard case of mean
squared error and are thus not applicable to our problems. To prove our main
results, we develop a general oracle inequality for �r risks and for arbitrary noise
distributions. This general oracle inequality can be of independent interest. As
a special case of the general �r-risk oracle inequality we obtain an �r-risk oracle
inequality for Gaussian noise which serves as one of our main tools for the proofs.
The oracle inequalities are derived using the approach of optimal recovery.

The paper is organized as follows. After Section 2, in which basic notation
and definitions of the Besov spaces and wavelet bases are reviewed, we derive
the minimax rates of convergence over Besov classes in Section 3. Minimax rates
are established in two steps. First minimax lower bounds are obtained by using
a constrained risk inequality, then a wavelet projection estimator is constructed
and is shown to converge at the same rates as the lower bounds. It is also shown
that any rate-optimal estimator must uniformly attain the same rate at every
fixed point in the parameter space. The adaptation problem is investigated in
Section 4. Sharp lower bounds on the cost of adaptation are derived, and it is
shown that a wavelet estimator is adaptive with the minimum cost over a wide
range of Besov classes under pointwise �r risk for 1 ≤ r < ∞. We consider in
Section 5 the minimax rates and adaptation for estimating derivatives over the
Besov classes under pointwise risks. Section 6 presents the general �r-risk oracle
inequalities. The proofs of the main results are postponed to Section 7.

2. Besov Spaces and Wavelets

A Besov space Bα
p,q has three parameters: α measures degree of smoothness,

p and q specify the type of norm used to measure the smoothness. These spaces
arise naturally in many fields of analysis. They contain many traditional smooth-
ness spaces such as Hölder(-Zygmund) and Sobolev spaces as special cases.

There are several ways of defining the Besov spaces. For the present paper,
we will use two versions of Besov norms: one is defined through the modulus of
smoothness and another is based on the wavelet coefficients.
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For f ∈ Lp[0, 1] and h > 0, denote the Kth difference by ∆(K)
h f(t) =∑K

k=0(−1)kf(t+kh). The modulus of smoothness of order K of f is ωK,p(f, h) =
‖∆(K)

h f‖Lp[0,1−Kh]. The Besov norm of index (α, p, q) is defined for K > α by

‖f‖Bα
p,q

=



‖f‖p +

(∫ 1
0 [h−αωK,p(f, h)]q dh

h

)1/q
for q <∞

‖f‖p + ‖h−αωK,p(f, h)‖∞ for q = ∞.
(1)

The Besov space Bα
p,q on [0, 1] is a Banach space consisting of functions with

finite Besov norm ‖ · ‖Bα
p,q

. The Besov class Bα
p,q(M) is defined to be a ball of

radius M in the Besov space Bα
p,q: Bα

p,q(M) = {f : ‖f‖Bα
p,q

≤ M}. The Besov
spaces are very rich function spaces containing both smooth and nonsmooth
functions. For example, with p = q = ∞ and α = 1, there exists a dense open
subset of B1∞,∞ which is composed of nowhere differentiable functions, see Meyer
(1992). The Besov spaces on the real line IR can be defined analogously and
we denote by Bα

p,q(IR) and Bα
p,q(IR, M) a Besov space and a Besov class on the

line, respectively. See Triebel (1983, 1992) and Meyer (1992) for more on Besov
spaces. Also see Donoho and Johnstone (1998) for discussions on the relevance
of Besov spaces to scientific problems.

The Besov spaces can also be defined based on the sequence norm of wavelet
coefficients. An orthonormal wavelet basis of L2[0, 1] is generated from dilation
and translation of two basic functions, a “father” wavelet φ and a “mother”
wavelet ψ. In the present paper, the functions φ and ψ are assumed to be
compactly supported and

∫
φ = 1. We call a wavelet ψ K-regular if ψ has

K vanishing moments and K continuous derivatives. Let φjk(t) = 2j/2φ(2jt −
k), ψjk(t) = 2j/2ψ(2jt−k). The collection {φj0k, k = 1, . . . , 2j0 ; ψjk, j ≥ j0, k =
1, . . . , 2j} with appropriate treatments at the boundaries is then an orthonormal
basis of L2[0, 1], provided the primary resolution level j0 is large enough to ensure
that the support of the scaling functions and wavelets at level j0 is not the whole
of [0, 1]. See Cohen, Daubechies, Jawerth and Vial (1993), Daubechies (1994)
and Meyer (1991) for further details on wavelet bases on the unit interval [0, 1].
For wavelets on the line, see Daubechies (1992) and Meyer (1992).

For a function f : [0, 1] → IR, denote ξjk =
∫ 1
0 f(t)φjk(t) dt and θjk =∫ 1

0 f(t)ψjk(t) dt. Define the sequence norm of wavelet coefficients of f by

‖f‖bα
p,q

= ‖ξj0,k‖�p +


 ∞∑

j=j0


2js

(∑
k

|θj,k|p
)1/p




q


1/q

, (2)

where s = α+1/2−1/p. The standard modification applies for the cases p, q = ∞.
Suppose the wavelet ψ is K-regular with K > α. Let 1 ≤ p ≤ ∞. Then

the Besov function norm defined in (1) is equivalent to the Besov sequence norm
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(2) for every f ∈ Lp[0, 1]. The equivalence means that there exist constants
c∗ ≥ c∗ > 0 independent of f and such that c∗ ≤ ‖f‖Bα

p,q
/‖f‖bα

p,q
≤ c∗. See Meyer

(1992) and DeVore and Popov (1988).

3. Minimax Rate under Pointwise �r Risk

Consider the white noise model in which we observe Gaussian processes Yn(t)
governed by

dYn(t) = f(t)dt + n−1/2dW (t), 0 ≤ t ≤ 1, (3)

where W (t) is a standard Brownian motion and f is an unknown function of
interest. The white noise model is asymptotically equivalent to the conventional
formulation of nonparametric regression. See Brown and Low (1996a), Brown,
Cai, Low and Zhang (2002). The white noise model is also equivalent to non-
parametric density estimation. See Nussbaum (1996), Klemelä and Nussbaum
(1999) and Brown, Low and Zhang (2000).

