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Abstract: A partial linear model is a model where the response variable depends

on some covariates linearly and on others nonparametrically. In this article, we

construct an empirical process-based test for examining the adequacy of partial

linearity of model. A re-sampling approach, called random symmetrization (RS),

is applied to obtain the approximation to the null distribution of the test. The

procedure is easy to implement. A simulation study is carried out and application

to an example is made.
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1. Introduction

The partial linear model has received considerable attention. It is written
as:

Y = β′X + g(T ) + ε,

where X is a d-dimensional random vector, T is a 1-dimensional random variable,
β is an unknown parameter vector of d-dimension, g(·) is an unknown measurable
function, and the conditional expectation of ε given (T,X) is zero. Without
loss of generality, we assume X has zero mean. There are many proposals in
the literature for the estimation of β and g. Among them are Cuzick (1992),
Engle, Granger, Rice and Weiss (1986), Mammen and van der Geer (1997) and
Speckman (1988).

In this paper, we consider testing

H0 : E(Y |X = ·, T = ·) = β′ · +g(·) , for some β and g, (1.1)

against H1 : E(Y |X = ·, T = ·) �= β′ · +g(·) for any β and g.
For testing H0, Whang and Andrews (1993) and Yatchew (1992) used sample

splitting to recommend ad hoc methods. Fan and Lin (1996) employed a ker-
nel smoother to estimate the conditional expectation of residuals given (X,T ),
and constructed a test with a limiting normal null distribution. They reported
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asymptotic results but no simulation to demonstrate performance. Their test,
however, may have problems due to the inefficiency of kernel estimation for high
dimensional data.

In the literature, there are several approaches available for constructing test
statistics: for parametric models, Dette (1999) suggested a test based on the dif-
ference of variance estimators; Eubank and Hart(1992) studied a test of score
type; Eubank and LaRiccia (1993) proposed a method of variable selection;
Härdle and Mammen (1993) considered a test statistic of the difference between
parametric and nonparametric fits; Stute, Manteiga and Quibdinil (1998) ap-
plied a test based on a residual-marked process; Stute, Theis and Zhu (1998)
proposed an innovation approach so as to determine p-values conveniently; Fan
and Huang (2001) suggested an adaptive Neyman test. Hart (1997) contains
fairly comprehensive references.

Our test is based on a residual-marked process. The main reasons that we
use this approach are as follows: Since our setting has a multivariate covariate,
the Härdle and Mammen (1993) test may suffer dimensionality problems because
local smoothing for the nonparametric fit is involved. As for the adaptive Nyeman
test (Fan and Huang (2001)), we have not yet seen whether it is asymptotically
distribution free when the distribution of error is not normal. Moreover, its power
performance depends on the smoothness of εj = yj − β′xj − g(tj) as a function
of j. As Fan and Huang (2001) point out, achieving sufficient smoothness with
multivariate predictors is very challenging.

On the other hand, although the test based on a residual-marked process
has some drawbacks, mainly the insensitiveness to the alternatives of oscillatory
regression functions, it still shares some desirable features: it is consistent for
all global alternatives; it is able to detect local alternatives of order arbitrar-
ily close to n−1/2; it is asymptotically distribution-free; only one-dimensional
nonparametric function estimation is required for the computation.

As is known, n−1/2 is the best achievable rate for lack of fit tests. The
optimal rate of the adaptive Neyman test is O(n−s/(2s+1)(log log n)s/(4s+1)) for
some s > 0 (see Spokoiny (1996) or Fan and Huang (2001)). The fourth feature
is particularly desirable for multivariate regression.

When the exact or limiting null distribution of a test statistic is intractable
for computing p-values, one frequently resorts to the use of bootstrap approxi-
mations. In a parametric context, bootstrap approximations can maintain signif-
icance level and have good power performance; see Härdle and Mammen (1993)
and Stute, Manteiga and Quibdinil (1998). Our circumstances are, however,
more complicated. The classical bootstrap approximation has been shown to
be inconsistent in the parametric case (see, e.g., Stute,Manteiga and Quibdinil
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(1998)). Even for the wild bootstrap approximation, consistency is not clear be-
cause, in a related work of heteroscedasticity checking, it was shown not to work.
See Zhu, Fujikoshi and Naito (2001).

Here we apply a variant of the wild bootstrap approximation suggested by
Zhu, Fujikoshi and Naito (2001). It is motivated by the “Random Symmetriza-
tion” of Pollard (1984), and also by similar techniques of Dudley (1978) and Giné
and Zinn (1984). Hence we call it the random symmetrization (RS) method. A
related work is Zhu, Ng and Jing (2001).

The article is organized in the following way. In the next section, we construct
the test and study its asymptotic behavior. In Section 3, the consistency of
the RS approximation is presented. Some simulation results are reported, and
application to an example is made, in Section 4. All proofs are postponed to
Section 5.

