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Abstract: For smoothing parameter selection in penalized likelihood density esti-
mation, a direct cross-validation strategy is illustrated. The strategy is as effective
as the indirect cross-validation developed earlier but is much easier to implement
in multivariate settings. Also studied is the practical implementation of certain
low-dimensional approximations of the estimate, with the dimension of the model
space selected to achieve both asymptotic efficiency and numerical scalability. The
greatly reduced computational burden allows the routine use of the technique for
the analysis of large data sets. Related practical issues concerning multivariate
numerical integration are also briefly addressed.
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1. Introduction

Consider the estimation of a probability density f(x) on a domain X based
on independent samples Xi, i = 1, · · · , n. In classical parametric estimation, some
parametric form is assumed of f(x) and the unknown parameters are commonly
estimated by maximum likelihood. When adequate parametric models are not
available, various nonparametric methods can be called to service. This article
concerns one such nonparametric method, the penalized likelihood method, which
was pioneered by Good and Gaskins (1971) and further developed by Silverman
(1982), O’Sullivan (1988), Gu and Qiu (1993) and Gu (1993).

Assume a bounded domain X so that the uniform density is proper. Write
f(x) = eη(x)/

∫
X eη(x), the logistic density transform (Leonard (1978)). The

estimation of f(x) can be conducted through the minimization of a penalized
likelihood functional,

− 1
n

n∑
i=1

{
η(Xi) − log

∫
X

eη(x)
}

+
λ

2
J(η), (1)

where the first term is the minus log likelihood, J(η) is a quadratic roughness
functional, and λ, known as the smoothing parameter, controls the tradeoff be-
tween the goodness-of-fit and the smoothness of the estimate. To make the
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logistic density transform one-to-one, Gu and Qiu (1993) proposed to impose
a side condition on η; two examples of side conditions are η(x0) = 0 for some
x0 ∈ X and

∫
X η(x) = 0. With λ = ∞, one enforces a parametric model in

the null space of J(η), NJ = {η : J(η) = 0}, and when λ = 0, one obtains the
nonparametric maximum likelihood estimate that corresponds to the empirical
distribution. The optimal λ, in a sense to be made clear later, is somewhere in
between.

A simple example of (1) on a one-dimensional domain X = [0, 1] is the cubic
spline density estimate with J(η) =

∫ 1
0 η̈2(x)dx and NJ = span{x + C}, where

the constant C is determined by the side condition imposed on η.
When X is a product domain, certain ANOVA decompositions can be built

into penalized likelihood estimation using tensor product splines. For example,
with X = (U, V ) ∈ X = U × V, one may construct

η(x) = η(u, v) = η∅ + ηu(u) + ηv(v) + ηu,v(u, v), (2)

where η∅ is the constant, ηu and ηv are the main effects, and ηu,v is the u-v
interaction. The identifiability of the decomposition can be assured through cer-
tain side conditions imposed on ηu, ηv and ηu,v, and the constant η∅ is to be
eliminated for a one-to-one transform f(u, v) = eηu+ηv+ηu,v/

∫
X eηu+ηv+ηu,v . An

additive model η = ηu + ηv characterizes the independence of U and V . For X
with multiple marginals, selective term elimination in such ANOVA decomposi-
tions yields various conditional independence structures. This provides a means
to the nonparametric estimation of certain graphical models; see, e.g., Whittaker
(1990) for an introduction to graphical models and their parametric estimation.
Technical details concerning the construction of tensor product splines can be
found in, e.g., Wahba (1990) and Gu (2002).

As is well known, the key to successful nonparametric estimation is to strike
a proper balance between “bias” and “variance.” In penalized likelihood estima-
tion, such balance is to be achieved through the proper selection of λ. Too small
a λ yields very rough estimates, or too much “variance,” and too large a λ allows
little flexibility beyond the null space NJ of J(η), leaving more “bias” in the
estimate. In multivariate problems with the aforementioned ANOVA decompo-
sitions, the roughness functional decomposes accordingly to a sum of component
roughness functionals, say J(η) = θ−1

u Ju(ηu) + θ−1
v Jv(ηv) + θ−1

u,vJu,v(ηu,v) for the
decomposition in (2), where the θ’s, an extra set of smoothing parameters to be
selected, determine the relative weights of component smoothness.