Although f is unknown in detail, we assume in this section that f belongs
to a known Besov class Bα

p,q(M). We wish to estimate f under the pointwise �r

risk
Rr(f̂ , f, t0) = Ef |f̂(t0) − f(t0)|r, (4)

where t0 ∈ (0, 1) is any fixed point and 1 ≤ r <∞.
The difficulty of the estimation problem is measured by the minimax risk

R∗
r(B

α
p,q(M); t0, n) = inf

f̂n

sup
f∈Bα

p,q(M)
Ef |f̂n(t0) − f(t0)|r. (5)

We wish to determine the rate of convergence of the minimax risk as n→ ∞.
The minimax risk over a fixed Besov class has been studied by Donoho and

Johnstone (1998) when the risk measure is the global mean integrated squared er-
ror (MISE). Donoho and Johnstone (1998) show that the minimax MISE risk over
a Besov class Bα

p,q(M) is of the order n−2α/(1+2α), i.e., inf f̂n
supf∈Bα

p,q(M)E‖f̂n −
f‖2

2 � n−
2α

1+2α , n → ∞. In particular, the global minimax rate is determined
solely by the smoothness index α and does not depend on the other two param-
eters p and q of the Besov class, provided that α > 1/p.

As we show below, the pointwise risk behaves differently from the global risk.
The pointwise minimax risk depends on two smoothness parameters of the Besov
class, α and p, and it converges at a rate slower than the corresponding global
rate. Also pointwise rate-optimal estimators have some interesting properties.
See Theorem 2 below.

The minimax convergence rate under the pointwise risk (4) is derived in two
steps. First we establish the lower bounds for the minimax risk. We denote by
ν = α− 1/p and assume ν > 0 and 1 ≤ p ≤ ∞ in the rest of the paper.
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Theorem 1.(Lower Bound) The minimax risk of estimating f over the Besov
class Bα

p,q(M) under the �r risk (4) is bounded below by R∗
r(Bα

p,q(M); t0, n) ≥
Cn−rν/(1+2ν) for some fixed constant C > 0. Equivalently, for any estimator f̂n

and any Bn → ∞,

lim
n→∞n

rν
1+2νBn sup

f∈Bα
p,q(M)

Ef |f̂n(t0) − f(t0)|r = ∞. (6)

Theorem 1 states that the minimax risk converges no faster than n−
rν

1+2ν .
We obtain this minimax lower bound by using a different approach from more
conventional methods. The main tool we use is a general constrained �r-risk
inequality which is also used to study the adaptability problem.

Second, we show that the lower bound given in Theorem 1 can be attained.
In fact, as given in the proof, the lower bound on the rate of convergence can be
attained by a simple wavelet projection estimator.

Theorem 2.(Upper Bound) There exist estimators f̂n of f attaining the conver-
gence rate of nrν/(1+2ν) over the Besov class Bα

p,q(M), i.e.,

lim
n→∞n

rν
1+2ν sup

f∈Bα
p,q(M)

Ef |f̂n(t0) − f(t0)|r <∞. (7)

Furthermore, for any estimator f̂n satisfying (7), the estimator must also satisfy

lim
n→∞

n
rν

1+2νEf |f̂n(t0) − f(t0)|r > 0 (8)

for any fixed f ∈ Bα
p,q(M).

The minimax rate of convergence is established by combining Theorems 1
and 2.

Corollary 1. The minimax rate of convergence of estimating f over the Besov
class Bα

p,q(M) under the �r risk (4) is nrν/(1+2ν). That is,

0 < lim
n→∞

n
rν

1+2νR∗
r(B

α
p,q(M); t0, n) ≤ lim

n→∞n
rν

1+2νR∗
r(B

α
p,q(M); t0, n) <∞.

Unlike the minimax rate under MISE risk, the minimax rate under point-
wise risk not only depends on the smoothness index α, but also depends on the
parameter p.

Remark. The second part of Theorem 2 says that any rate-optimal estimator
must attain the same rate at every f in the parameter space. In other words, the
rate of convergence has to be “flat” over Bα

p,q(M). In contrast, under the global
MISE risk, rate-optimal estimators over Bα

p,q(M) can achieve a much faster rate at
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some parameter points. Indeed, it is possible to have estimators which converge
at a rate faster than the minimax rate at every fixed function in Bα

p,q(M), see
Cai (2000) and Zhang (2000). See also Brown, Low and Zhao (1997).

4. Adaptation

Adaptive estimation has become an important part of nonparametric func-
tion estimation problems. Adaptation to unknown smoothness is essential be-
cause the smoothness parameters of the underlying functions are unknown in
virtually all practical situations.

We consider in this section the adaptability problem in estimating f under
pointwise risk over a wide range of Besov classes Bα

p,q(M). Let F = {Bα
p,q(M) :

(α, p, q,M) ∈ Σ} be a collection of Besov classes, where Σ is some index set.
The adaptability problem concerns whether it is possible to find an estimator
sequence f̂n to attain the optimal convergence rate simultaneously over every
Bα

p,q(M) ∈ F :

lim
n→∞n

rν
1+2ν sup

f∈Bα
p,q(M)

Rr(f̂n, f, t0) <∞, for all (α, p, q,M) ∈ Σ.

If such an estimator exists, we say that adaptation for free is possible. When
this is impossible, it is of interest to know the minimum cost for adaptation.
Adaptability over Besov classes has been considered in Cai (2000) under global
MISE risk. Once again, the behaviors of the estimators under global risk and
pointwise risk are quite different. We consider two cases.

4.1. When adaptation for free is possible

We first consider the case in which α−1/p are the same for all Bα
p,q(M) ∈ F .

Let Fν = {Bα
p,q(M) : α−1/p = ν} be a collection of Besov classes with the same

value of α− 1/p = ν and thus the same minimax convergence rates. In this case
adaptation for free is possible.

Theorem 3. There exists an estimator f̂n of f attaining the convergence rate of
nrν/(1+2ν) over every Besov class Bα

p,q(M) ∈ Fν under the pointwise �r risk (4):

lim
n→∞n

rν
1+2ν sup

f∈Bα
p,q(M)

Ef |f̂n(t0) − f(t0)|r <∞ for all Bα
p,q(M) ∈ Fν . (9)

Remark. The minimax convergence rates over all Besov classes in Fν are the
same and Theorem 3 shows that in this case the exact minimax rate can be at-
tained adaptively over each of the Besov classes in Fν . However, for a general
collection of parameter spaces with the same minimax convergence rate, adap-
tation for free is not always possible. There exist function classes with the same
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minimax rate over which adaptation for free is not possible. See Cai and Low
(2002).

