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Abstract: In this paper we propose a kernel-based method for estimating addi-

tive partially linear models. Our method makes use of the partially linear model

structure at the initial stage when estimating the individual nonparametric compo-

nents. Monte Carlo simulations show that our proposed estimator performs quite

well for moderate sample sizes. In addition, we provide a consistent estimator for

the asymptotic variance of the estimator of the parameter in the linear part of the

model, where the linear component variable can be discrete or continuous. This

facilitates inferential procedures based on our proposed estimator for the finite di-

mensional parameter. Our result also leads to a simple identification condition for

the finite dimensional parameter.
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1. Introduction

Recently, the marginal integration approach to estimating individual compo-
nents in additive regression models has attracted much attention among statis-
ticians and econometricians, see Linton and Nielsen (1995), Newey (1994) and
Tjostheim and Auestad (1994), among others. To elaborate on the idea of this
approach, consider the following additive regression model with two regressors:

Yi = β0 + g1(Z1i) + g2(Z2i) + Ui, i = 1, . . . , n, (1)

where {Yi, Z1i, Z2i}n
i=1 are independently and identically distributed (i.i.d.) as

{Y,Z1, Z2}, E(Ui|Z1i, Z2i) = 0, β0 is an unknown parameter, g1(·) and g2(·) are
unknown univariate functions. The individual components g1(·) and g2(·) are
identified under the condition that E[g1(Z1)] = 0 and E[g2(Z2)] = 0.

Stone (1985, 1986) has shown that the additive components gα(·), α = 1, 2,
in (1) can be consistently estimated at the same rate as a fully nonparametric re-
gression model with only one regressor. Furthermore, it is shown in Fan, Härdle
and Mammen (1998) and Mammen, Linton and Nielsen (1999) that an addi-
tive component can be estimated as well as if the other components were known
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in advance. Hence additive regression models circumvent the ‘curse of dimen-
sionality’ that afflicts the estimation of fully nonparametric regression models.
Early algorithms for calculating the additive components are based on iterative
procedures using backfitting, which makes its asymptotic properties difficult to
analyze. Only recently has important progress been made in the development
of the asymptotic theory of backfitting, see Opsomer and Ruppert (1997), and
Mammen, Linton and Nielsen (1999). In contrast, the asymptotic theory of the
marginal integration method is relatively easy to establish.

In the marginal integration approach, one estimates gα(zα), α = 1, 2, by
marginally integrating (we use the term ‘marginally integrating’ interchange-
ably with ‘marginally averaging’) a linear smoother of a(z1, z2) such as a local
linear estimator, where a(z1, z2) = E(Y |Z1 = z1, Z2 = z2). Specifically, let
â(z1, z2) be a nonparametric local linear estimator of a(z1, z2). Then an es-
timator of [g1(z1) + β0] can be obtained by integrating â(z1, z2) over z2, i.e.,
m̃1(z1) = n−1 ∑n

j=1 â(z1, Z2j). Using the identification condition, one obtains the
estimator of g1(z1) by subtracting the sample mean of m̃1(·) from m̃1(z1), i.e.,
ḡ1(z1) = m̃1(z1) − n−1 ∑n

i=1 m̃1(Z1i). An estimator for g2(z2) can be similarly
obtained. Other nonparametric estimators of a(z1, z2) such as the Nadaraya-
Watson kernel estimator may also be used. However as shown in Fan (1992,
1993) the local linear approach has a number of advantages over the local linear
kernel approach, including design adaptivity, automatic boundary carpentry, and
minimax efficiency.

Linton and Nielsen (1995), Newey (1994), Tjostheim and Auestad (1994) and
Chen, Härdle, Linton and Severance-Lossin (1995) have shown that the marginal
integration estimator ḡα(zα), α = 1, 2, achieves the one-dimensional optimal
convergence rate. Based on the same idea and the local polynomial approach,
Severance-Lossin and Sperlich (1996) have constructed estimators of derivatives
of individual components in additive regression models, Sperlich, Tjostheim and
Yang (2002) have dealt with the additive models with interaction terms, and
Yang (2002) has considered additive models with proportional components.

Fan, Härdle and Mammen (1998) extended the idea of marginal integration
to weighted marginal integration and showed that, with an appropriate choice
of the weight function, the additive components can be efficiently estimated: an
additive component can be estimated with the same asymptotic bias and vari-
ance as if the other components were known. They also applied the weighted
marginal integration approach to more general models including additive par-
tially linear models. In the context of additive partially linear models, when the
linear component variable is continuous, the asymptotic variance of their esti-
mator of the finite dimensional parameter in the linear part has a complicated
structure for which no explicit expression is given. In this paper we propose an
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alternative approach to estimating additive partially linear models. We provide
an explicit expression for the asymptotic variance of our estimator of the finite
dimensional parameter, and also provide a consistent estimator for it. This facil-
itates inferential procedures based on the proposed estimator for the parameter
in the linear part of the model. As will be seen in Section 2, this also leads to
a simple identification condition for identifying the finite dimensional parameter
of the model and allows one to estimate an additive partially linear model with
interaction terms entering the model parametrically.

The paper is organized as follows. In Section 2 we first review the estimation
methods of Fan, Härdle and Mammen (1998), then introduce our approach and
establish the asymptotic distribution of our proposed estimator. Section 3 reports
some Monte Carlo simulation results on the finite sample performance of the
proposed estimator.

2. Estimating Additive Partially Linear Models

In this section we consider the additive partially linear model

Yi = β0 +X ′
iβ + g1(Z1i) + g2(Z2i) + . . .+ gp(Zpi) + Ui, (2)

where Xi is a q × 1 vector of random variables, β = (β1, . . . , βq)′ is a q × 1
vector of unknown parameters, β0 is a scalar parameter, the Zαi’s are univariate
continuous variables, and gα(·), α = 1, . . . , p, are unknown smooth functions.
The observations {Yi,X

′
i, Z1i, . . . , Zpi}n

i=1 are i.i.d. We impose the condition that
E[gα(Zα)] = 0 for α = 1, . . . , p, so that the individual components g1(·), . . . , gp(·)
are identified. Model (2) is essentially the same as the additive partially linear
model studied in Fan, Härdle and Mammen (1998).