2. A Test Statistic and Its Limiting Behavior

2.1. Motivation and construction

We first describe the construction of a residual-marked cusum process. For
any weight function w(T ), let

U(T,X) = (X−E(X|T )), V (T, Y ) = (Y −E(Y |T )), S = E(UU ′w2(T )), (2.1)

β = S−1E[U(T,X)V (T, Y )w2(T )], γ(t) = E(Y |T = t), (2.2)

for a positive definite matrix S. Fan and Li (1996) considered the density function
of T as a weight function w(·). A constant weight whose support is (a, b) with
0 < a < b < 1 is also often applied. Note that H0 is true if and only if

E[Y − β′U(T,X) − γ(T )]w(T )I(T ≤ t,X ≤ x) = 0, for all t, x, (2.3)

where X ≤ x means that each component of X is less than or equal to the corre-
sponding component of x, similarly for T ≤ t. Let {(t1, x1, y1), . . . , (tn, xn, yn)}
be a set of observations. The empirical version of the LHS of (2.3) is, letting
ε̂j = yj − β̂′Û(tj , xj) − γ̂(tj),

Rn(t, x) =
1√
n

n∑
j=1

ε̂jw(tj)I(tj ≤ t, xj ≤ x), (2.4)

where β̂, Û = X−Ê(X|T ) and γ̂ are the estimators of β, U and γ. The proposed
test statistic is defined as

CVn =
∫

(Rn(T,X))2dFn(T,X), (2.5)
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where Fn is the empirical distribution based on {(t1, x1), . . . , (tn, xn)}. We reject
the null hypothesis for large values of CVn.

Note that CVn is not a scale-invariant statistic. Usually a normalizing con-
stant is needed, say the estimator of the limiting variance, when the limiting
null distribution of the test is used for p-values, Fan and Li (1996) and Fan and
Huang (2001). However, it is not easy to choose a proper variance estimator
which does not weaken the power performance of test. We do not need such a
normalizing constant because in the RS approximation, it is constant for given
(ti, xi, yi)′s and does not have any impact on the conditional distribution of the
RS test statistic. Details are in Section 3.

2.2. Estimation of β and γ

For i = 1, . . . , n, let f̂i(ti) = (1/n)
∑n

j �=i kh(ti − tj) with

Êi(X|T = ti) =
1
n

n∑
j �=i

xjkh(ti − tj)/f̂i(ti),

Êi(Y |T = ti) =
1
n

n∑
j �=i

yjkh(ti − tj)/f̂i(ti),

Û(ti, xi) = xi − Êi(X|T = ti), V̂ (ti, yi) = yi − Êi(Y |T = ti),

Ŝ = Ê(Û Û ′w2(T )) =
1
n

n∑
j=1

Û(tj , xj)Û(tj , xj)′w2(tj),

where kh(t) = (1/h)K(t/h) and K(·) is a kernel function satisfying the condition
in the appendix. The resulting estimators are

β̂ = (Ŝ)−1(1/n)
n∑

j=1

Û(tj , xj)V̂ (tj , yj)w2(tj), γ̂(ti) = Êi(Y |T = ti). (2.6)

Under the conditions in the appendix, we can follow along the lines of Schick
(1996) to derive the following proposition:

Proposition. Under conditions 1−6 in the appendix,

√
n(β̂ − β) = S−1 1√

n

n∑
j=1

U(tj , xj)εjw
2(tj) + Op([

1
h
√

n
+ h2√n]1/2) (2.7)

converges in distribution to N(0, S−1E[(U(T,X)U(T,X)′w4(T )ε2]S−1), and for
any subset [a, b] with 0 < a < b < 1,

sup
a≤t≤b

|γ̂(t) − γ(t)| = Op(
1√
nh

+ h). (2.8)
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For details of the proof, refer to Technical Report 342 of the Department of
Statistics and Actuarial Science, the University of Hong Kong.

2.3. Asymptotic properties of the test

We now state the asymptotic properties of Rn and CVn. Let

J(T,X, Y, β, U, S, F (X|T ), t, x, )

= εw(T )
{
I(T ≤ t,X ≤ x) − E

[
I(T ≤ t,X ≤ x)U(T,X)′w(T )

]
S−1U(T,X)

−F (X|T )I(T ≤ t)
}
,

where F (x|T ) is the conditional distribution of X given T .

Theorem 2.1. Under conditions 1−6 in the appendix, under H0,

Rn(t, x) =
1√
n

n∑
j=1

J(tj , xj , yj, β, U, S, F (xj |tj), t, x, ) + op(1)

converges in distribution to R in the Skorokhod space D[−∞,+∞](d+1), where R

is a centered continuous Gaussian process with the covariance function

E(R(t1, x1)(R(t2, x2))

= E(J(T,X, Y, β, U, S, F (X|T ), t1 , x2, )J(T,X, Y, β, U, S, F (X|T ), t2 , x2, )). (2.9)

Therefore, CVn converges in distribution to CV :=
∫

R2(T,X)dF (T,X) with
F (·, ·) being the distribution function of (T,X).