4.2. When adaptation for free is impossible

The more interesting and more general case is that there are some Besov
classes in F with different values of α − 1/p. We begin by considering the sim-
plest case: the collection F consists of only two Besov classes Bα1

p1,q1
(M1) and

Bα2
p2,q2

(M2) with ν1 �= ν2, where νi ≡ αi − 1/pi for i = 1, 2. We wish to know if
it is possible to have an estimator fn such that

max
i=1,2

lim
n→∞n

rνi
1+2νi sup

f∈B
αi
pi,qi

(Mi)

Rr(f̂n, f, t0) <∞.

It is not difficult to see that in this case the second part of Theorem 2 implies that
adaptation for free is impossible, since the two parameter spaces have nonempty
intersection, Bα1

p1,q1
(M1) ∩ Bα2

p2,q2
(M2) �= ∅. Therefore, one must pay a price for

not knowing the smoothness of the underlying function classes even in the simple
case that the parameter space is one of only two possible Besov classes. Now the
question is: what is the minimum cost for adaptation?

Theorem 4. Let Bn → ∞, n/ logBn → ∞ and let f̂n be an estimator sequence
of f based on (3). If f0 is a function in Bα

p,q(M ′) with M ′ < M satisfying

lim
n→∞n

rν
1+2νBnEf0 |f̂n(t0) − f0(t0)|r <∞, (10)

lim
n→∞

(
n

logBn

) rν
1+2ν

sup
f∈Bα

p,q(M)
Ef |f̂n(t0) − f(t0)|r > 0. (11)

Theorem 4 shows that even if an estimator f̂n is superefficient at only one
function f0 in the interior of Bα

p,q(M), i.e., the risk of f̂n converges faster than
the minimax rate at f0(t0), then it must pay a penalty of not being rate optimal
over Bα

p,q(M).
The following is an immediate consequence of Theorem 4.

Corollary 2. Consider two Besov classes Bαi
pi,qi

(Mi) with νi ≡ αi − 1/pi for
i = 1, 2. Let ν1 > ν2 > 0. If an estimator f̂n attains a rate of nρ over Bα1

p1,q1
(M1)

with ρ > rν2/(1 + 2ν2), in particular, if f̂n is rate-optimal over Bα1
p1,q1

(M1), then

lim
n→∞

(
n

log n

) rν2
1+2ν2 sup

f∈B
α2
p2,q2

(M2)

Ef |f̂n(t0) − f(t0)|r > 0.

Therefore the minimum cost for adaptation is at least a logarithmic factor.
In the case of the Lipschitz and Sobolev classes under �2 risk, this problem has
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been considered by Lepski (1990), Brown and Low (1996b), Lepski and Spokoiny
(1997) and Tsybakov (1998). It is not surprising that our result agrees with the
results found in Lepski (1990) and Brown and Low (1996b), because both the
risk measure and the function classes in those two papers are special cases of
what we consider here.

Can the rate (n/ log n)rν/(1+2ν) be adaptively attained? The answer to this
question is yes and we will call this rate the adaptive minimax rate for estimating
f over Bα

p,q(M) under the pointwise �r risk.

4.3. Adaptation with minimum cost

Using an orthonormal wavelet basis, the function f can be expanded into a
wavelet series

f(t) =
2j0∑
k=1

ξj0kφj0k(t) +
∞∑

j=j0

2j∑
k=1

θjkψjk(t) (12)

with ξj0,k =
∫ 1
0 f(t)φj0,k(t) dt and θj,k =

∫ 1
0 f(t)ψj,k(t) dt.

Let yj,k =
∫
ψj,k(t) dYn(t) and zj,k =

∫
ψj,k(t) dW (t), and define ỹj0,k and

z̃j0,k similarly. The white noise model (3) is equivalent to a sequence model in
which one observes an empirical wavelet coefficient sequence:

ỹj0,k = ξj0,k + n−1/2z̃j0,k, k = 1, 2, . . . , 2j0 , (13)

yj,k = θj,k + n−1/2zj,k, k = 1, 2, . . . , 2j , j ≥ j0, (14)

where z̃j0,k and zj,k are i.i.d. N(0, 1).
Let J be an integer satisfying n ≤ 2J < 2n. We apply the soft threshold rule

to the empirical wavelet coefficients yj,k for j < J , to obtain estimated coefficients
θ̂j,k. Denote the soft threshold rule by

ηβ(y) = sgn(y)(|y| − β)+. (15)

Define the estimators of the coefficients by

ξ̂j0,k = ỹj0,k, k = 1, 2, . . . , 2j0 ,

θ̂j,k = ηλσ(yj,k), k = 1, 2, . . . , 2j , j0 ≤ j < J,

θ̂j,k = 0 j ≥ J,

(16)

where λ = (r log n)1/2 and σ = n−1/2. The estimator of f is given by

f̂n(t) =
2j0∑
k=1

ξ̂j0kφj0k(t) +
J−1∑
j=j0

2j∑
k=1

θ̂jkψjk(t). (17)
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Note that when r = 2 the estimator (16) is the usual soft threshold estimator
of Donoho and Johnstone (1994). The wavelet estimator constructed in (17)
achieves adaptation with the minimum cost in the sense that it attains the lower
bound on the cost of adaptation given in Theorem 4.

Theorem 5. Let f̂n be the wavelet estimator of f given in (17). Suppose the
wavelet ψ isK-regular. Then the estimator f̂n simultaneously attains the adaptive
convergence rate under the pointwise risk (4) for all Bα

p,q(M) with α < K, ν ≡
α− 1/p > 0, 1 ≤ p ≤ ∞, 0 < q ≤ ∞, and M > 0. That is,

lim
n→∞

(
n

log n

) rν
1+2ν

sup
f∈Bα

p,q(M)
Ef |f̂n(t0) − f(t0)|r <∞. (18)

Remark. Suppose we consider a range of Besov classes Bα
p,q(M) with 0 < ν ≤ ν∗.

Then Theorem 4 and Corollary 2 do not exclude the possibility of having an
estimator adaptively attaining the rate of (n/ log n)rν/(1+2ν) for ν < ν∗ and the
exact minimax rate nrν∗/(1+2ν∗) for ν = ν∗. In fact, this is can be achieved by
the wavelet estimator given in (16) and (17) with the lowest resolution level j0
depending on n and satisfying 2j0 � n1/(1+2ν∗). Then, in view of Theorem 4
and Corollary 2, this is the best possible adaptive estimator at the level of the
convergence rate.