Let Zαi = (Z1i, . . . , Zα−1,i, Zα+1,i, . . . , Zpi), where in Zαi is removed from
(Z1i, Z2i, . . . , Zpi). Define Gα(zα) = g1(z1) + · · · + gα−1(zα−1) + gα+1(zα+1) +
· · · + gp(zp). Then (2) can be written as

Yi = β0 +X ′
iβ + gα(Zαi) +Gα(Zαi) + Ui. (3)

Fan, Härdle and Mammen (1998) considered the case where Xi is a q × 1 vector
of discrete variables and (Z1i, . . . , Zpi) = (Zαi, Zαi) is a 1×p vector of continuous
variables. They suggested two ways of estimating model (3). These are briefly
summarized below (for notational simplicity, we only provide their estimators
without weighting).

(I) The Indicator Method

We use subscript I to denote this estimation method. Let a(zα, zα, x) =
E(Yi|Zαi = zα, Zαi = zα,Xi = x). As in Linton and Nielsen (1995), Fan, Härdle
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and Mammen (1998) proposed to estimate the regression function a(zα, zα, x)
first by ãIα = ãIα(zα, zα, x): the solution in a to the minimization problem

min
{a,b}

n∑
l=1

[Yl − a− (Zαl − zα)b ]2Khα(Zαl − zα)Lhα(Zαl − zα)I(Xl − x), (4)

where Khα(u) = h−1
α K(u/hα), Lhα(u) = h

−(p−1)
α L(u/hα), K: R → R and L:

Rp−1 → R are kernel functions, I is the indicator function, hα is the smoothing
parameter for Zα, and hα is the smoothing parameter for Zα which excludes Zα

from (Z1, Z2, . . . , Zp). The solution ãIα(zα, zα, x) is a special case of the local
linear estimator of E(Yi|Zαi = zα, Zαi = zα,Xi = x). Then gα(zα) is estimated
by

ĝIα(zα) = m̂Iα(zα) − n−1
n∑

i=1

m̂Iα(Zαi), (5)

where m̂Iα(zα) = n−1 ∑n
j=1 ãIα(zα, Zαj,Xj).

After obtaining ĝIα(Zαi), α = 1, . . . , p,
√
n-consistent estimators of β0 and

β can be obtained by regressing [Yi − ∑p
α=1 ĝIα(Zαi)] on (1,X ′

i), i.e.,
(
β̂0I

β̂I

)
=

(X̃ ′X̃)−1X̃ ′(Ỹ − ∑p
α=1 ĝIα), where X̃ is of dimension n × (q + 1) with the ith

row given by (1,X ′
i), Ỹ = (Y1, . . . , Yn)′, and ĝIα is an n × 1 vector with the ith

element given by ĝIα(Zαi), α = 1, . . . , p. The
√
n asymptotic normality result

of β̂I as well as the asymptotic variance of β̂I are given in Theorem 4 in Fan,
Härdle and Mammen (1998).

Fan, Härdle and Mammen (1998) observed that whenXi takes many different
values, the ‘indicator method’ can be difficult to use because, for each fixed value
of x, few data points are available for computing ãIα(zα, zα, x) using (4).

(II) The Linear Method

We use subscript L to denote this estimation method. The ‘linear method’
first estimates the nonparametric component of the regression function, i.e, [β0 +
gα(zα) +Gα(zα)], by choosing a, b and β to minimize

n∑
l=1

[Yl − a− (Zαl − zα)b−X ′
lβ]2Khα(Zαl − zα)Lhα(Zαl − zα). (6)

Let âLα, b̂Lα and β̂Lα be the solution to (6). Then âLα(zα, zα)= âLα is a non-
parametric estimator of [β0+gα(zα)+Gα(zα)]. An estimator of gα(zα) can be ob-
tained by first averaging âLα over Zαj to obtain m̂Lα(zα)=n−1∑n

j=1âLα(zα, Zα j),
and then subtracting the sample mean of m̂Lα(·) from it. Hence, we get ĝLα(zα) =
m̂Lα(zα) − n−1 ∑n

i=1 m̂Lα(Zαi).
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Similar to the ‘indicator method’, after obtaining ĝLα(Zαi) (α = 1, . . . , p),√
n-consistent estimators of β0 and β can be obtained by regressing [Yi − ∑p

α=1

ĝIα(Zαi)] on (1,X ′
i),

(
β̂0L

β̂L

)
= (X̃ ′X̃)−1X̃ ′(Ỹ −∑p

α=1 ĝLα), where ĝLα is an n×1

vector with the ith element given by ĝLα(Zαi), α = 1, . . . , p. The asymptotic dis-
tribution of (β̂0L, β̂

′
L)′ is stated in Theorem 6 in Fan, Härdle and Mammen (1998).

However the explicit expression of the asymptotic variance is quite complicated
and is not given.

Note that, unlike the indicator method, the linear method does not depend
on how many different values that Xi can take. However, like the indicator
method, the linear method does not make full use of the information that Xi

enters the regression function linearly because, in the initial estimation stage,
it treats the linear part (X ′

iβ) nonparametrically (locally) in the sense that the
solution for β is β̂Lα = β̂Lα(zα, zα) (see (6)) which depends on zα and zα . This
motivates us to consider an alternative estimation approach.

(III) An Alternative Approach

Our approach is a two-step estimation procedure which applies to the case
where Xi contains both discrete and continuous elements. We call it the two-step
method. When estimating the individual components gα(zα), our approach takes
into account the fact that Xi enters into the model linearly.

In the first step of the method, we estimate β by using an idea similar to that
of Robinson (1988) who considered the problem of estimating a semiparametric
partially linear model without additive structure. However, in order to obtain
weak identification of β and thus allow one to estimate additive partially linear
models with interaction terms entering the model parametrically (see Remark 1
below), we exploit the additive structure of the nonparametric component in (2).