We now investigate how sensitive the test is to alternatives. Consider a
sequence of models indexed by n

E(Y |X,T ) = α + β′X + g(T ) + g1(T,X)/
√

n. (2.10)

Theorem 2.2. In addition to the conditions of Theorem 2.1, assume that
g1(T,X) has zero mean and satisfies the condition: there exists a neighborhood
of the origin, U , and a constant c > 0 such that, for any u ∈ U ,

|E(g1(T,X)|T = t + u) − E(g1(T,X)|T = t)| ≤ c|u| for all t and x.

Then, under the alternative (2.10), Rn converges in distribution to R+g1∗ where

g1∗(t, x) = E
{
[g1(T,X) − E(g1(T,X)|T )]w(T )I(T ≤ t,X ≤ x)

}

−E{U(T,X)′(g1(T,X) − E(g1(T,X)|T ))w2(T )}S−1

×E
{
U(T,X)w(T )I(T ≤ t,X ≤ x)

}
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is a non-random shift function. Thus CVn converges in distribution to
∫
(B(T,X)

+g1∗(T,X))2dF (T,X).

From the expression for g1∗, we realize that it cannot vanish unless g1(T,X)
= β′X. Hence the test CVn is capable of detecting local alternatives arbitrarily
close to n−1/2 from the null. From the proof of the theorem in the appendix, it
is easy to see that the test is consistent against any global alternative such that
g1(T,X)w(T ) is not a constant function with respect to T ∈ [a, b] and X.

Our test can also detect alternatives with a departure function cng(x/bn),
where cn and bn converge to zero and n1/2(cn × bn) → ∞. This can be shown by
the argument of Theorem 2.2 when some more regularity conditions on function
G(·) are assumed. On the other hand, our test cannot detect any alternative.
Further study of the optimality of the test against certain classes of alternatives
is merited.

3. A Re-sampling Approximation

Let

J1(T,X, Y, t, x, β) = εw(T )I(T ≤ t,X ≤ x),

J2(T,X, Y, t, x, U, S) = εw(T )E[U(T,X)′w(T )I(T ≤ t,X ≤ x)]S−1U(T,X),

J3(T,X, Y, t, x, β, FX|T ) = εw(T )F (X|T )I(T ≤ t).

Then J(T,X, Y, t, x, β, U, S, FX|T ) = J1(T,X, Y, t, x) − J2(T,X, Y, U, S, t, x) −
J3(T,X, Y, β, F (X|T ), t, x). From Theorem 2.1, we have that, asymptotically,
Rn(t, x) = (1/

√
n)

∑n
j=1 J(tj , xj , yj , β, U, S, Fxj |tj , t, x).

The procedure is as follows (see e.g., Zhu, Fujikoshi and Naito (2001)).
• Step 1. Generate random variables ei, i = 1, . . . , n, independent with mean

zero and variance one. Let En := (e1, . . . , en) and define the conditional
counterpart of Rn as

Rn(En, t, x) =
1√
n

n∑
j=1

ejJ(tj, xj , yj , β̂, Û , Ŝ, F̂xj |tj , t, x, ), (3.1)

where β̂, Û , Ŝ, F̂ are consistent estimators of the unknowns in Rn. The
resultant conditional test statistic is

CVn(En) =
∫

(Rn(En))2Fn(t, x). (3.2)

• Step 2. Generate m sets of En, say E
(i)
n , i = 1, . . . ,m, and get m values of

CVn(En), CVn(E(i)
n ), i = 1, . . . ,m.
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• Step 3. The p-value is estimated by p̂ = k/(m + 1) where k is the number of
CVn(E(i)

n )’s which are larger than or equal to CVn. Reject H0 when p̂ ≤ α for
a designated level α.

The following result states the consistency of the approximation.

Theorem 3.1. Under either H0 or H1 and the conditions in Theorem 2.1, we
have that, for almost all sequences {(t1, x1, y1), . . . , (tn, xn, yn), . . .}, the condi-
tional distribution of Rn(En) converges to the limiting null distribution of Rn.

Remark 3.1. The conditional distribution of CVn(En) serves for determining
p-values of the test, we naturally hope that the conditional distribution can well
approximate the null distribution of the test statistic no matter whether data
are from the hypothetized or the alternative model. On the other hand, as we
do not know the underlying model of the data when the re-sampling method is
applied, we take the risk that under the alternative the conditional distribution
is far away from the null distribution of the test. If so, the determination of the
p-values can be inaccurate and damage the power performance. Theorem 3.1
indicates that the conditional distribution based on the RS approximation may
avoid this trouble.

Remark 3.2. Here is why we need not choose a normalizing constant in con-
structing the test statistic. In view of Theorem 2.1, we know that a normalizing

constant could be Cn = supt,x 1/n
∑n

j=1

(
J(tj , xj , yj, β̂, Û , Ŝ, F̂xj |tj , t, x, )

)2
, the

supremum of the sample variance of J(T,X, Y, β, U, S, FX|T , t, x, ) over t and x.
Looking at (3.1), we realize that this is constant when the (ti, xi, yi)′s are given.
For determining p-values, CVn/Cn associated with CVn(En)/Cn is equivalent to
CVn associated with CVn(En).