5. Estimating Derivatives

The approach used in the preceding sections can also be applied to other
function estimation problems. In this section we consider the problem of esti-
mating the derivatives of f under pointwise risk measures.

The problem of estimating the first derivative f ′ over Besov classes under the
global MISE, and other related inverse problems, has been considered in, e.g.,
Donoho (1995), Abramovich and Silverman (1998) and Cai (2002). In particular,
Donoho (1995) showed that the minimax convergence rate of estimating f ′ under
MISE is n2(α−1)/(1+2α) when α+ 1/2 − 3/p > 0.

Suppose we observe the Gaussian process (3) and we wish to estimate the
mth derivative of f , h = f (m), under the pointwise risk

Rr(ĥn, f
(m), t0) = Ef |ĥn(t0) − f (m)(t0)|r. (19)

Again, t0 ∈ (0, 1) is any fixed point and 1 ≤ r <∞.
The minimax risk is defined in a similar way:

R∗
r(B

α
p,q(M),m; t0, n) = inf

ĥn

sup
f∈Bα

p,q(M)
Ef |ĥn(t0) − f (m)(t0)|r. (20)
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The results on estimating f (m) under the pointwise �r risk parallel those on
estimating f and are summarized as follows.

Theorem 6.
(i) The minimax rate of convergence of estimating f (m) over the Besov class

Bα
p,q(M) with ν ≡ α − 1/p > m under the pointwise �r risk (19) is n

r(ν−m)
1+2ν ,

i.e.,

0< lim
n→∞

n
r(ν−m)
1+2ν R∗

r(B
α
p,q(M),m; t0, n)≤ lim

n→∞n
r(ν−m)
1+2ν R∗

r(B
α
p,q(M),m; n)<∞.

(21)
(ii) If ĥn is a rate-optimal estimator of f (m), then for any fixed f ∈ Bα

p,q(M),

lim
n→∞

n
r(ν−m)
1+2ν Ef |ĥn(t0) − f (m)(t0)|r > 0. (22)

That is, a rate-optimal estimator must attain the “flat rate” at every f ∈
Bα

p,q(M).

(iii)The adaptive minimax rate of convergence is (n/ log n)
r(ν−m)
1+2ν . This rate

can be attained adaptively by the soft threshold wavelet estimator given in
(16)−(17) with threshold λ = (r(2m+ 1) log n)1/2.

6. General �r Risk Oracle Inequalities

Oracle inequalities have been an effective tool in the study of asymptotic
properties of wavelet estimators. See, e.g., Donoho and Johnstone (1994), Cai
(1999), Antoniadis and Fan (2001) and Johnstone (1998). However, most of the
results in the literature are restricted to the standard case of mean squared error
and Gaussian noise. The results are not applicable to our problems.

In this section we first present a general �r-risk oracle inequality for arbitrary
error distributions. This general inequality can be of independent interest. It is
derived using the approach of optimal recovery. In the special case of Gaussian
noise, the �r risk oracle inequality serves as a main tool for the proofs of Theorems
5 and 6.

Theorem 7.(�r Risk Oracle Inequality) Let zi be random variables with mean 0
and standard deviation 1, and let

yi = θi + σzi for i = 1, . . . , n. (23)

Let θ̂i = ηλσ(yi) = sgn(yi)(|yi| − λσ)+ be a soft threshold estimator of θi. Then
for any 1 ≤ r <∞,

E|θ̂i − θi|r ≤ min(|θi|r, 2rλrσr) + 2rσrE|zi|rI(|zi| > λ), (24)
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E
n∑

i=1

|θ̂i − θi|r ≤
n∑

i=1

{min(|θi|r, 2rλrσr) + 2rσrE|zi|rI(|zi| > λ)} . (25)

In the “oracular” form,

E
n∑

i=1

|θ̂i − θi|r ≤ 2rλr
n∑

i=1

min(|θi|r, σr) + 2rσr
n∑

i=1

E|zi|rI(|zi| > λ). (26)

The first term in (26) involves the optimal tradeoff between the signal (“bias”)
and noise (“variance”), and the second term is the risk bound for the case when
all θi are zero. For most applications, the thresholding constant λ is appropriately
chosen so the second term in (26) is sufficiently small. The oracle inequality turns
the problem of bounding the �r risk into the problem of calculating the rth tail
moment of the error distributions, which is often straightforward.

As an important special case, we consider below the case of Gaussian noise.
Denote by [r] the integer part of r.

Corollary 3. Suppose in (23) zi ∼ N(0, 1) for all i and suppose λ = (r(2m +
1) log n)1/2 for some m ≥ 0, then

E|θ̂i−θi|r≤min{|θi|r, 2r(r(2m+1))r/2(log n)r/2σr}+H(n, r)n−
r
2
(2m+1)σr, (27)

E
n∑

i=1

|θ̂i−θi|r ≤
n∑

i=1

min{|θi|r, 2r(r(2m+ 1))r/2(log n)r/2σr}

+H(n, r)n−
r
2
(2m+1)+1σr, (28)

where H(n, r), given in (44), is a polynomial of (log n)1/2 of degree [r] and so
H(n, r) ≤ C(r) · (log n)[r]/2 for some constant C(r) > 0.

In particular, when λ = (r log n)1/2, i.e., m = 0,

E
n∑

i=1

|θ̂i − θi|r ≤
n∑

i=1

min{|θi|r, (4r)r/2(log n)r/2σr} +H(n, r)n−
r
2
+1σr. (29)

Remark. The inequality (29) extends the oracle inequality for the �2 risk given
in Donoho and Johnstone (1994) to the general �r risk for 1 ≤ r <∞.

7. Proofs

We prove the results in the order of Theorems 4, 1, 2, 3, 7, 5 and 6. Through-
out this section, C is a generic positive constant which may vary from place to
place. We first collect some necessary tools.