The seminal work of Craven and Wahba (1979) on generalized cross-valid-
ation laid the foundation for smoothing parameter selection in penalized like-
lihood estimation, and remains the method of choice for Gaussian regression.
O’Sullivan (1988) adapted a certain cross-validation score in the kernel method
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literature to calculate the density estimate of Silverman (1982). Gu (1993) de-
veloped an indirect cross-validation approach to the selection of λ in (1), but the
numerical efficiency of its multiple smoothing parameter implementation was less
than ideal (Gu (1998)). We demonstrate in this article a direct cross-validation
strategy for use with (1), more effective and numerically more efficient than the
indirect cross-validation of Gu (1993).

The minimizer of (1) in an infinite dimensional function space is generally
not computable. Based on an asymptotic analysis of Gu and Qiu (1993), to be
reviewed shortly, Gu (1993) considered a certain finite dimensional approxima-
tion that requires O(n3) flops (floating point operations) to compute. A trivial
refinement of the asymptotic analysis yields approximations that are much faster
to compute yet maintain the same asymptotic efficiency. Various issues con-
cerning the practical implementation of such faster approximations will also be
addressed in this article.

The rest of the article is organized as follows. In §2, pertinent technical de-
tails concerning (1) are reviewed and the numerical problem is formulated; the
asymptotic analysis mentioned above is discussed but the details are relegated to
the appendix. In §3, the direct cross-validation strategy is outlined and related
computation is discussed. Through simulation studies, §4 demonstrates the em-
pirical performance of the cross-validation score and develops strategies for the
practical calculation of the estimates. Numerical integration is needed in the
implementation of the method, of which a few practical issues are discussed in
§5. An illustrative data example is given in §6. A few remarks are collected in §7
to conclude the article. Part of this work has been excerpted by the first author
for use in a monograph (Gu (2002)); notes are added in the text and relevant
details are omitted to reflect the overlap.

2. Formulation and Notation

The functional (1) is defined in a Hilbert space H ⊆ {η : J(η) < ∞},
in which J(η) is a square (semi) norm with a finite dimensional null space
NJ = H ∩ {η : J(η) = 0}. A Hilbert space has a metric and a geometry, which
facilitates the analysis and the computation of the estimate, and a finite dimen-
sional NJ prevents interpolation (i.e., the empirical distribution). One needs the
evaluation functional [x]η = η(x) to be continuous in H so that the first term of
(1) is continuous, and the members of H have to comply with a side condition
mentioned earlier to make the second term strictly convex.

A Hilbert space in which evaluation is continuous is a reproducing kernel
Hilbert space with a reproducing kernel R(·, ·), a non-negative definite bivariate
function on X such that R(x, ·) = R(·, x) ∈ H, ∀x ∈ X , and 〈R(x, ·), η(·)〉 = η(x)
(the reproducing property), ∀η ∈ H, where 〈·, ·〉 is the inner product in H; see
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Aronszajn (1950). For the discussion of this article, one needs a basis of NJ and
a reproducing kernel RJ(x, y) in H�NJ .

As a concrete example, consider again the cubic spline on X = [0, 1] with
J(η) =

∫ 1
0 η̈2(x)dx. Different side conditions lead to different RJ and NJ , but

the density estimate after the transform f(x) = eη(x)/
∫ 1
0 eη(x) remains the same.

If one specifies
∫ 1
0 η(x) = 0, then NJ = {(· − 0.5)} and RJ(x, y) = k2(x)k2(y) −

k4(|x − y|), where k2 = (k2
1 − 1/12)/2, k4 = (k4

1 − k2
1/2 + 7/240)/24, with k1 =

(· − 0.5). If one specifies η(0) = 0, then NJ = {(·)} and RJ(x, y) =
∫ 1
0 (x −

u)+(y − u)+du, where (·)+ is the positive part of (·). Further details and more
examples can be found in Gu and Qiu (1993) and Gu (1998).

The space H is usually infinite dimensional, and the minimizer of (1) in H
is in general not computable. To circumvent the problem, Gu and Qiu (1993)
proposed to use the minimizer of (1) in an adaptive finite dimensional space
Hn = NJ ⊕ {RJ(Xi, ·), i = 1, . . . , n}, which was the estimate calculated in Gu
(1993, 1998). Under mild conditions, the minimizer of (1) in Hn was shown by Gu
and Qiu (1993) to share the same asymptotic convergence rates as the minimizer
in H. A careful look at the theory reveals that one could actually achieve the
same convergence rates in a space Hq = NJ ⊕ {RJ (Zj , ·), j = 1, . . . , q} with
q 
 n2/(pr+1)+ε for some p ∈ [1, 2], r > 1, ∀ε > 0, where Zj , j = 1, . . . , q is a
random subset of Xi; details are to be found in the appendix. The constant p

depends on how smooth the “true” η is: for the cubic spline on X = [0, 1], p = 1
if η̈2 is “barely” integrable, and p = 2 if η(4) is square integrable.