4. Simulation Study and Application

In the simulations we conducted, the underlying model was

y = βx + bx2 + (t2 − 1/3) +
√

12(t − 1/2)ε, (4.1)

where t is uniformly distributed on [0,1], x and ε are random variables. We
considered the following four cases, as suggested by a referee. (1). Uni-Uni: both
x and ε are uniformly on [-0.05, 0.5]; (2). Nor-Uni: standard normal x and
uniform ε on [-0.5, 0.5]; (3). Nor-Nor: standard normal x and standard normal
ε; (4). Uni-Nor: uniform x on [-0.5, 0.5] and standard normal ε. The empirical
powers of these four cases are plotted in Figure 1. In the simulations, we chose
β = 1 and b = 0.0, 0.5, 1.0, 1.5 and 2.0 for showing the power performance at
different alternatives. Note that b = 0.0 corresponds to H0. The sample size was
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100 and the nominal level was 0.05. The experiment was performed 3000 times.
We chose K(t) = (15/16)(1−t2)2I(t2 ≤ 1) as the kernel function, it has been used
by, for example, Härdle (1988) for estimation and Härdle and Mammen (1993)
for hypothesis testing. Another referee pointed out that the choice of bandwidth
is one of major concerns in hypothesis testing. The difficulty with the theorem’s
treatment is that it does not allow a data-driven choice for h. Indeed, it is not
even clear how h should be selected in this setting. Fan and Li (1996) did not
discuss this issue at all. Gozalo and Linton (2001), in a related work, employed
generalized cross-validation (GCV) to select the bandwidth without arguing its
use. Eubank and Hart (1993) state that with homoscedastic errors GCV is useful,
while with heteroscedastic errors its usefulness is not clear. Selecting a bandwidth
in hypothesis testing is still an open problem and is beyond the scope of this
paper. In our simulation, in order to obtain some insight on how the bandwidth
should be chosen, we combined GCV with a grid search. We first computed
the average value of h, hegcv, selected by GCV over 1000 replications, then we
performed a grid search over [hegcv-1, hegcv+1]. For the cases with uniform error,
h = 0.30 worked best, with h = 0.57 best for the cases with normal error. The
size is close to the target value of 0.05.

We considered a comparison with Fan and Li’s (1996) test (FL). Since the FL
test involves kernel estimation with all covariates including t, we used a product
kernel, each factor of which was K(t) = (15/16)(1 − t2)2I(t2 ≤ 1). In our initial
simulation for the FL test, we were surprised to find that the test had almost
has no power. We found that the estimate of variance being used has severe
influence on power performance since, under the alternatives, its value gets fairly
large. Based on this observation, we used the estimate of variance under H0,
with some constant adjustment so as to maintain the significance level. The
results of the power are reported in Figure 1. Since we know of no other tests
for partial linearity except the FL test, we also included a comparison with the
adaptive Neyman test of Fan and Huang (2001), who reported that the test was
able to detect nonparametric deviations from a parametric model with Gaussian
error. The estimate of the variance is also the one under the null hypothesis in
Figure 1, Adj-FL and Adj-FH stand, respectively, for the FL test and Fan and
Huang’s test with the adjustment of variance estimation.

Looking at Figure 1(1)−(4), for uniform x, CVn has higher power than Adj-
FL and Adj-FH. The adaptive Neyman test Adj-FH works well with the normal
covariate x, see Figure 1(2) and (3), while our test does not perform well in this
case. After the adjustment, Adj-FL is very sensitive to the alternative in the
Nor-Uni case. It seems that there is no uniformly best test here.
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Figure 1. In all plots, the solid line is for the test CVn with a combined
search of GCV and grid points; the dashdot is for the ADJ-FH test; the star
is for the ADJ-FL test.

Example. The data are the depths and locations of n = 43 earthquakes occur-
ring near the Tonga trench between January 1965 and January 1966 (see Sykes,
Isacks and Oliver (1969)). The variable X1 is the perpendicular distance in hun-
dreds of kilometers from a line that is approximately parallel to the Tonga trench.
The variable X2 is the distance in hundreds of kilometers from an arbitrary line
perpendicular to the Tonga trench. The response variable Y is the depth of the
earthquake in hundreds of kilometers. Under the plate model, the depths of the
earthquakes will increase with distance from the trench and the scatter plot of
the data in Figure 2 shows this to be the case. Our purpose is to check whether
the plate model is linear or not. Looking at Figure 2 we find that the plots of
Y against X1 indicate an apparent linear relation with heteroscedasticity, while
that between Y and X2 is not very clear. We find that a linear model is tenable
for Y against X1 with the fitted value Ŷ = −0.295 + 0.949X1, while the linear
model for Y against X2 is rejected. If we try a linear model for Y against both
X1 and X2, Y = β̂0+ β̂τX where X = (X1,X2)τ , Figure 2 (5) and (6) would sup-
port the linearity between Y and X, and the residual plot against β̂τX shows a
similarity to that of Y against X1 in Figure 2 (2). This finding may be explained
as a greater impact on Y by X1 than by X2. However in Figure 2 (4), we can see
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that there is some curved structure between the residuals and X2. The effect of
X2 is not negligible. These observations lead to a more complicated modelling.