Define ξ(zα, zα) = E(Yi|Zαi =zα, Zαi =zα), ξα(zα) = E[ξ(zα, Zαi)], η(zα, zα)
= E(Xi|Zαi = zα, Zαi = zα), ηα(zα) = E[η(zα, Zαi)], α = 1, . . . , p. Denote
ξαi = ξα(Zαi) and ηαi = ηα(Zαi), α = 1, . . . , p. Then, applying the linear
operator E[·|Zαi = zα, Zαi = zα] to both sides of (3), one gets

ξ(zα, zα) = β0 + [η(zα, zα)]′β + gα(zα) +Gzα(zα). (7)

Integrating both sides of (7) over zα leads to

ξα(zα) = β0 + [ηα(zα)]′β + gα(zα), (8)

where we used the identification condition E[Gzα(Zα)] = 0. Replacing zα in (8)
by Zαi and then summing both sides of (8) gives

p∑
s=1

ξαi = pβ0 +
p∑

α=1

η′αiβ +
p∑

α=1

gα(Zαi). (9)
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We now subtract (9) from (2) to eliminate
∑p

α=1 gα(Zαi) which yields

Yi −
p∑

α=1

ξαi = (1 − p)β0 + (Xi −
p∑

α=1

ηαi)′β + Ui. (10)

Let Yi = Yi − ∑p
α=1 ξαi and X ′

i = (1, (Xi − ∑p
α=1 ηαi)′). Then in vector

notation, (10) can be written as

Y = X δ + U, (11)

where Y and X are n × 1 and n × (q + 1) matrices with ith rows given by Yi

and X ′
i , respectively, U = (U1, . . . , Un)′ and δ = (α0, β

′)′ with α0 = (1 − p)β0.
Applying ordinary least squares (OLS) to (11) leads to

δ̄ ≡
(
ᾱ0

β̄

)
= (X ′X )−1X ′Y = δ + (X ′X )−1X ′U. (12)

Using standard arguments (The Law of Large Numbers and the Central Limit
Theorem), one can easily show that δ̄ is a

√
n-consistent estimator of δ.

The above estimator δ̄ is infeasible because
∑p

α=1 ξαi and
∑p

α=1 ηαi are un-
known. However, they can be consistently estimated. A consistent estimator of
ξαi = ξα(Zαi) is given by

Ŷαi =
1
n

n∑
j=1

{
∑n

l �=j YlKhα(Zαl − Zαi)Lhα(Zαl − Zαj)∑n
s �=j Khα(Zαs − Zαi)Lhα(Zα s − Zα j)

}

=
n∑

l=1

Wαi,lYl, (13)

Wαi,l =
1
n

n∑
j �=l

Khα(Zαl − Zαi)Lhα(Zαl − Zαj)∑n
s �=j Khα(Zαs − Zαi)Lhα(Zα s − Zαj)

, (14)

with Khα(v) = h−1
α K(v/hα) and Lhα(v) = h

−(p−1)
α L(v/hα), K and L are kernel

functions, hα and hα are smoothing parameters. We see from (13) that Ŷαi is
a weighted average of Yl’s (note that

∑n
l=1Wαi,l = 1). The reason for using∑n

l �=j and
∑n

s �=j (leave-one-out) instead of
∑n

l=1 and
∑n

s=1 in (13) is purely for
simplicity of proofs. The results of the paper do not change if one uses

∑n
l=1 and∑n

s=1 in (13) rather than
∑n

l �=j and
∑n

s �=j.
Similarly a consistent estimator of ηαi is given by

X̂αi =
n∑

l=1

Wαi,lXl. (15)
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A feasible estimator of δ, δ̂ (say) is obtained from (12) by replacing Yi and
Xi by Ŷi = Yi−∑p

α=1 Ŷαi and X̂i = (1, (Xi−∑p
α=1 X̂αi)′)′, respectively. However,

care must be taken to handle the observations near the boundary of the support
of z. At the boundary f̂(z) is not a consistent estimator of f(z) because the bias
term will not go to zero even as n→ ∞. Therefore we need to trim observations
near the boundary. We assume that zα ∈ [cα, dα], where cα < dα are both finite
constants, α = 1, . . . , p. Let Dn =

∏p
α=1[cα + an, dα − an] be the trimming set,

where an = chε for some c > 0, 0 < ε < 1, h = max{hα, hα}. Let Ii = I(Zi ∈
Dn). We estimate δ by

δ̂ =

[∑
i

X̂ ′X̂ Ii
]−1 ∑

i

X̂ ′ŶIi ≡
(
α̂0

β̂

)
= (X̂ ′X̂ )−1X̂ ′Ŷ, (16)

where Ŷ and X̂ are of dimensions n× 1 and n× (q+ 1) with their ith rows given
by IiŶi and IiX̂ ′

i , respectively. Note that the use of a trimming set is more of
theoretical importance. In practice, trimming may or may not be important.

The following theorem shows that β̂ is a
√
n-consistent estimator of β and

presents its asymptotic distribution.

Theorem 2.1. Under condition A given in the appendix A, we have
√
n(β̂ −

β) → N(0,Σ) in distribution, provided Φ def= Var [X1 − ∑p
α=1 ηα(Zα1)] is pos-

itive definite, where Σ = Φ−1ΩΦ−1, Ω = E[U2
1D1D

′
1] with D1 = V1 + (ε1 −

E(ε1))(1 − ∑p
α=1 ψαi), V1 = X1 − E(X1|Z1), ε1 = η(Z1) − ∑p

α=1 ηα(Zα1), and
ψα1 = fα(Zα1)fα(Zα1)/f(Zα1, Zα1). Here fα(·), fα(·) and f(·, ·) are the density
functions of Zα, Zα and (Zα, Zα), respectively.

A consistent estimator of Σ is given in the Appendix A, as is the proof of
Theorem 2.1.