The computation of the minimizer in Hq is of the order O(nq2) + O(dq2),
where d is the size of the quadrature for integration, representing significant sav-
ings over the O(n3) + O(dn2) needed to work with Hn; see §3 for details. For
the cubic spline example given above, r = 4, so q = O(n2/(4p+1)+ε). For “super-
smooth” η with p = 2, one could make do with only O(n13/9+ε) + O(dn4/9+ε)
computation, and for rougher η that nevertheless satisfies J(η) < ∞, the com-
putational burden is no worse than O(n9/5+ε) + O(dn4/5+ε).

Write ξj = RJ(Zj , ·) and let {φν}m
ν=1 be a basis of NJ . By definition, a

function in Hq has an expression

η =
m∑

ν=1

dνφν +
q∑

j=1

cjξj = φT d + ξT c, (3)

where φ and ξ are vectors of functions and d and c are vectors of coefficients. Sub-
stituting (3) into (1), noting that J(η) = 〈∑q

j=1 cjξj ,
∑q

k=1 ckξk〉 =
∑q

j=1

∑q
k=1

cjckRJ(Zj , Zk), one calculates the minimizer ηλ of (1) in Hq by minimizing

Aλ(d, c) = − 1
n
1T (Sd + Rc) + log

∫
X

exp(φT d + ξT c) +
λ

2
cT Qc
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with respect to d and c, where S is n × m with the (i, ν)th entry φν(Xi), R is
n× q with the (i, j)th entry ξj(Xi) = RJ(Xi, Zj), and Q is q× q with the (j, k)th
entry ξj(Zk) = RJ(Zj , Zk).

The convex function Aλ(d, c) may be minimized via Newton iteration. Write
µη(g) =

∫
X geη/

∫
X eη and Vη(g, h) = µη(gh)−µη(g)µη(h). Let η̃ = φT d̃+ξT c̃ be

the current iterate of η. Straightforward calculation yields the updating equation(
Vφ,φ Vφ,ξ

Vξ,φ Vξ,ξ + λQ

)(
d

c

)
=

(
ST1/n − µφ + Vφ,η

RT1/n − µξ + Vξ,η

)
, (4)

where Vφ,φ = Vη̃(φ,φT ), Vφ,ξ = Vη̃(φ, ξT ), Vξ,ξ = Vη̃(ξ, ξT ), µφ = µη̃(φ), µξ =
µη̃(ξ), Vφ,η = Vη̃(φ, η̃), and Vξ,η = Vη̃(ξ, η̃); see, e.g., Gu (1993) and Gu (2002,
§6.1).

Equation (4) forms the basis for computation. For a multiple term penalty
J(η) =

∑
β θ−1

β Jβ(η) such as the ones associated with the tensor product splines,
the reproducing kernel of HJ is of the form RJ =

∑
β θβRβ, so beside the smooth-

ing parameter λ appearing explicitly in (4), one also has the θ’s hidden in the
entries involving ξ.

3. Cross-Validation and Computation

We now outline the direct cross-validation strategy and the associated com-
putation. Much of this material has been presented by the first author in Gu
(2002, §6.3, §6.4 in a slightly different notation, so most of the derivation is
omitted here to minimize the overlap.

To measure the proximity of the estimate fλ = eηλ/
∫
X eηλ to the true density

f = eη/
∫
X eη, we use the Kullback-Leibler distance KL(η, ηλ) = Ef log(f/fλ) =

µη(η − ηλ) − log
∫
X eη + log

∫
X eηλ . The smoothing parameters that minimize

KL(η, ηλ) are considered the optimal ones.
Dropping terms that do not involve ηλ, one obtains the relative Kullback-