7.1. Preparatory results

For Theorems 4 and 6, we need a result on the Besov norm.
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Lemma 1. Let the Besov norm be defined as in (1) with some fixed K > α.
Suppose g ∈ Bα

p,q(IR) is a compactly supported function. Let f(t) = ag(bt) with
a > 0 and b > 1. Suppose f is supported on [0, 1]. Then

‖f‖Bα
p,q([0,1]) ≤ abα−1/p‖g‖Bα

p,q(IR). (30)

Proof. We prove the case of p <∞ and q <∞, other cases are similar.
It is easy to see that ‖f‖p = ab−1/p‖g‖p and

ωK,p(f, h) = (
∫ 1−Kh

0
|

K∑
k=0

(−1)kf(t+ kh)|p dt)1/p

= a(
∫ 1−Kh

0
|

K∑
k=0

(−1)kg(bt+ kbh)|p dt)1/p

≤ ab−1/p(
∫ ∞

0
|

K∑
k=0

(−1)kg(t+ kbh)|p dt)1/p

= ab−1/pωK,p(g, bh).

Hence,

‖f‖Bα
p,q([0,1]) = ‖f‖Lp +

(∫ 1

0
[h−αωK,p(f, h)]q

dh

h

)1/q

≤ ab−1/p‖g‖p + ab−1/p
(∫ 1

0
[h−αωK,p(g, bh)]q

dh

h

)1/q

≤ ab−1/p‖g‖p + abα−1/p
(∫ ∞

0
[t−αωK,p(g, t)]q

dt

t

)1/q

≤ abα−1/p‖g‖Bα
p,q(IR).

A main tool for the proof of Theorems 4 and 6 is a constrained risk inequality
stated below. The risk inequality is a generalization to �r risk of an inequality
introduced in Brown and Low (1996b) under mean squared error. A further gen-
eralization and its applications are presented in Cai, Low and Zhao (2001). The
constrained risk inequality gives a lower bound for the �r risk at one parameter
value subject to having a small risk at another parameter value. This type of
constrained risk inequality is a useful technical tool for providing lower bounds
for the cost of adaptation.

Let X be a random variable having either distribution Pθ0 with density fθ0

or distribution Pθ1 with density fθ1, with respect to some dominating measure.
For any estimator δ based on X its �r risk is defined by Rr(δ, θ) = Eθ|δ(X)− θ|r.
Denote by κ(x) = fθ1(x)/fθ0(x) the ratio of the two density functions. (κ(x) = ∞
for some x is possible, with the obvious interpretation κ(x)fθ0(x) = fθ1(x).)
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For 1 ≤ r < ∞, denote by r∗ the value satisfying 1/r + 1/r∗ = 1. Let
Ir∗ = Ir∗(θ0, θ1) = (Eθ0κ

r∗(X))1/r∗ with obvious change for r∗ = ∞. The
quantity Ir∗ is a measure of distance between the two distributions Pθ0 and Pθ1 .

Lemma 2. Suppose Rr(δ, θ0) ≤ εrr. Denote ∆ = |θ1 − θ0|.
(i) If r > 1 and ∆ > εrIr∗, then Rr(δ, θ1) ≥ (∆ − εrIr∗)r ≥ ∆r(1 − rεrIr∗/∆).
(ii) Let r = 1 and suppose there exists a measurable set Λ0 such that ω ≡

Pθ1(Λ0) > 0 and Ĩ∞ ≡ ‖κ(x) I(x ∈ Λ0)‖∞ < ∞, where the supnorm is
taken with respect to Pθ0 . Suppose ∆ = |θ1− θ0| > ε1Ĩ∞/ω, then R1(δ, θ1) ≥
ω∆(1 − (ε1Ĩ∞/ω∆)).

Sketch of Proof. A more general version of this result, together with its proof,
is presented in Cai, Low and Zhao (2001). For completeness, we give an outline
of the proof of Lemma 2 for the case r > 1 here.

Jensen’s inequality and the triangle inequality yield (Rr(δ, θ1))
1/r ≥ |θ1 −

θ0|−|Eθ1(δ(X)−θ0)|. It then follows from Hölder’s inequality and the assumption
Rr(δ, θ0) ≤ εrr that |Eθ1(δ(X) − θ0)| ≤ (Eθ0 |δ(X) − θ0|r)1/r(Eθ0κ

r∗(X))1/r∗ ≤
εrIr∗ and so Rr(δ, θ1) ≥ (∆ − εrIr∗)r.

7.2. Proof of the main results

Proof of Theorem 4. We first outline the main ideas. The constrained risk
inequality given in Lemma 2 implies that if an estimator has a small �r risk εrr at
one parameter value θ0 and |θ1 − θ0| 
 εrIr∗ then its risk at the other parameter
value θ1 must be “large”. Now the assumption (10) means that the estimator
f̂n(t0) has a small risk at θ0 = f0(t0). If we can construct a sequence of functions
fn ∈ Bα

p,q(M) such that fn is “close” to f0 in the sense that ‖fn −f0‖2
2 is “small”

(so that Ir∗ is small) and at the same time ∆ = |fn(t0) − f0(t0)| is “large”, then
it follows from the constrained risk inequality that f̂n(t0) must have a “large”
risk at θ1 = fn(t0). So the first step of the proof is a construction for such a
sequence of functions fn.

We divide the proof into two cases: r > 1 and r = 1.

Case (i).(r > 1) Let g be a compactly supported function satisfying g(0) > 0,
‖g‖2

2 > 0 and g ∈ Bα
p,q(M − M ′). Such a function is easy to construct either

directly or by using wavelets.
Denote by b = 2(1 − 1/r)‖g‖−2

2 and let γn = (n/(b logBn))ν/(1+2ν) and
βn = (n/(b logBn))1/(1+2ν). Then γ2

nβn = n/b logBn and γ−1
n βν

n = 1. Let

fn(t) = γ−1
n g(βn(t− t0)) + f0(t). (31)

We show that fn has the desired properties. It follows from Lemma 1 that
fn ∈ Bα

p,q(M) since ‖fn‖Bα
p,q

≤ γ−1
n βν

n‖g‖Bα
p,q

+ ‖f0‖Bα
p,q

≤ M. Note also that
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for sufficiently large n, say n ≥ N1, ρn = n‖fn − f0‖2
2 = nγ−2

n β−1
n ‖g‖2

2 = 2(1 −
1/r) logBn and |fn(t0) − f0(t0)| = γ−1

n g(0) = g(0)(b logBn/n)ν/(1+2ν).