Remark 1. That Φ is positive definite is an identification condition for β.
It allows Xi to be a deterministic function of (Z1i, . . . , Zpi) provided it is not
an additive function. More specifically, consider a simple case of p = 2 with
Xi = Z1iZ2i. Then (2) becomes

Yi = β0 + (Z1iZ2i)β + g1(Z1i) + g2(Z2i) + Ui. (17)

Model (17) does not suffer from the “curse of dimensionality” problem since
it only involves one-dimensional nonparametric functions gα(.), α = 1, 2. Also, it
is more general than an additive model that does not have any interaction terms.
Thus, in general, (2) allows interaction terms to enter the model parametrically.

Remark 2. If η(Zi) (≡ E(Xi|Zi)) is also an additive function in its arguments,
then η(Zi) =

∑p
α=1 ηα(Zαi). Consequently εi ≡ 0, and Ω simplifies to Ω =
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E{U2
i ViV

′
i }. This includes the case that Xi and Zi are independent of each

other.

The second step of the two-step method is to estimate the individual non-
parametric components gα(zα). Given the

√
n-consistent estimator β̂, one can

rewrite (2) as

Yi −X ′
iβ̂ = β0 +

p∑
α=1

gα(Zαi)+Ui +X ′
i(β− β̂) = β0 +

p∑
α=1

gα(Zαi)+ error . (18)

The intercept term β0 can be
√
n-consistently estimated by β̂0 = Ȳ −X̄ ′β̂, where

Ȳ = n−1 ∑n
i=1 Yi and X̄ = n−1 ∑n

i=1Xi.
Note that (18) is essentially an additive regression model with (Yi −X ′

iβ̂) as
the new dependent variable and [Ui +X ′

i(β − β̂)] as the new (composite) error.
Note further that β̂ is a

√
n-consistent estimator of β, a faster rate of convergence

than that of any nonparametric estimator. Therefore the asymptotic distribution
of any nonparametric estimator of gα(zα) based on (18) will remain the same if
one replaces β̂ by β.

One simple way to obtain a consistent estimator of gα(zα) is to replace
β in (8) by β̂, i.e., one can estimate gα(zα) up to a constant by g̃LC,α(zα) ≡
Ŷα,zα − X̂ ′

α,zα
β̂, where Ŷαzα and X̂α,zα are the estimators of ξα(zα) and ηα(zα)

defined in (13) and (15) with zα in place of Zαi. By subtracting the sample
mean from it, we obtain a local constant estimator of gα(zα) that satisfies the
identification condition: ĝLC,α(zα) = g̃LC,α(zα)−n−1 ∑

i g̃LC,α(Zαi). Since this is
a marginal-integration local constant fitting, it can be easily shown that the re-
sulting estimator has an asymptotic normal distribution (see Chen et al. (1995)).

One can also estimate gα(zα) by weighted marginal integration coupled with
the local linear method based on (18). Let ĝLL,α(zα) denote the resulting esti-
mator of gα(zα). Then Theorem 3 of Fan, Härdle and Mammen (1998) gives the
asymptotic distribution of ĝLL,α(zα). As shown in Fan, Härdle and Mammen
(1998), with an appropriate choice of the weight function, ĝLL,α(zα) efficiently
estimates gα(zα).

Finally, one can estimate gα(zα) by the backfitting projection algorithm
based on (18) and the asymptotic distribution of the resulting estimator will
be the same as in Mammen, Linton and Nielsen (1999). For details of the es-
timation, consult that source. Linton (1997) and Mammen, Linton and Nielsen
(1999) have shown that the backfitting method can lead to efficient estimation of
gα(zα) in the sense that the asymptotic variance of the resulting estimator is the
same as when other components were known. Thus, if one uses the backfitting
method to estimate gα(zα) based on (18), the corresponding estimator will be
efficient.
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As emphasized before, the estimator β̂ makes use of the additive structure
of the nonparametric component of the model. Alternatively, as suggested by
an anonymous referee, one can ignore this additive structure and estimate β by
the method of Robinson (1988). Let β̂R denote this estimator. Then one can
use Yi −X ′

iβ̂R as the new dependent variable to estimate gα(·) by following the
same steps as discussed earlier except that β̂ is replaced by β̂R. We use ĝRα(·)
to denote the corresponding estimator of gα(·).

One potential problem with β̂R is that it does not allow Xi to be a de-
terministic function of Zi in which case E(Xi|Zi) = Xi. To see this, con-
sider (17). Clearly β is not identified if one ignores the additive structure of
g(Z1i, Z2i) = g1(Z1i) + g2(Z2i). Then Robinson’s method is not applicable.

Semiparametric efficiency analysis

Chamberlain (1992) has derived the semiparametric efficiency bound of β for
model (2). Let EA(Xi) ≡ EA(Xi|Zi) denote the projection of Xi on the additive
functional space (conditional on Zi). Here the projection is defined in the mean
square error sense, i.e., E{[Xi − EA(Xi)][Xi − EA(Xi)]′} = inf{g(z)=

∑p

α=1
ξα(zα)}

E{[Xi − g(Zi)][Xi − g(Zi)]′}. Chamberlain (1992, p.579) has shown that the
semiparametric efficiency bound for the inverse of the asymptotic variance of an
estimator of β is

J = E
{
[Xi − EA(Xi)] [Var (Ui|Xi, Zi)]

−1 [Xi − EA(Xi)]
′} . (19)

Comparing J with the inverse of our asymptotic variance Σ, we see that Σ−1

differs from the semiparametric efficiency bound stated in (19). However, when
the error is conditionally homoskedastic and E(Xi|Zi) is an additive function
in Zαi, Σ−1 coincides with J , i.e., when E(U2

i |Xi, Zi) = σ2
u and E(Xi|Zi) =

EA(Xi). It is easy to see that in this case εi = 0, and consequently we have
Σ−1 = E{[Xi −E(Xi|Zi)][Xi − E(Xi|Zi)]′}/σ2

u = J .
When the error is conditionally homoskedastic, we conjecture that if one re-

places the marginal integration method by the backfitting projection algorithm
of Mammen, Linton and Nielsen (1999) in the first step, the resulting estimator
of β will be semiparametrically efficient. The intuition for this conjecture is that
jointly estimating the finite-dimensional parameter and the infinite-dimensional
unknown (additive) functions simultaneously will usually lead to efficient esti-
mation of the finite-dimenstional parameter when the error is conditionally ho-
moskedastic (e.g., Carroll, Fan, Gijbels and Wang (1997), Severini and Wong
(1993) and Speckman (1988)).