Leibler distance, RKL(η, ηλ) = log
∫
X eηλ −µη(ηλ); the term µη(ηλ) involving the

unknown density will have to be estimated. A naive estimate of µη(ηλ) is the
sample mean n−1∑n

i=1 ηλ(Xi), but it is biased because the samples Xi contribute
to the estimate ηλ; the resulting estimate of RKL(η, ηλ) is simply minus the log
likelihood, clearly favoring λ = 0. Standard cross-validation suggests an estimate
n−1∑n

i=1 η
[i]
λ (Xi), where η

[i]
λ , the minimizer of the delete-one version of (1), is

however expensive to compute. For an analytically tractable approximation of
η

[i]
λ , we consider the quadratic approximation of (1) at η̃ = ηλ, and compute the

minimizer η
[i]
λ,η̃ of the delete-one version thereof. Estimating µη(ηλ) in RKL(η, ηλ)

by n−1∑n
i=1 η

[i]
λ,η̃(Xi), one has, for α = 1,

− 1
n

n∑
i=1

{
ηλ(Xi) − log

∫
X

eηλ

}
+ α

tr(P⊥
1 R̃H−1R̃T P⊥

1 )
n(n − 1)

, (5)
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where H is the left-hand-side matrix in (4), R̃ = (S,R), and P⊥
1 = I − 11T /n of

size n × n. Detailed derivation, with a slightly different notation for q = n, can
be found in Gu (2002, §6.3).

As is shown in §4, the practical performance of the cross-validation score (5)
with α = 1 is generally adequate but, as is typical with cross-validation tech-
niques, the method may severely undersmooth up to about 10% of the replicates
in simulation studies. To circumvent the problem, a simple modification of the
score proves to be remarkably effective. The score is seen to have a rather simple
structure, with minus the log likelihood monotonically decreasing as λ decreases
while the trace term moves in the opposite direction. To force smoother esti-
mates, one may simply set α > 1 in (5). Simulation studies suggest that an α
around 1.4 would be most effective, curbing undersmoothing on “bad” replicates
while sacrificing minimal performance degradation on “good” ones; details are in
§4.

Fixing smoothing parameters, the computation involves Newton iteration
via (4) and the evaluation of the cross-validation score (5). This can be accom-
plished by a Cholesky decomposition of H followed by forward and backward
substitutions; see Gu (2002, §6.4 for details. To select smoothing parameters by
cross-validation, standard optimization tools such as those developed in Dennis
and Schnabel (1996) can be used. These employ a certain quasi-Newton approach
with numerical derivatives.

The one-time formation of R̃T1 takes O(nq) flops. The formation of the
other entries in (4) takes O(dq2) flops, where d is the size of the quadrature for
integration. The Cholesky decomposition is of the order O(q3) and the back
and forward substitutions are of the order O(q2). For the cross-validation score,
the log likelihood part takes O(nq) flops and the trace part takes O(nq2) flops (n
forward substitutions). All in all, the computation is of the order O(nq2)+O(dq2).

With the indirect cross-validation of Gu (1993), (η̃, λ) are jointly updated
through (4): η̃ is updated by the minimizer ηλ,η̃ of the quadratic approxi-
mation of (1) at η̃, for λ minimizing a η̃-specific cross-validation score that
tracks KL(η, ηλ,η̃) as a function of λ. Roughly speaking, the indirect method
nests smoothing parameter selection under Newton iteration, while the direct
method outlined here nests Newton iteration under smoothing parameter se-
lection. Since smoothing parameter selection by cross-validation is much more
involved than Newton iteration, especially for multiple smoothing parameters,
the direct method is numerically more efficient. Also, a fixed point always exists
for Newton iteration with fixed smoothing parameters, but the joint updating of
(η̃, λ) may never settle down.

4. Simulation Studies

In this section, we demonstrate the empirical performance of cross-validation
and explore empirical rules for the choice of q through simulation studies.



PENALIZED LIKELIHOOD DENSITY ESTIMATION 817

4.1. Empirical performance of cross-validation

First consider a univariate test density

f1(x) ∝
{1

3
e−50(x−0.3)2 +

2
3
e−50(x−0.7)2

}
I[0<x<1], (6)

which is a mixture of N(0.3, 0.01) and N(0.7, 0.01) truncated to [0, 1]. Sam-
ples of size n = 100 were drawn from the density, and cubic splines were used
with J(η) =