Write Pn
0 and Pn

1 for the probability measure associated with the white noise
with drift process (3) with f = f0 and f = fn, respectively. Then a sufficient
statistic for the family of measures {Pn

0 , P
n
1 } is given by Tn = log(dPn

1 /dP
n
0 ).

Note that for n ≥ N1

Tn ∼
{
N( − ρn/2, ρn) under Pn

0

N(ρn/2, ρn) under Pn
1 ,

see, for example, Brown and Low (1996b). Let δn = f̂n(t0), θ0 = f0(t0) and
θ1 = fn(t0). It follows from the assumption (10) of the theorem that there exist
constants C, N2 > 0 such that for all n ≥ N2, Eθ0|δn − θ0|r ≤ Cn−rν/(1+2ν) B−1

n .

Let δ∗n = E(δn|Tn). Since Tn is sufficient for {Pn
0 , P

n
1 }, it follows from the

Rao-Blackwell Theorem that for i = 0, 1, Eθi
|δ∗n − θi|r ≤ Eθi

|δn − θi|r. Hence
Eθ0|δ∗n − θ0|r ≤ Cn−rν/(1+2ν) B−1

n . We now apply Lemma 2(i) with θ0 = f0(t0),
θ1 = fn(t0), fθ0 the density of Tn under Pn

0 and fθ1 the density of Tn under Pn
1 .

Noting that (r− 1)(r∗ − 1) = 1, we have, for n ≥ N1, Ir∗(θ0, θ1) = eρn·(r∗−1)/2 =
e2(1−1/r) log Bn·(r∗−1)/2 = B

1/r
n . Lemma 2 now yields for n ≥ max(N1, N2),

Eθ1 |δ∗n − θ1|r ≥
(
g(0)
γn

)r (
1 − rC

1
rn−

ν
1+2ν B

− 1
r

n ·B
1
r
n · (g(0))−1γn

)

= (bg(0))
rν

1+2ν

(
logBn

n

) rν
1+2ν (

1 − rC
1
r (g(0))−1(b logBn)−

ν
1+2ν

)

= (bg(0))
rν

1+2ν

(
logBn

n

) rν
1+2ν

(1 + o(1)).

Hence, Eθ1 |δn − θ1|r ≥ Eθ1 |δ∗n − θ1|r ≥ (bg(0))
rν

1+2ν (logBn/n)
rν

1+2ν (1 + o(1)).

Case (ii).(r = 1) In this case, let fn(t) = γ−1
n g(βn(t−t0))+f0(t) with the function

g same as in Case (i) and γn = (n/logBn)ν/(1+2ν) and βn = (n/logBn)1/(1+2ν).

Then f ∈ Bα
p,q(M) and ρn = n‖fn − f0‖2

2 = logBn. Noting again that Tn

is sufficient for {Pn
0 , P

n
1 }, we may apply Lemma 2(ii) here. Using the same

notation as in Lemma 2(ii), κ(x) = ex. Let Λ0 = {Tn ≤ ρn}, then ω = Pθ1(Λ0) =
Pθ1(Tn ≤ ρn) = Φ(ρ1/2

n /2) ≥ 1/2, and Ĩ∞ = ‖κ(Tn)I(Tn ≤ ρn)‖∞ = eρn = Bn. It
follows from the assumption (10) in the theorem with r = 1 that Eθ0 |δn − θ0| ≤
Cn−ν/(1+2ν) B−1

n . Noting that |θ1 − θ0| = g(0)γ−1
n , Lemma 2(ii) now yields

Eθ1 |δn − θ1| ≥ 1
2
g(0)γ−1

n

(
1 − Cn−

ν
1+2νB−1

n ·Bn
1
2g(0)γ

−1
n

)

=
1
2
g(0)

(
logBn

n

) ν
1+2ν

(1 + o(1)).



896 T. TONY CAI

The theorem is proved.

Proof of Theorem 1. Theorem 1 follows directly from Theorem 4. Suppose
(6) does not hold for some estimator f̂n and some sequence Bn → ∞. Then

lim
n→∞n

rν
1+2νBn sup

f∈Bα
p,q(M)

Ef |f̂n(t0) − f(t0)|r <∞. (32)

Then for any f0 ∈ Bα
p,q(M), limn→∞ n

rν
1+2νBnEf0 |f̂n(t0)−f0(t0)|r <∞. Theorem

4 yields that limn→∞(n/ logBn)
rν

1+2ν supf∈Bα
p,q(M)Ef |f̂n(t0) − f(t0)|r > 0, and

thus limn→∞ n
rν

1+2ν supf∈Bα
p,q(M)Ef |f̂n(t0) − f(t0)|r = ∞, which contradicts the

assumption made in (32).

Proof of Theorem 2. The convergence rate of nrν/(1+2ν) can be attained by a
linear wavelet estimator. Let {φ, ψ} be a pair of compactly supported wavelets
generating an orthonormal basis in L2[0, 1]. Let ψ be K-regular with K > α, and
let ỹj0,k and yj,k be the empirical wavelet coefficients as given in (13) and (14).
Denote by J1 the largest integer satisfying 2J1 ≤ n1/(1+2ν) and let the estimator
of f be

f̂n(t) =
2j0∑
k=1

ỹj0kφj0k(t) +
J1−1∑
j=j0

2j∑
k=1

yjkψjk(t). (33)

For simplicity, assume the lowest level j0 is chosen so that all the boundary
wavelets are vanishing at t0. This can be easily accomplished for any fixed
t0 ∈ (0, 1). See, e.g., Cohen, Daubechies, Jawerth and vial (1993).