Using spline and series estimation method, Schick (1996) and Li (2000) have
shown that one can obtain efficient estimators of β when the error is condi-
tionally homoskedastic. However, it is known that kernel-based method often
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out-performs spline and series methods in out-of-sample forecasting with time
series data (like forecasting inflation rate). Therefore, a kernel-based method of
estimating a partially linear additive model should be viewed as a complement
to the series estimation method, and should be useful to applied researchers.

3. Monte Carlo Results

This section reports some simulation results on the finite sample perfor-
mances of the four estimation methods: the ‘indicator’ method, the ‘linear’
method, Robinson’s method and our proposed two-step method. We first use
the following data generating processes (DGP). A similar DGP was used by Fan,
Härdle and Mammen (1998).

(DGP1) : Yi = β0 +X1iβ1 + g1(Z1i) + g2(Z2i) + Ui,

(DGP2) : Yi = β0 +X1iβ1 +X2iβ2 + g1(Z1i) + g2(Z2i) + Ui,

where X1 is a 0-1 dummy variable with P (X1 = 1) = 0.5, X2 is uniform on
{1, 2, 3, 4}, Z1 and Z2 are bivariate normal variables each having zero mean and
unit variance and cov(Z1, Z2) = 0.4, the two additive functions are g1(z1) =
1+z1−z2

1 and g2(z2) = 0.5z2+sin(−z2), Ui = σ(Z1i, Z2i)εi with σ(z1, z2) = {(1+√
z2
1 + z2

2)/4}1/2, and εi a standard normal random variable independent of Xαj

and Zαj for all i, j and α. The parameters are (β0, β1, β2) = (1.5, 0.3, 0.5). We
use the product normal kernel and the smoothing parameters hα = czα,sdn

−1/3,
where zα,sd is the sample standard deviation of {Zαi}n

i=1, α, s = 1, 2. For c = 0.8,
1 and 1.2 the results are quantitatively similar, so we only report the case of c = 1.
We take n = 100 and 200 and the number of replications is 1000.

The computational time of estimating an additive model is roughly n times
the computational time of estimating a (non-additive) nonparametric regression
model. This is because in estimating an additive model, say for p = 2, one needs
to estimate E(Yi|Z1i, Z2j) for each i and j, 1 ≤ i, j ≤ n. This usually involves
two loops, while in estimating a standard nonparametric regression model one
only needs to estimate E(Yi|Z1i, Z2i) for i = 1, . . . , n, which is done in one loop.

Note that the difference between DGP1 and DGP2 is that DGP2 has an
extra discrete regressor X2i that takes four different values. Hence, one would
expect that the performance of the ‘indicator method’ is affected more for DGP2
than for DGP1. On the other hand, our approach is expected to work equally
well for both DGP1 and DGP2.

Tables 1 and 2 report the estimated mean average square errors (MASE) of
gα,n(·) and estimated mean square errors (MSE) of βs,n, α = 1, 2, where gα,n(·)
is an estimator of gα(·) (either ĝIα(·) of the indicator method, ĝLα(·) of the linear
method, ĝRα(·) of Robinson’s method, or ĝα(·) of the two-step method based on



ESTIMATION OF ADDITIVE PARTIALLY LINEAR MODELS 749

a (un-weighted) local linear fitting), and βs,n is either the sth component of β̂I ,
β̂L, β̂R, or β̂, s = 1, 2.

Table 1. MASE of gα,n and MSE of βs,n (n = 100).

Est. Method MASE(g1,n) MASE(g2,n) MSE(β1,n) MSE(β2,n)
DGP 1

Indicator 0.17423 0.10208 0.03626
Linear 0.21767 0.10921 0.03349 N|A

Robinson 0.08798 0.08412 0.02906
Two-Step 0.08591 0.08240 0.02894

DGP 2
Indicator 0.38996 0.24830 0.00982 0.04940
Linear 0.40474 0.24075 0.00983 0.04401

Robinson 0.09806 0.08793 0.00696 0.03345
Two-Step 0.08871 0.08207 0.00685 0.03214

Table 2. MASE of gα,n and MSE of βs,n (n = 200).

Est. Method MASE(g1,n) MASE(g2,n) MSE(β1,n) MSE(β2,n)
DGP 1

Indicator 0.14686 0.06643 0.01537
Linear 0.19840 0.07180 0.01552 N|A

Robinson 0.08403 0.05607 0.01422
Two-Step 0.08322 0.05588 0.01387

DGP 2
Indicator 0.33060 0.15634 0.00396 0.02051
Linear 0.32984 0.14463 0.00391 0.02114

Robinson 0.08019 0.05543 0.00316 0.01467
Two-Step 0.07912 0.05491 0.00299 0.01455

From Tables 1 and 2, we observe that the two-step and Robinson’s estimators
of gα(·) have significantly smaller MASE than those obtained from the indicator
and linear methods. Although the MSE of β̂ and β̂R are also smaller than those
obtained from the other two methods, the relative difference is less significant
than the relative difference between ĝα(·) and ĝIα(·) (or ĝLα(·)).