∫ 1
0 η̈2(x)dx, NJ = {(· − 0.5)}, RJ(x, y) = k2(x)k2(y) − k4(|x − y|),

and q = n; see §2 for the notation. Estimates ηλ were calculated on the
grid log10 λ = (−7)(0.1)(−3) for 100 replicates. Recorded for each of the es-
timates were the Kullback-Leibler distance KL(η, ηλ), the minus log likelihood
n−1∑n

i=1{−ηλ(Xi)+log
∫
X eηλ}, and the trace term tr(P⊥

1 R̃H−1R̃T P⊥
1 ). Plotted

in the left and middle frames of Figure 1 are the KL(η, ηλ) of the cross-validated
λ’s with α = 1 and α = 1.4 versus the minimum KL(η, ηλ) on the grid. The
relative efficacy of the methods, defined as the ratio of the horizontal axis to
the vertical axis, are shown in the right frame in box plots along with those of
α = 1.2, 1.6. Figure 1 is virtually a duplicate of Figure 6.1 in Gu (2002), included
here for a convenient comparison with the bivariate and trivariate simulation re-
sults reported below; further discussions concerning the univariate simulation can
be found in Gu (2002, §6.3.3), where, among other things, it was shown that the
performance of indirect cross-validation is comparable to that of (5) with α = 1.
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Figure 1. Performance of cross-validation in univariate simulation. Left:
Loss achieved by cross-validation with α = 1. Center: Loss achieved by
cross-validation with α = 1.4. Right: Relative efficacy of cross-validation
with α = 1, 1.2, 1.4, 1.6.

Now consider a bivariate test density

f2(x, y) ∝ f1(x)e−12.5(y−0.5)2I[0<x<1,0<y<1,x+y<1], (7)

which is supported on a triangular domain X = {(x, y) : x, y > 0, x + y < 1};
f1(x) is as given in (6). Samples of size n = 300 were drawn from f2(x, y), and the
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additive model η(x, y) = ηx +ηy was fitted to the data with J(η) = θ−1
x

∫ 1
0 η̈2

xdx+
θ−1
y

∫ 1
0 η̈2

ydy; NJ = {(x− 0.5), (y − 0.5)} and RJ((x, y), (u, v)) = θx{k2(x)k2(u)−
k4(|x − u|)}+ θy{k2(y)k2(v)− k4(|y − v|)}. With the two smoothing parameters
of the additive model, it is still feasible to lay a grid and the triangular domain
keeps things nontrivial. See §6 for a truncated domain in real-data application.
Estimates were calculated with q = 100 and (log10(λ/θx), log10(λ/θy)) over a
21 × 21 regular grid on [−7,−3] × [−6,−2], for 100 replicates; the choice of q is
discussed in §4.2. Recorded for each of the estimates were the Kullback-Leibler
distance KL(η, ηλ), the minus log likelihood n−1∑n

i=1{−ηλ(Xi)+log
∫
X eηλ}, and

the trace term tr(P⊥
1 R̃H−1R̃TP⊥

1 ). Parallel to Figure 1, the bivariate simulation
results are summarized in Figure 2.
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Figure 2. Performance of cross-validation and modifications thereof in bivari-
ate simulation. Left: Loss achieved by cross-validation with α = 1. Center:
Loss achieved by cross-validation with α = 1.4. Right: Relative efficacy of
cross-validation with α = 1, 1.2, 1.4, 1.6.

Finally consider a trivariate test density

f3(x, y) ∝ f1(x − 0.3z + 0.1)f1(y − 0.2z + 0.1)e−12.5(z−0.5)2I[0<x,y,z<1], (8)

where f1(x) is as given in (6). Data were generated from f3(x, y, z), and a model
η(x, y, z) = ηx + ηy + ηz + ηx,z + ηy,z was fitted to the data; note the conditional
independence of X and Y given Z built into the model. Tensor product cubic
splines were calculated with NJ = {k1(x), k1(y), k1(z), k1(x)k1(z), k1(y)k1(z)}
and

RJ((x, y, z), (u, v,w))

= θxRc(x, u) + θyRc(y, v) + θzRc(z,w)

+θ(1)
x,zRc(x, u)k1(z)k1(w) + θ(2)

x,zk1(x)k1(u)Rc(z,w) + θ(3)
x,zRc(x, u)Rc(z,w)

+θ(1)
y,zRc(y, v)k1(z)k1(w) + θ(2)

y,zk1(y)k1(v)Rc(z,w) + θ(3)
y,zRc(y, v)Rc(z,w),
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where Rc(x, u) = k2(x)k2(u)−k4(|x−u|) and the rest of the notation can be found
in §2; the expression of the penalty J(η), which also has 9 terms, is omitted here.
One hundred replicates of samples of size n = 300 were drawn, and estimates
were calculated with q = 100 and with the smoothing parameters minimizing the
loss KL(η, ηλ) and the cross-validation score with α = 1, 1.2, 1.4, 1.6; separate
minimizations were conducted as a grid search was no longer feasible. Recorded
for each of the estimates were the Kullback-Leibler distance KL(η, ηλ). Parallel
to Figures 1 and 2, the simulation results are summarized in Figure 3.
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Figure 3. Performance of cross-validation and modifications thereof in tri-
variate simulation. Left: Loss achieved by cross-validation with α = 1.
Center: Loss achieved by cross-validation with α = 1.4. Right: Relative
efficacy of cross-validation with α = 1, 1.2, 1.4, 1.6.