We now show that this estimator is rate-optimal over Bα
p,q(M). Applying

the elementary inequality

E|
n∑

i=1

Xi|r ≤ (
n∑

i=1

(E|Xi|r)1/r)r, (34)

where Xi are random variables, we have

Ef |f̂n(t0)−f(t0)|r = E

∣∣∣∣∣∣
2j0∑
k=1

(ξ̂j0k−ξj0k)φj0k(t0)+
∞∑

j=j0

2j∑
k=1

(θ̂jk − θjk)ψjk(t0)

∣∣∣∣∣∣
r

≤

 2j0∑

k=1

|φj0k(t0)|(E|ỹj0k − ξj0k|r)
1
r +

J1−1∑
j=j0

2j∑
k=1

|ψjk(t0)|(E|yjk − θjk|r)
1
r

+
∞∑

j=J1

2j∑
k=1

|θjkψjk(t0)|



r

≡ (Q1 +Q2 +Q3)r.
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It is easy to see that

Q1 =
2j0∑
k=1

|φj0k(t0)|(E|ỹj0k − ξj0k|r)1/r = O(n−1/2). (35)

Since the wavelets are compactly supported, say on [−L/2, L/2], there are at
most L basis functions ψjk at each resolution level j that are nonvanishing at
t0. Let Kj(t0) = {k : ψj,k(t0) �= 0}. Then Card(Kj(t0)) ≤ L. For f ∈ Bα

p,q(M),
using the wavelet sequence norm (2), we have |θj,k| ≤ M∗2−j(α+1/2−1/p) for all
(j, k), with some constant M∗ > 0 not depending on f . Hence

Q3 =
∞∑

j=J1

∑
k∈Kj(t0)

|θjkψjk(t0)|≤
∞∑

j=J1

L‖ψ‖∞2j/2M∗2−j(α+1/2−1/p) =Cn−ν/(1+2ν).

(36)
Let br = E|Z|r where Z ∼ N(0, 1). Then E|yjk − θjk|r = n−r/2br. So,

Q2 =
J−1∑
j=j0

∑
k∈Kj(t0)

2j/2‖ψ‖∞(E|yjk − θjk|r)1/r ≤ C
J1−1∑
j=j0

2j/2n−1/2 = Cn−ν/(1+2ν).

(37)
Combining (35), (36) and (37), we have Ef |f̂n(t0) − f(t0)|r ≤ Cn−rν/(1+2ν).

Proof of Theorem 3. The estimator given in (33) depends on the smoothness
index (α, p, q) only through ν = α− 1/p. So the estimator attains the optimal
rate simultaneously over all Bα

p,q(M) with a fixed value of α− 1/p = ν.

Proof of Theorem 7. It suffices to consider the univariate case in which one
observes y = θ + σz and wishes to estimate θ under the risk Eθ|δ(y) − θ|r.

To derive the oracle inequality we first consider an optimal recovery problem.
Suppose

y = θ + β · u, (38)

where u is deterministic and |u| ≤ 1. We wish to estimate θ with small �r error.

Lemma 3. Suppose y is observed as in (38). Let θ̂ = ηβ(y) = sgn(y)(|y| − β)+.
Then for r ≥ 1,

sup
|u|≤1

|θ̂ − θ|r ≤ min(|θ|r, 2rβr). (39)

Proof. It is easy to see that θ̂ has the same sign as θ and |θ̂| ≤ |θ|. We first
show that

sup
|u|≤1

|θ̂ − θ|r ≤ |θ|r. (40)

When θ̂ = 0, (40) holds trivially. When θ̂ �= 0, since θ̂ and θ have the same sign
and |θ̂| ≤ |θ|, |θ̂−θ|r ≤ (|θ|−|θ̂|)r ≤ |θ|r. Rewriting θ̂ as θ̂ = y−sgn(y)·min(β, |y|),
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we have |θ̂−y| ≤ β. So, applying the elementary inequality |a+b|r ≤ 2r/r∗(|a|r +
|b|r), we have for r > 1,

|θ̂ − θ|r ≤ 2r/r∗(|θ̂ − y|r + |y − θ|r) ≤ 2rβr. (41)

For r = 1, the triangle inequality yields |θ̂ − θ| ≤ |θ̂ − y| + |y − θ| ≤ 2β.
We now use Lemma 3 to prove Theorem 7. First separate the risk into two

parts:

Eθ|ηλσ(y) − θ|r = Eθ|ηλσ(y) − θ|rI(|z| ≤ λ) + Eθ|ηλσ(y) − θ|rI(|z| > λ).

We use Lemma 3 to bound the first term. Write y = θ + σz = θ + λσz1 with
z1 = z/λ. Then |z| ≤ λ is equivalent to |z1| ≤ 1 and so Lemma 3 yields that

Eθ|ηλσ(y) − θ|rI(|z| ≤ λ) ≤ sup
|z1|≤1

|ηλσ(y) − θ|r ≤ min(|θ|r, 2rλrσr). (42)

For the second term, applying the inequality |a + b|r ≤ 2r/r∗(|a|r + |b|r) and
noting that |ηλσ(y) − y| ≤ λσ we have, for r > 1,

Eθ|ηλσ(y) − θ|rI(|z| > λ) ≤ 2r/r∗Eθ{(|ηλσ(y) − y|r + |y − θ|r)I(|z| > λ)}
≤ 2r/r∗{λrσrP (|z| > λ) + σrE|z|rI(|z| > λ)}
≤ 2rσrE|z|rI(|z| > λ). (43)

The case of r = 1 can be verified in a similar way. The inequality (25) follows by
combining (42) and (43).

When the distribution of z is given, E|z|rI(|z| > λ) can be evaluated explic-
itly. Suppose z ∼ N(0, 1). Let λ ≥ 1, then

E|z|rI(|z| > λ) = 2EzrI(z > λ) =
(

2
π

) 1
2

σr
∫ ∞

λ
xre−

x2

2 dx

≤
(

2
π

) 1
2

σr
∫ ∞

λ
x[r]+1e−

x2

2 dx.

Integration by parts yields, for odd k,∫ ∞

λ
xke−

x2

2 dx = {λk−1 + (k − 1)λk−3 + · · · + (k − 1)(k − 3) · · · 2} · e−λ2/2,

and for even k,∫ ∞

λ
xke−

x2

2 dx= {λk−1 + (k − 1)λk−3 + · · · + (k − 1)(k − 3) · · · 3λ} · e−λ2/2

+(k − 1)(k − 3) · · · 1
∫ ∞

λ
e−

x2

2 dx

≤ {λk−1 + (k − 1)λk−3 + · · · + (k − 1)(k − 3) · · · 3λ+ 1} · e−λ2/2.
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Let

H(λ, r)=




2r+1/2π−1/2{λ[r]+[r]λ[r]−2+· · ·+[r] · ([r]−2) · · · 2} if [r] is even,

2r+1/2π−1/2{λ[r]+[r]λ[r]−2+· · ·+[r] · ([r]−2) · · · 3λ+1} if [r] is odd.
(44)

It is easy to see that with λ=(r(2m+1) log n)1/2, one hasH(n, r)≤C(r)(log n)[r]/2

for some constant C(r)>0, and Eθ|ηλ(y)−θ|r≤min(|θ|r, 2rλrσr)+C(r)(log n)[r]/2

n−
r
2
(2m+1)σr.