The above results can be explained as follows. For DGP1, the indicator
method only uses about half of the sample when estimating E(Yi|Z1i, Z2i,Xi)
in the initial stage because Xi = X1i takes two different values. Hence, at this
stage, the indicator method gives a less efficient estimator of E(Yi|Z1i, Z2i,Xi)
compared with the two-step method. Using the method of marginal integration
(averaging) to estimate gα(·) may pick up some, but not all, of the initial-stage
efficiency loss of the indicator method in finite sample applications. When we
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move from DGP1 to DGP2, the performance of the indicator method deteriorates
because in DGP2, Xi has two components and takes (2)(4) = 8 different values.
The estimator ĝLα(zα) is obtained by treating X ′

iβ nonparametrically in the
initial estimation stage, and hence does not perform as well as ĝα(·) or ĝRα(·) in
finite samples. In contrast the two-step and Robinson’s estimators of gα(zα) are
obtained by treating X ′

iβ parametrically. Their performance in finite samples is
basically not affected by how many different values Xi can take, and is in general
better than the estimators of gα(zα) based on the other two methods.

The MSE of βs,n, s = 1, 2, is less affected by the accuracy of the point-wise
estimate gα,n(·), α = 1, 2, because βs,n depends on the average of gα,n(Zαi),
i = 1, . . . , n. The average values of gα,n(Zαi)’s do not differ as much as the
point-wise estimates among the four estimation methods.

A referee points out that, when estimating gα(zα), the better performance of
the two-step method over the linear methods is because the former fixed β at β̂,
given that β̂L is close to β̂, will imply that a further step based on Fan, Härdle and
Mammen (1998) can also achieve a similar performance as the two-step method,
i.e., if one replaces β in (6) by β̂L (rather then by β̂), the resulting estimates
of gα(zα) will be similar to the two-step estimation results. This observation
is indeed correct. For example, for DGP2 with n = 100, an extra iteration on
the linear method gives MASE(g1,n) = 0.09876 and MASE(g2,n) = 0.08581,
which is similar to estimation result of Robinson’s (non-iterative) method. Thus,
in practice one can also use a further iteration of the linear method to obtain
improved estimates of gα(zα). One remaining problem is that the asymptotic
variance of β̂L is not yet available.

The Monte Carlo results reported above show that the two-step and Robin-
son’s estimators perform relatively well. However, it provides no indication that
β̂R of Robinson’s method is dominated by β̂ of the two-step method. The reason
for this is that, for DGP1 and DGP2, we generated X and Z independently,
which implies that E(X|Z) = EA(X) = E(X) = a constant (vector). Hence β̂
and β̂R have the same asymptotic variance (see Remark 2 of Section 2). Next we
consider a DGP for which β̂ is more efficient that β̂R. Consider

(DGP3) : Yi = β0 +X1iβ1 + g1(Z1i) + g2(Z2i) + Ui,

where Xi = a0Z1iZ2i + Vi, Z1i, Z2i and Vi are i.i.d. N(0, 1), Ui is i.i.d. N(0, σ2).
We choose σ = 0.8, a0 = 1 or 2, β0, β1, g1(·) and g2(·) are the same as in
DGP1. For DGP3, it is easy to see that ψαi = 1, ηαi = 0 for α = 1, 2. Hence,
avar(

√
nβ̂) = σ2[E(X2

i )]−1 ≡ σ2{E[(a0Z1iZ2i + Vi)2]}−1, while avar(
√
nβ̂R) =

σ2[E(V 2
i )]−1, since Xi −E(Xi|Zi) = Vi. Hence β̂ is asymptotically more efficient

than β̂R, and we expect to observe some finite sample efficiency gains by using
β̂ over β̂R. Note that for DGP3, the indicator method is not appropriate since
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Xi is a continuous variable. Hence, we only use the remaining three estimation
methods. The simulation results are given in Table 3.

The results in Table 3 are consistent with our theoretical analysis: both the
β̂ of the two-step method and β̂L of the linear method have much smaller MSEs
than Robinson’s β̂R.

Table 3. MASE of gα,n and MSE of βs,n (DGP3, n = 100).

Est. Method MASE(g1,n) MASE(g2,n) MSE(β1,n)
a0 = 1

Linear 0.13540 0.12058 0.00850
Robinson 0.05328 0.05739 0.01194
Two-Step 0.05300 0.05747 0.00560

a0 = 2
Linear 0.14006 0.21406 0.00470

Robinson 0.05458 0.05839 0.01131
Two-Step 0.05362 0.05803 0.00263

In summary, our Monte Carlo simulation results are consistent with our
theoretical analysis. The proposed two-step method exploits the information that
Xi enters the model linearly, and Z1i and Z2i enter the model additively, and thus
its overall performance is better than that of other methods. Robinson’s method
performs well when Xi and Zi are independent with each other. However, when
Xi and Zi are correlated, Robinson’s method can lead to inaccurate estimation
of β. Moreover, when Xi is a deterministic non-additive function of Zi (like
Xi = Z1iZ2i, see (17)), Robinson’s estimator β̂R is not applicable while all other
methods are still well defined and lead to consistent estimates.
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Appendix A

In appendices A and B we omit the indicator function Ii = I(Zi ∈ Dn) for
notational simplicity. Thus,

∑
iAi should be interpreted as

∑
iAiIi. The use of

Ii avoids boundary observations so that the bias in kernel estimation will be of
the order of O(hν

α) or O(hν
α) for all Zi ∈ Dn.

We use the class of functions Gα
ν , ν > 0 and α > 0, introduced in Robinson

(1988), restate here for the readers’ convenience.
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Definition. Let z ∈ Rd be a continuous variable, Gα
ν , ν ≥ 1 a positive integer,

α > 0, is the class of functions g: Rd → R satisfying: g is (ν − 1)-times differen-
tiable; for some ρ > 0, supy∈φzρ|g(y)− g(z)−Qg(y, z)|/||y− z|| ≤ Gg(z) for all z,
where φzρ = {y : |y− z| < ρ}; Qg is (ν− 1)th degree homogeneous polynomial in
y− z with coefficients the partial derivatives of g at z of orders 1 through ν − 1;
g(z) and its partial derivatives of orders 1 through ν − 1 and less, and Gg(Z) all
have finite αth moments.