4.2. Empirical choice of q

As mentioned in §2, a dimension of the order q 
 n2/(pr+1)+ε, ∀ε > 0, is
sufficient for asymptotic efficiency. It can be shown that r = 4 for the univariate
cubic spline and the cubic spline additive model, and r = 4+δ, ∀δ > 0, for tensor
product cubic splines with interactions; see, e.g., Gu (1996). Since ε, δ > 0 can
be arbitrarily small, one may use q = kn2/(4p+1) in practice. We present some
simulation results to suggest adequate values of k for practical use.

Consider the test densities f1(x) of (6) and f2(x, y) of (7); the test densities
are sufficiently smooth so p = 2. Samples of sizes n = 150, 300, 600 were drawn
from f1(x) and f2(x, y), respectively. For each of the six samples and every
k on the grid 1(1)15, 30 different random subsets {Zj} ⊂ {Xi} of size q =
kn2/9 were generated to form 30 different Hq, and 30 different estimates were
calculated based on the same data with the smoothing parameters selected by
cross-validation with α = 1.4. The Kullback-Leibler losses of the 30 estimates
were calculated and summarized in boxplots. Shown in the left and center frames
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of Figure 4 are the boxplots for k = 5(1)15; the first four are much wider and
their inclusion would greatly reduce the resolution of the ones shown. The fact
that the box width gradually decreases as k increases indicates that q 
 n2/9

indeed appears to be the “correct” scale. The plots suggest that a k as small as
8 or 9 could be stable enough for practical use. Similar plots on the q 
 n2/5

scale (not shown here) have also been inspected, and the much faster shrinking
rate of the boxes suggests that q 
 n2/5 may not be the proper scale.
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Figure 4. Effect of q on estimation consistency. Left: f1(x). Center: f2(x, y).
Right: f3(x, y, z). Boxplots of 30 (Left and Center) or 20 (Right) KL(η, ηλ)
for each of q = kn2/9. Top: from high to low, n = 150, 300, 600 (Left and
Center) or n = 300, 600 (Right). Bottom: n = 600.

Samples of sizes n = 300, 600 were also drawn from f3(x, y, z) of (8), and the
above experiment was repeated but with only 20 different subsets {Zj} ⊂ {Xi}
for each of q = kn2/9; the results are summarized in the right frame of Figure 4.
The numerical inconsistency appears to be much higher than the level seen in the
univariate and bivariate simulations. Similar plots on the q = kn2/7 scale were
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also inspected (not shown here), where the n = 300 fits gradually settled down,
as hinted by the trend seen in the right frame of Figure 4, but the inconsistency
of the n = 600 fits remained at the “constant” level seen. A major contributor to
the high level of numerical inconsistency is likely the large number of smoothing
parameters (nine total). The consistency in terms of the general performance
appears tolerable.

In practice, we suggest the use of q = kn2/9 with k around 10 for tensor
product cubic splines. We were not able to find an example with “barely” square
integrable second derivatives, and we doubt there are many such “true” functions
in the real world. Since the computation is so much faster (some timing results
can be found in §6), quick checks on the stability can be performed simply by
comparing estimates with different subsets {Zj} ⊂ {Xi}.

For the bivariate and trivariate simulations of §4.1 with n = 300, we used
q = 100 ≈ 10n2/5 ≈ 28n2/9. Our purpose there was to study the behavior of
cross-validation, and we chose a q sufficiently large to ensure stability, yet small
enough so the experiments were feasible within reasonable time.

In a separate study, Wahba, Lin and Leng (2002) reported a stable value of
q = 40 for n = 1000; note that 40 ≈ 8.6(1000)2/9 .

5. Numerical Integration

Numerical integration is an essential part of the method under study. We
briefly discuss a few practical issues concerning the use of quadratures and cu-
batures in the setting.

For the calculation of
∫
X g(x)dν(x), a quadrature or cubature is of the form∑d

i=1 wig(xi), where xi are the nodes and wi are the associated weights; typically,
one dimensional formulas are called quadratures and multidimensional ones are
called cubatures. Within a family of formulas, the accuracy usually increases
with the number of nodes, or size, along with the cost. Certain methods are
adaptive, attempting to achieve user-specified precision through sequential node
addition guided by precision estimates.