Figure 2. (1), (3) and (5) are scatter plots of Y against X1, X2 and β̂τX ,
where β̂ is the least squares estimator of β; (2), (4) and (6) are the residual
plots against X1, X2 and β̂τX when a linear model is used.

A partial linear model Y = β0 + β1X1 + g(X2) + ε = β0 + β1U + r(X2) + ε,
with U = X1 − E(X1|X2), provides some reasonable interpretation. Looking at
Figure 3 (b), we would have E(X1|X2) a nonlinear function of X2. Checking
Figure 3 (c), (Y − β0 − βU) should be nonlinear. The residual plot against
X2 in this modelling shows that there is no clear indication of relation between
the residual and X2. Using the test suggested in the present paper, we have
Tn = 0.009 and the p-value is 0.90. A partial linear model is tenable.

A. Appendix

A.1. Assumptions

(1) Write the first derivative of E(Y |T = t) as E(1)(Y |T = t). Assume that
E(1)(Y |T = t), E(X|T = t) and the conditional distribution function of X given
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FIgure 3. (a). Scatter plot of Y against X2; (b). Scatter plot of X1 against
X2 and the fitted curve Ê(X1|X2) (the solid line); (c). Scatter plot of
Y − β0 − βU where U = X1 − E(X1|X2) and the fitted curve of E(Y |X2)
(the solid line); (d). The residual plot against X2 when the data are fitted
by partially linear model Y = β0 + βX1 + g(X2).

T = t, F (x|t) say, all satisfy the following condition: there exists a neigh-
borhood of the origin, say U , and a constant c > 0 such that for any u ∈ U and
all t and x,

|E(X|T = t + u) − E(X|T = t)| ≤ c|u|;
|E(1)(Y |T = t + u) − E(1)(Y |T = t)| ≤ c|u|;

|F (x|t + u) − F (x|t)| ≤ c|u|. (A.1)

(2) E|Y |4 < ∞ and E|X|4 < ∞.
(3) The continuous kernel function K(·) satisfies:

(a) the support of K(·) is the interval [−1, 1];
(b) K(·) is symmetric about 0;
(c)

∫ 1
−1 K(u)du = 1, and

∫ 1
−1 |u|K(u)du �= 0.

(4) As n → ∞,
√

nh2 → 0 and
√

nh → ∞.
(5) E(ε2|T = t,X = x) ≤ c1 for some c1 and all t and x.
(6) The weight function w(·) is bounded and continuous on its support set [a, b],
−∞ < a < b < ∞, on which f(·) is bounded away from zero.
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Remark A.1. Conditions (1) and (3) are typical for showing convergence rates of
nonparametric estimates. Condition (2) is necessary for the asymptotic normality
of a least squres estimate. Condition (4) ensures the convergence of the test
statistic. Condition (6) is to avoid the boundary effect when a nonparametric
smoothing is applied.

A.2. Proofs, Section 2

Proof of Theorem 2.1. The proposition in Subsection 2.2 and some elementary
calculation show that

Rn(t, x) =
1√
n

n∑
j=1

εjw(tj)I(tj ≤ t, xj ≤ x)

−E(U(T,X)′w(T )I(T ≤ t,X ≤ x)S−1 1√
n

n∑
j=1

U(tj , xj)εjw(tj)

− 1√
n

n∑
j=1

ĝ(tj)w(tj)I(tj ≤ t, xj ≤ x)

+
1√
n

n∑
j=1

g(tj)w(tj)I(tj ≤ t, xj ≤ x) + Op(
1

h
√

n
+

√
nh2)

=: I1(t, x) − I2(t, x) − I3(t, x) + I4(t, x) + Op(
1

h
√

n
+

√
nh2). (A.2)

The convergence of I1 and I2 follows standard empirical process theory, see, e.g.,
Pollard (1984, Chap. VII). We now prove that I3 − I4 converges in distribution
to a Gaussian process. Deal with I3. By some calculation we can derive that,
letting r̂i(ti) = (1/n)

∑n
j �=i(yj − β′xj)kh(ti − tj) and invoking the Proposition,

for a ≤ tj ≤ b,

ĝ(tj) =
r̂j(tj)
f̂j(tj)

=
r̂j(tj)
f(tj)

+
r(tj)
f(tj)

f(tj) − f̂j(tj)
f(tj)

+
r(tj)
f(tj)