Condition A.
(i) {(Yi,X

′
i, Z1i, . . . , Zpi)}n

i=1 are i.i.d.; (X ′
i, Z

′
i) has finite support with the sup-

port of Zi being a product set
∏p

α=1[cα, dα]; the density function of Zi is
bounded from below by a positive constant on its support; E(U4

i ) is finite.
(ii) Let f(z1, . . . , zp) denote the density function of (Z1i, . . . , Zpi). Then ξα(zα),

ηα(zα), gα(zα) and f(z1, . . . , zp) all belong to G4
ν , where ν ≥ 2 is an inte-

ger. Let x = (xc, xd), where xc and xd denote the continuous and discrete
components of x, respectively, then for all values of xd, σ2

u(x, z1, . . . , zp) =
E(U2

i |Xi = x,Z1i = z1, . . . , Zpi = zp) ∈ G4
1 .

(iii)The kernel functions K and L are bounded, symmetric, and both are of
order ν.

(iv) As n→ ∞, nh2α → ∞, n3/2hαh
p−1
α → ∞ and n(h2ν

α + h2ν
α ) → 0.

Note that when hα = hα ≡ h, condition (iv) becomes n3/2hp → ∞ and
nh2ν → 0, which allows second order kernels to be used (ν = 2) if p ≤ 5.
Condition A (iv) also implies that the data needs to be undersmoothed.

Proof of Theorem 2.1. Equation (2) can be written in two forms, both used
below:

Yi = β0 +X ′
iβ +

p∑
α=1

gα(Zαi) + Ui, (A.1)

Yi = β0 +X ′
iβ + gα(Zαi) +Gα(Zαi) + Ui. (A.2)

Replacing Yl by (β0 +X ′
lβ + gαl +Gαl + Ul) on the right-hand-side of (13),

we get
Ŷαi = β0 + X̂ ′

αiβ + ĝαi + Ĝαi + Ûαi, (A.3)

where X̂αi is given in (15), ĝαi =
∑n

l=1Wαi,lgαl, Ĝαi =
∑n

l=1Wαi,lGαl, and
Ûαi =

∑n
l=1Wαi,lUl.

In vector-matrix notation, (A.1) and (A.3) can be written as

Y = ιβ0 +Xβ +
p∑

α=1

gα + U, (A.4)
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Ŷα = ιβ0 + X̂αβ + ĝα + Ĝα + Ûα, (A.5)

where ι is a n× 1 vector of ones.
Define a n× 1 constant vector Ḡα by

Ḡα = c ι ≡ [
1
n

n∑
j=1

Gαj ] ι. (A.6)

Note that c = n−1 ∑n
j=1Gα j = Op(n−1/2) because E(Gα j) = 0.

Summing over α in (A.5), also adding and subtracting
∑p

α=1 Ḡα gives
p∑

α=1

Ŷα = ιpβ0 +
p∑

α=1

X̂αβ +
p∑

α=1

ĝα +
p∑

α=1

Ĝα +
p∑

α=1

Ûα

= ιpβ0 +
p∑

α=1

X̂αβ +
p∑

α=1

ĝα +
p∑

α=1

Ḡα +
p∑

α=1

[ Ĝα − Ḡα ] +
p∑

α=1

Ûα. (A.7)

Subtracting (A.7) from (A.4) leads to

Ŷ ≡ Y −
p∑

α=1

Ŷα = ι(1 − p)β0 + (X −
p∑

α=1

X̂α)′β +
p∑

α=1

(gα − ĝα)

−
p∑

α=1

Ḡα −
p∑

α=1

[Ĝα − Ḡα] + U −
p∑

α=1

Ûα

= X̂ δ +
p∑

α=1

(gα − ĝα) −
p∑

α=1

Ḡα −
p∑

α=1

[Ĝα − Ḡα] + U −
p∑

α=1

Ûα. (A.8)

Using (16) and (A.8) we have

√
n(δ̂ − δ) = [X̂ ′X̂/n]−1√nX̂ ′{[

p∑
α=1

(gα − ĝα) −
p∑

α=1

Ḡα

−
p∑

α=1

[Ĝα − Ḡα] + U −
p∑

α=1

Ûα]/n}. (A.9)

Recall that z = (zα, zα), η(z) = E(X1|Z1 = z), ηα(zα) = E[η(zα, Zα)].
Define Vi = Xi − E(Xi|Zi) ≡ Xi − η(Zi) and

V̂αi =
n∑

l=1

Wαi,lVl. (A.10)

Use the short-hand notation ηi = η(Zi) ≡ E(Xi|Zi) and ηαi = ηα(Zαi). Also
define εi = ηi − ∑p

α=1 ηαi. Then we have Xi = ηi + Vi = εi + Vi +
∑p

α=1 ηαi or,
in matrix notation,

X = η + V = ε+ V +
p∑

α=1

ηα, (A.11)
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where X denotes the n× q matrix with ith row given by X ′
i. Hence

X̂ = [ι,X −
p∑

α=1

X̂α] = [ι, ε+ V +
p∑

α=1

(ηα − X̂α)]. (A.12)

First, we show that the following two results hold:

(I) n−1/2X̂ ′{
p∑

α=1

(gα − ĝα) −
p∑

α=1

[Ĝα − Ḡα]} = op(1),

(II) [X̂ ′X̂/n] =




1, E(X1 −
p∑

α=1
ηα1)′

E(X1 −
p∑

α=1
ηα1), E[(X1 −

p∑
α=1

ηα1)(X1−
p∑

α=1
ηα1)′]


 + op(1).