Proof of Theorem 5. The proof is similar to that of Theorem 2. Let f̂ be
given as in (16)-(17) with λ = (r log n)1/2. Again, for simplicity, we assume the
lowest level j0 is chosen so that all the boundary wavelets are vanishing at t0.
Only very minor modifications of the proof is needed if this is not the case.

Applying the inequality (34), we have

E|f̂n(t0)−f(t0)|r =E

∣∣∣∣∣∣
2j0∑
k=1

(ξ̂j0k−ξj0k)φj0k(t0)+
∞∑

j=j0

2j∑
k=1

(θ̂jk−θjk)ψjk(t0)

∣∣∣∣∣∣
r

≤

 2j0∑

k=1

|φj0k(t0)|(E|ξ̂j0k − ξj0k|r)1/r +
J−1∑
j=j0

2j∑
k=1

|ψj0k(t0)|(E|θ̂jk − θjk|r)1/r

+
∞∑

j=J

2j∑
k=1

|θjkψjk(t0)|



r

≡ (Q1 +Q2 +Q3)r.

Similar as in the proof of Theorem 2, both Q1 and Q3 are small:

Q1 = O(n−1/2) and Q3 = O(n−ν). (45)

Again, denote Kj(t0) = {k : ψj,k(t0) �= 0}. Then Card(Kj(t0)) ≤ L, where L is
the support length of ψ. For f ∈ Bα

p,q(M), |θj,k| ≤ C2−j(α+1/2−1/p) for all (j, k),
with some constant C > 0 not depending on f . Let J2 be the largest integer
satisfying 2J2 ≤ (n/ log n)1/(1+2ν). Separate a simple bound of Q2 into two parts:

Q2 ≤
J2−1∑
j=j0

∑
k∈Kj(t0)

2
j
2‖ψ‖∞(E|θ̂jk−θjk|r)1/r+

J−1∑
j=J2

∑
k∈Kj(t0)

2
j
2‖ψ‖∞(E|θ̂jk−θjk|r)1/r

≡Q21 +Q22.

Applying the oracle inequality (27) in Corollary 3 with m = 0 and σ = n−1/2,
together with the elementary inequality (a + b)1/r ≤ a1/r + b1/r for a, b ≥ 0, we
have

Q21 ≤ C
J2−1∑
j=j0

2
j
2 (log n)

1
2n−

1
2 +C(log n)

1
2n−

1
2 = C

(
n

log n

)− ν
1+2ν

(1+o(1)), (46)
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Q22 ≤ C
J−1∑
j=J2

2
j
2 2−j(α+ 1

2
− 1

p
) + C(log n)

1
2n−

1
2 = C

(
n

log n

)− ν
1+2ν

(1 + o(1)). (47)

Combining (45), (46) and (47), we have Ef |f̂n(t0)−f(t0)|r ≤C(n/ log n)−rν/(1+2ν).

Proof of Theorem 6. The proof of this theorem is similar to the combinations
of the proofs of Theorems 1 − 5. We only highlight the main changes here. The
key is to prove a similar result as in Theorem 4 for estimating derivatives.

Theorem 8. Let Bn → ∞, n/ logBn → ∞. Suppose ν = α − 1/p > m. Let ĥn

be an estimator of f (m) and f0 ∈ Bα
p,q(M ′) with M ′ < M . If

lim
n→∞nr(ν−m)/(1+2ν)BnEf0|ĥn(t0) − f

(m)
0 (t0)|r <∞, (48)

lim
n→∞

(
n

logBn

)r(ν−m)/(1+2ν)

sup
f∈Bα

p,q(M)
Ef |ĥn(t0) − f (m)(t0)|r > 0. (49)

To prove Theorem 8, let g ∈ Bα
p,q(IR, M −M ′) be a compactly supported

function on IR with g(m)(t0) > 0 and ‖g‖2
2 > 0. Such a function is easy to

construct. Let the function sequence fn be given as in (31) in the proof of
Theorem 4, with the same choices of γn and βn. Denote by θ0 = f

(m)
0 (t0) and θ1 =

f
(m)
n (t0) = γ−1

n βm
n g

(m)(t0) + f
(m)
0 (t0). Then |θ1 − θ0| = g(m)(t0)(b logBn/n)

ν−m
1+2ν .

Following the same steps as in the proof of Theorem 4 we have, for sufficiently

large n, Efn |ĥn(t0) − f
(m)
n (t0)|r ≥ C(logBn/n)

r(ν−m)
1+2ν (1 + o(1)).

Theorem 8 yields immediately part (ii) of Theorem 6 as well as the lower
bounds on the minimax convergence rate and adaptive minimax convergence
rate. The attainment of the two lower bounds can be shown in a similar way as
in the proofs of Theorems 2 and 5.

Let the estimator ĥ1,n = (f̂n)(m) where f̂n is the projection estimator de-
fined in (33), and let ĥ2,n = (f̂n)(m) where f̂n is the soft threshold estimator
given in equations (16)-(17) with λ = (r(2m + 1) log n)1/2. Using the same
arguments as in the proofs of Theorems 2 and 5, it is easy to show that ĥ1,n

attains the minimax convergence rate of nr(ν−m)/(1+2ν) under the pointwise risk
(19) as an estimator of f (m)

n over f ∈ Bα
p,q(M) when the smoothness parameters

(α, p, q) are fixed and known, and ĥ2,n attains the adaptive minimax convergence
rate of (n/ log n)r(ν−m)/(1+2ν) over Bα

p,q(M) for unknown smoothness parameters
(α, p, q).
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In Contribution to Statistics: Jaroslav Hájek Memorial Volume (Edited by J. Jureckova),

91-97. Academia, Prague.

Ibragimov, I. A. and Hasminskii, R. Z. (1984). Nonparametric estimation of the values of a

linear functional in Gaussian white noise. Theory Probab. Appl. 29, 18-32.

Johnstone, I. M. (1998). Oracle inequalities and nonparametric function estimation. Documenta

Mathematica: Extra Volume ICM III, 267-278.
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Triebel, H. (1992). Theory of Function Spaces II. Birkhäuser Verlag, Basel.
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