(f(tj) − f̂j(tj))2

f̂j(tj)f(tj)
+

r̂j(tj) − r(tj)
f(tj)

f(tj) − f̂j(tj)
f̂j(tj)

=
r̂j(tj)
f(tj)

+ g(tj)
f(tj) − f̂j(tj)

f(tj)
+ Op(

1
hn

+ h2),

where g(tj) = r(tj)/f(tj). Hence

I3(t, x) =
1√
n

n∑
j=1

r̂j(tj)
f(tj)

w(tj)I(tj ≤ t, xj ≤ x)
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− 1√
n

n∑
j=1

g(tj)
f̂j(tj)
f(tj)

w(tj)I(tj ≤ t, xj ≤ x)

+
1√
n

n∑
j=1

g(tj)w(tj)I(tj ≤ t, xj ≤ x) + Op(
1

h
√

n
+

√
nh2)

=: I31(t, x) − I32(t, x) + I33(t, x) + Op(
1

h
√

n
+

√
nh2).

We now rewrite I31(t, x) as a U -statistic. Let w1(t) = w(t)/f(t) and Uh(ti, xi, yi;
tj, xj , yj; t, x) = [(yi − β′xi)w1(tj)I(tj ≤ t, xj ≤ x) + (yj − β′xj)w1(ti)I(ti ≤
t, xi ≤ x)]kh(ti − tj). By the symmetry of kh(·) we have, for fixed h (i.e. for fixed
n), hI3(t, x) = (1/2n3/2)

∑n
j=1

∑n
i�=j hUh(ti, xi, yi; tj , xj , yj; t, x). For the sake of

convenience, let ηj = (tj, xj , yj), and

I ′31(η1, η2, t, x)

=
n

n − 1
h I31(t, x) − E(h I31(t, x)) − 1√

n

n∑
j=1

{E[hUh(η1; tj , xj , yj; t, x)]

−E[hUh(T,X, Y ;T1,X1, Y1; t, x)]}.
Note that E(I ′31(η1, η2, t, x)) = 0 and that the class Gn of functions consisting
of hUh(·, t, x) − E[hUh(η1; ηjt, x)] over all t and x is a Vapnik-Cervonenkis (VC)
class of functions. Therefore Gn is P-degenerate with the envelope

Gn(η1, η2) =
∣∣∣[(y1 − β′x1)w1(t2) + (y2 − β′x2)w1(t1)]|k((t1 − t2)/h)

∣∣∣
+2

∣∣∣E[(Y1 − β′Y1)w1(T2) + (Y2 − β′X2)w1(T1)
]
|k(T1 − T2)/h)

∣∣∣
+

∣∣∣E[(Y1 − β′Y1)w1(t2) + (y2 − β′x2)w1(T1)
]
|k(T1 − t2)/h)

∣∣∣.
By Theorem 6 of Nolan and Pollard (1987, p.786), we have

E sup
x

|
∑
i, j

I ′3(ηi, ηj , t, x)| ≤ cE(αn + γnJn(θn/γn))/n−3/2,

Jn(s) =
∫ s

0
log N2(u, Tn,Gn, Gn)d u,

γn = (TnG2
n)1/2, αn =

1
4

sup
g∈Gn

(Tng2)1/2,

Tng2 :=
∑
i�=j

g2(η2i, η2j) + g2(η2i, η2j−1) + g2(η2i−1, η2j) + g2(η2i−1, η2j−1)

for any function g, and N2(·, Tn,Gn, Gn) is the covering number of Gn under L2

metric with the measure Tn and the envelope Gn. As Gn is a VC class, following
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the argument of Lemma II 2.25 of Pollard (1984, p.27) the covering number
N2(uTn/n2G2

n, Tn/n2,Gn, Gn) can be bounded by cu−w1 for some positive c and
w1, both being independent of n and Tn. Furthermore in probability for large
n, TnG2

n = O(hn2 log2 n) a.s. Hence TnG2
n/n2 is smaller than 1 as h = n−c for

some c > 0 and N2(u, Tn/n2,Gn, Gn) ≤ cu−w1. Note that N2(u, Tn,Gn, Gn) =
N2(u/n2, Tn/n2,Gn, Gn). We can then show that Jn(θn/γn) ≤ Jn(1/4) = n2

∫ 1/(4n2)
0 log N2(u, Tn/n2,G1, G)du = −cn2

∫ 1/(4n2)
0 log udu = c log n and γ2

n =
TnG2

n =O(hn2 log2 n) a.s. Therefore E supt,x |
∑

i,j I ′31(ηi, ηj , t, x)|≤c
√

h/n log n.
Equivalently

I ′31(t, x) =
1√
n

n∑
j=1

{E[Uh(T,X, Y ; tj , xj , yj ; t, x)] + Op(log n/
√

nh). (A.3)

Consequently, noting (n/(n − 1))E(I31(t, x)) = (
√

n/2)E[Uh(T,X, Y ;T1,X1, Y1;
t, x)], we have

I31(t, x) =
1√
n

n∑
j=1

E[Uh(T,X, Y ; tj, xj , yj ; t, x)]