In our setting, O(q2) integrals involving the same O(q) functions need to be
calculated for each step of the Newton iteration, so formulas with fixed nodes
are actually more economical than the adaptive methods. Also, high accuracy
is not as essential in the fitting stage as such consistencies as the non-negative
definiteness of H; H is guaranteed to be non-negative definite with fixed nodes
and positive weights.

In one dimension, a standard Gauss quadrature with d up to 200 is sufficient
for our needs. The public domain subroutine gaussq.f from netlib.org can be
used to generate the nodes and the weights.
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For the bivariate simulation, we used a naive flat-weight 40 × 40 regular
grid truncated to the triangular domain, with the diagonal nodes carrying half
weights. We were not able to find a more efficient formula on the triangular
domain.

On multidimensional cubes, product quadratures quickly become prohibitive.
A system known as Smolyak algorithm has been developed in the literature for
the derivation of efficient cubatures from univariate formulas. The efficiency of
Smolyak cubatures is achieved by thinning out nodes from the product quadra-
tures; some negative weights are introduced in the process. Some of the Smolyak
cubatures can be found in Novak and Ritter (1996) and Petras (2001). Public
domain routines from Knut Petras’ SMOLPACK can be modified to return the
nodes and the weights of Smolyak cubatures.

Smolyak cubatures are highly accurate for smooth functions, but we have
experienced great difficulty applying them in our problem without modification.
The data are typically away from the boundaries of the domain one specifies, but
the placement of nodes in Smolyak cubatures is dense near the boundaries and
sparse in the middle, causing them to miss the peaks in the intermediate and final
estimates eη̃/

∫
X eη̃ , resulting in gross under-approximations of the true integrals.

To circumvent the problem, we apply transformations on each coordinate of
the cube to make the marginal data nearly uniformly distributed, then use the
Smolyak formulas on the transformed domain.

To illustrate the strategy, consider integration on [0, 1]2. First estimate
the marginal densities fx(x) and fy(y) with distribution functions Fx and Fy;
a bit oversmoothing does no harm for the purpose so we use cross-validation
with α = 2. Transforming the domain by x̃ = Fx(x) and ỹ = Fy(y), the
marginal observations are nearly uniformly distributed on the x̃ and ỹ scales.
Let (x̃i, ỹi) be the Smolyak nodes and wi be the corresponding weights, the in-
tegral

∫ 1
0

∫ 1
0 g(x, y)dxdy =

∫ 1
0

∫ 1
0 g(F−1

x (x̃), F−1
y (ỹ))(dx/dx̃)(dy/dỹ)dx̃dỹ can be

approximated by
d∑

i=1

wig(F−1
x (x̃i), F−1

y (ỹi))

fx(F−1
x (x̃i))fy(F−1

y (ỹi))
,

where fx(F−1
x (x̃)) = dx̃/dx and fy(F−1

y (ỹ)) = dỹ/dy. An example of this is
shown in Figure 5, where the circles are 150 simulated observations and the filled
dots are the nodes of the 449-point version of the so-called delayed Smolyak
cubature in two dimension, on the original scale and on the transformed scale;
the transformations are through the marginal density estimates based on the 150
observations.
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Figure 5. Smolyak cubature in two dimension. Left: Original scale. Right:
Transformed scale. Circles are the data and filled dots are cubature nodes.

6. Example

We now apply the techniques developed above to analyze a data set. To
study the AIDS incubation time, a valuable source of information is the records
of patients who were infected with the HIV virus through blood transfusion
since the date can be ascertained retrospectively. A data set collected by the
Centers for Disease Control and Prevention (CDC) is listed in Wang (1989),
which includes the time X from the transfusion to the diagnosis of AIDS, the
time Y from the transfusion to the end of study (July 1986), both in months,
and the age of the individual at the time of transfusion, for 295 individuals. It
is clear that X ≤ Y .