−
√

n

2
E[Uh(T,X, Y ;T1,X1, Y1; t, x)] + Op(

1√
nh

). (A.4)

From the definition of Uh, condition (1) and some calculation, we have, letting
w1(·) = w(·)f(·),

E[Uh(T,X, Y ;T1,X1, Y1; t, x)] = 2E[g(T1)w1(T )I(T ≤ t,X ≤ x)kh(T1 − T )]

= 2E[g(T + hu)w1(T )I(T ≤ t,X ≤ x)K(u)]

= 2E[g(T )w1(T )I(T ≤ t,X ≤ x)] + O(h2), (A.5)

EUh(T,X, Y ; tj , xj , yj; t, x)

= w1(tj)I(tj ≤ t, xj ≤ x)
∫

g(hu + tj)f(hu + tj)K(u)du

+(yj − β′xj)
∫

F (x|T )f(T )w1(T )I(T ≤ t)K((T − tj)/h)/h dT

=: a
(1)
j (t, x) + a

(2)
j (t, x),

where F (X|T ) is the conditional distribution of X given T .
Define

b
(1)
j (t, x) = g(tj)f(tj)w1(tj)I(tj ≤ t, xj ≤ x),

(A.6)
b
(2)
j (t, x) = (yj − β′xj)F (x|tj)f(tj)w1(tj)I(tj ≤ t).
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We have, from conditions (1)−(4) and (6),

sup
t,x

E(a(1)
1 (t, x) − b

(1)
1 (t, x))2 = O(h2),

(A.7)
sup
t,x

E(a(2)
1 (t, x) − b

(2)
1 (t, x))2 = O(h2).

Recalling w1(t) = w(t)f(t) we have

E(b(1)
j (t, x)) = E(b(2)

j (t, x)) = E[g(t)w(T )I(T ≤ t,X ≤ x)],
(A.8)

E(a(1)
j (t, x) + a

(2)
j (t, x)) = E[Uh(T,X, Y ;T1,X1, Y1; t, x)].

Let cj(t, x) = (a(1)
j (t, x) + a

(2)
j (t, x) − b

(1)
j (t, x) − b

(2)
j (t, x)). We now show that,

uniformly over t and x,

1√
n

n∑
j=1

(cj(t, x) − Ecj(t, x)) = Op(h1/2 log n + h2√n). (A.9)

It is easy to see that supt,x var(cj(t, x)) ≤ supt,x Ec2
j (t, x) ≤ 2 supt,x E[a(1)

1 (t, x)−
b
(1)
1 (t, x))2 + 2E(a(2)

1 (t, x) − b
(2)
1 (t, x)]2 ≤ O(h2). Recall the class of all functions

cj(t, x) = c(Tj ,Xj , Yj , t, x) with indices (t, x) discriminates finitely many points
at a polynomial rate (that is, the class is a VC class), see Gaenssler (1983). The
application of the symmetrization approach and the Hoeffding Inequality (see
Pollard (1984, pp.14-16), yield that, for any δ > 0 and some w > 0,

P{sup
t,x

1√
n

n∑
j=1

(cj(t, x) − Ecj(t, x)) ≥ δ}

≤ 4E{P{sup
t,x

1√
n

n∑
j=1

σj(cj(t, x) − Ecj(t, x)) ≥ δ/4|Tj ,Xj , Yj , j = 1, . . . , n}}

≤ E{(cnw sup
t,x

exp([− δ2

32 1
n

∑n
j=1(cj(t, x) − Ecj(t, x))2

]) ∧ 1}.

In order to prove the above to be asymptotically zero, we now bound the denom-
inator in the power. Applying condition (1) and the Uniformly Strong Law of
Large Number, see Pollard (1984, p.23, Chap. II Th. 24), supt,x(1/n)

∑n
j=1(cj(t, x)

−Ecj(t, x))2 = Op(h). Letting δ = h1/2 log n we can derive (A.9). Furthermore
by (A.7), it is easy to verify that

√
nE[ci(t, x)] = O(

√
nh2) = o(1). Combining

with (A.6) and (A.9), we see that

I31(t, x) =
1√
n

n∑
j=1

(b(1)
j (t, x) + b

(2)
j (t, x) − Eg(T )w(T )I(T ≤ t,X ≤ x))
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+Op(
1√
nh

+ h)

= I4(t, x) +
1√
n

n∑
j=1

(b(2)
j (t, x) − Eg(T )w(T )I(T ≤ t,X ≤ x))

+Op(
1√
nh

+ h). (A.10)

We now turn to I32. Following the above U -statistic argument, and using (1)
ad w2(·) = w(·)g(·) in the lieu of yj − β′xj and w(·), respectively, we can verify
that

I32(t, x) =
1√
n

n∑
j=1

(
g(tj)w(tj)(I(tj ≤ t, xj ≤ x)