Assuming the independence of X and Y in the absence of truncation, and
conditioning on the truncation mechanism, an additive model of the log den-
sity can be fitted using the formulation in the bivariate simulations of §4 but
with the domain replaced by X = {(x, y) : 0 ≤ x ≤ y ≤ 100}. Using cross-
validation with α = 1.4 and q = n = 295, the estimated density f(x, y) =
eηx+ηy/

∫
X eηx+ηy is contoured in Figure 6 as solid lines, with the marginal densi-

ties f(x) = eηx/
∫ 100
0 eηx and f(y) = eηy/

∫ 100
0 eηy plotted in the empty space and

the data superimposed. With q = 28 ≈ 8n2/9, a fit is superimposed in Figure 6
as dashed lines. The estimated marginal densities differ slightly on the upper
end of f(x) and the lower end of f(y), where data are scarce due to truncation.
Further analyses of the data set can be found in Gu (2002, §1.4.2, §6.5.3, §6.6.4).
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Figure 6. AIDS incubation and HIV infection. Contours are estimated
density on the observable region surrounded by dotted lines. Circles are
the observations. Curves over the dotted lines in the empty space are the
estimated marginal densities. The solid lines are for q = 295 and the dashed
lines are for q = 28; they are nearly indistinguishable.

On a workstation with dual Athlon MP1800+ and 2GB RAMS running
FreeBSD 4.4 and R 1.4.0, the computation for q = 295 took about 149 CPU
seconds and that for q = 28 took less than 3 CPU seconds.

7. Remarks

In this article, we have developed an effective and efficient implementation
of the penalized likelihood method for probability density estimation. The tech-
niques have been coded into a set of R functions, which were used to calculate
the numerical examples. A polished user-interface can be found in the ssden

suite in the R package gss by the first author.
The empirical rules of α ≈ 1.4 for cross-validation and q ≈ 10n2/9 for scalable

approximation are practically convenient. Many more examples had been looked
at besides those presented, and it was remarkable that some systematic pattern
emerged. Kim and Gu (2002) also observed nearly identical rules in the Gaussian
regression setting.

The direct cross-validation strategy also applies to penalized hazard estima-
tion with little modification. Some empirical results can be found in Gu (2002,
Chap. 7).
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The current development settles the practical computability of the method
developed in Gu and Qiu (1993), at least for dimensions up to 3 or 4 where the
cubature sizes are manageable. Equipped with the computational tool, work is
under way for the development of tools for the assessment of the significance of
model terms in log density, which often have (conditional) independence impli-
cations. With little modification, the tools can also be applied in closely related
settings such as the conditional density estimation of Gu (1995).

Appendix. Convergence Rates of Estimates

In this appendix, we sketch the asymptotic theory developed in Gu and Qiu
(1993) and refined in Gu (2002, §8.2), and point out the critical link that leads
to the justification for the use of Hq mentioned in §2.

Let eη/
∫
X eη be the density from which the data are generated. Define

V (g) = µη(g2)−µ2
η(g), where µη(g) =

∫
X geη/

∫
X eη . The asymptotic convergence

rates of the minimizer η̂ of (1) in H are governed by an eigenvalue analysis of
V (g) with respect to J(g). Under mild conditions, it can be shown that there
exist eigenfunctions φν such that V (φν , φµ) = δν,µ, J(φν , φµ) = ρνδν,µ, where
δν,µ is the Kronecker delta, and ρν > Cνr for some r > 1, C > 0, and ν

sufficiently large; V (g, h) and J(g, h) are the inner products associated with V (g)
and J(g), respectively. It then can be shown that as λ → 0 and nλ1/r → ∞,
V (η̂ − η) = Op(λp + n−1λ−1/r) and SKL(η, η̂) = Op(λp + n−1λ−1/r) for some
p ∈ [1, 2], where SKL(η, η̂) = KL(η, η̂) + KL(η̂, η) is the symmetrized Kullback-
Leibler between η and η̂. The constant p depends on how smooth η is: the rates
given hold for η satisfying

∑
ν ρp

νη
2
ν < ∞ for p up to 2, where ην = V (η, φν); note

that
∑

ν ρνη
2
ν = J(η). The optimal rates are given by Op(n−pr/(pr+1)), achieved

with λ 
 n−r/(pr+1).
Let H∗ be a subspace of H such that V (h) = Op(λJ(h)), ∀h ∈ H �H∗. By

the analysis of Gu and Qiu (1993, §6), it can be shown that the same convergence
rates hold for the minimizer of (1) in H∗. By the proof of Lemma 6.1 in Gu and
Qiu (1993) one has, for h ∈ H �Hq,

V (h) = Op(q−1/2λ−1/r)(V + λJ)(h). (9)

Taking q 
 n2/(pr+1)+ε and λ 
 n−r/(pr+1), ∀ε > 0, one has V (h) = op(λJ(h)).
The stated result of Lemma 6.1 in Gu and Qiu (1993) concerns only the case

with q = n, but the proof actually establishes the result quoted in (9).
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