+
1√
n

n∑
j=1

(
g(tj)w(tj)F (x|tj)T (tj ≤ t))−E[g(T )w(T )I(T ≤ t,X≤x)]

)

+Op(
1√
nh

+ h)

= I33(t, x) +
1√
n

n∑
j=1

(
g(tj)w(tj)F (x|tj)I(tj ≤ t)

−E[g(T )w(T )I(T ≤ t,X ≤ x)]
)

+Op(
1√
nh

+ h). (A.11)

By (A.2), (A.10) and (A.11),

I3(t, x) − I4(t, x) =
1√
n

n∑
j=1

εw(tj)F (x|tj)I(tj ≤ t) + Op(
1√
nh

+ h). (A.12)

This clearly converges in distribution to a Gaussian process. The proof is con-
cluded from (A.2) and (A.12).

Proof of Theorem 2.2. Following the lines of Schick (1996), it is easy to
see that

√
n(β̂ − β) = S−1{(1/√n)

∑n
j=1 U(tj , xj)εjw

2(tj)} + C1 + op(1), where
C1 = S−1E[U(T,X) (g1(T,X) − E(g1(T,X)|T ))w2(T )]. Similar to the proof of
Theorem 2.1, it follows that

Rn(t, x) =
1√
n

n∑
j=1

εjw(tj)I(tj ≤ t, xj ≤ x)

−E(U(T,X)′w(T )I(T ≤ t,X ≤ x)S−1[
1√
n

n∑
j=1

U(tj , xj)εjw
2(tj) + C]
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− 1√
n

n∑
j=1

(ĝ(tj) − g(tj))w(tj)I(tj ≤ t, xj ≤ x) + Op(
1

h
√

n
+

√
nh2)

+
1
n

n∑
j=1

(g1(tj , xj) − E(g1(T,X)|T = tj))w(tj)I(tj ≤ t, xj ≤ x)

=
1√
n

n∑
j=1

εjw(tj)I(tj ≤ t, xj ≤ x)

−E(U(T,X)′w(T )I(T ≤ t,X ≤ x)S−1[
1√
n

n∑
j=1

U(tj , xj)εjw
2(tj)]

− 1√
n

n∑
j=1

(ĝ(tj) − g(tj))w(tj)I(tj ≤ t, xj ≤ x)

+g1∗(t, x) + Op(
1

h
√

n
+

√
nh2)

=: J1(t, x) − J2(t, x) − J3(t, x) + g1∗(t, x) + Op(
1

h
√

n
+

√
nh2),

where g1∗(t, x) is defined in Theorem 2.2. Let Ỹ = β′X + g(T ) + ε, g2(t) =
E(Ỹ − β′X|T = t) and, pretending Ỹ is observable, its estimator at point ti,
ĝ2(ti) = Êi(Ỹ − β′X|T = ti), similar to that in (2.6). It is clear that g(ti) =
g2(ti) + E(g1(T,X)|T = ti)/

√
n and ĝ(ti) = ĝ2(ti) + Êi(g1(T,X)|T = ti)/

√
n.

Furthermore, supi Êi(g1(T,X)|T = ti) − E(g1(T,X)|T = ti)| → 0 in probability
as n → ∞. Then

J3(t, x) =
1√
n

n∑
j=1

(ĝ2(tj) − g2(tj))w(tj)I(tj ≤ t, xj ≤ x)

+
1
n

n∑
j=1

[Êj(g1(T,X)|T = tj)−E(g1(T,X)|T = tj)]w(tj)I(tj ≤ t, xj ≤x)

=
1√
n

n∑
j=1

[ĝ2(tj) − g2(tj)]w(tj)I(tj ≤ t, xj ≤ x) + op(1).

Therefore J3 is asymptotically equal to I3(t, x) − I4(t, x) and J1 and J2 are
analogous to I1 and I2 in (A.2). The proof follows from the argument for proving
Theorem 2.1.

A.3. Proof, Section 3

Proof of Theorem 3.1. We need only notice that even under the local alter-
native, β̂, Û , Ŝ and F̂ (X|T ) are consistent for β, U , S and F (X|T ).

By Wald’s device, for almost all sequences {(t1, x1, y1), . . . , (tn, xn, yn), . . .},
we need to show that (i) the covariance function of Rn(En) converges to that
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of R, (ii) finite distributional convergence of Rn(En) holds for any finite indices
(t1, x1), . . ., (tk, xk) and (iii) uniform tightness. The properties (i) and (ii) are
easily verified, the details are omitted. For (iii) we notice that the functions
J(·, t, x) over all indices (t, x) is a VC class of functions. The Equicontinuity
Lemma holds, see Pollard (1984, p.150). By Theorem VII 21 of Pollard (1984,
p.157), Rn(En) converges in distribution to a Gaussian process R. For more
details, a similar augument can be found in Zhu, Fujikoshi and Naito (2001, the
proof of Theorem 3.2). The proof is finished.
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