Proof of (I). Using (A.12), we have

n−1/2X̂ ′{ p∑
α=1

(gα − ĝα) −
p∑

α=1

[Ĝα − Ḡα]
}

= n−1/2
{
ι′[

p∑
α=1

(gα − ĝα) −
p∑

α=1

(Ĝα − Ḡα)],

[ε+ V +
p∑

α=1

(ηα − X̂α)]′[
p∑

α=1

(gα − ĝα) −
p∑

α=1

(Ĝα − Ḡα)]}. (A.13)

Noting that n−1/2ε′(gα − ĝα) = op(1) by Lemma B.1 (i), n−1ε′(Ĝα − Ḡα) = op(1)
by Lemma B.2. Since the above results hold with ε replaced by ι we obtain (I),
because all the remaining terms on the right side of (A. 13) are of even smaller
order by Lemma B.4 and Lemma B.5, together with Lemmas B.1 and B.2.

Proof of (II). Using X̂ = [ι,X − ∑p
α=1 X̂α], we get

X̂ ′X̂/n = n−1
(

n, ι′[X − X̂α]
[X − X̂α]′ι, [X − X̂α]′[X − X̂α]

)

=
(

1, Eε′1
Eε1, E(ε1 + V1)(ε1 + V1)′

)
+ op(1), (A.14)

where we have used the facts that n−1ι′[X−X̂α] = n−1ι′[ε+V +
∑p

α=1(ηα−X̂α)] =
E(ε1)+op(1) by Lemma B.5, and n−1[X−X̂α]′[X−X̂α] = n−1[X−∑p

α=1 ηα][X−∑p
α=1 ηα]′ + op(1) ≡ E[(ε1 + V1)(ε1 + V1)′] + op(1) by Lemma B.5. In the above

we also used (see (A.11)) εi +Vi = Xi −
∑p

α=1 ηαi and Eε1 = E(X1 −
∑p

α=1 ηα1).
Thus, (A.14) proves (II).

Using (A.14) and a partitioned inverse yields

[
X̂ ′X̂
n

]−1 =

[
[1 + (Eε1)′Φ−1(Eε1)], −(Eε1)′Φ−1

−Φ−1(Eε1), Φ−1

]
+ op(1), (A.15)
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where Φ = E[(ε1 + V1)(ε1 + V1)′] − (Eε1)(Eε1)′ = Var (V1 + ε1) (as defined in
Theorem 2.1).

Applying (I) to (A.9) leads to

√
n(δ̂ − δ) = [

X̂ ′X̂
n

]−1{n−1/2X̂ ′[U −
p∑

α=1

Ûα −
p∑

α=1

Gα]} + op(1). (A.16)

Next, using Lemma B.5 we get

n−1/2X̂ ′[U −
p∑

α=1

Ûα −
p∑

α=1

Ḡα]

= n−1/2
{
ι′[U−

p∑
α=1

Ûα −
p∑

α=1

Ḡα], [ε+ V +
p∑

α=1

(ηα−X̂α)]′[U−
p∑

α=1

Ûα−
p∑

α=1

Ḡα]
}

= n−1/2
{
ι′[U−

p∑
α=1

Ûα−
p∑

α=1

Ḡα], [V + ε]′[U−
p∑

α=1

Ûα−
p∑

α=1

Ḡα]
}

+ op(1). (A.17)

Hence (A.15)−(A.17) lead to

√
n(β̂ − β) = −Φ−1n−1/2(Eε1)ι′(U −

p∑
α=1

Ûα −
p∑

α=1

Ḡα)

+Φ−1n−1/2[V + ε]′[U −
p∑

α=1

Ûα −
p∑

α=1

Ḡα ] + op(1)

= Φ−1n−1/2
{
[V + ε− (Eε1)ι]′(U −

p∑
α=1

Ûα −
p∑

α=1

Ḡα)
}

+ op(1)

= Φ−1n−1/2{V ′U + [ε− (Eε1)ι]′(U −
p∑

α=1

Ûα)} + op(1), (A.18)

where in the last equality we have used the facts that n−1/2(V + ε− Eε)′Ḡα =
[n−1/2 ∑

i(Vi+εi−Eεi)][n−1 ∑
j Gα j] = Op(n−1/2) = op(1) since E(Gα j) = 0, and

n−1/2V ′Ûα = op(1) because E[||n−1/2V ′Ûα||2] ≤ CE[(Ûαi)2] = op(1) by Lemma
B.3 (ii).

Now using 1/f̂(Zαi, Zα j) = 1/f(Zαi, Zα j)+[1/f̂(Zαi, Zα j)−1/f(Zαi, Zα j)],
we get

n−1[ε− E(ε1)ι]′Ûα = n−1
∑

i

(εi − Eεi)Ûαi

=
1
n3

∑
i

∑
j

∑
l �=j

(εi−Eεi)UlKa(Zαi−Zαl)Lhα(Zαj−Zαl)[f(Zαi, Zαj)]+(s.o.), (A.19)
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where (s.o.) means it has an order smaller than the first term. It is easy to see
that the leading term of n−1(ε − Eε1ι)′Ûα corresponds to i �= j �= l, which can
be written as a third order U-statistic

n−1(ε− Eε1ι)′Ûα =
1
6

(
n

3

)−1 ∑ ∑ ∑
1≤i<j<l≤n

Hn(ζi, ζj, ζl) + (s.o.), (A.20)

where Hn(., ., ., ) is a symmetrized version of (εi − Eεi)UlKh(Zαi − Zαl)L(Zαj −
Zαl)/[f(Zαi, Zαj)] and ζi = (Zi, Ui).

By (A.19) and H-decomposition we have

n−1(ε− Eε1ι)′Ûα =
1
n

n∑
i=1

H1n(ζi) + (s.o.), (A.21)

where H1n(ζi) is the leading term of E[Hn(ζi, ζj, ζl)|ζi] given by

H1n(ζi) =
Uifα(Zαi)fα(Zαi)(εi − Eεi)

f(Zαi, Zαi)
def
= Ui(εi − Eεi)ψαi. (A.22)

with ψαi = fα(Zαi)fα(Zαi))/[f(Zαi, Zαi)].
Using (A.18), (A.21) and (A.22), we get

√
n(β̂ − β) = Φ−1n−1/2

n∑
i=1

Ui[Vi + (εi − Eεi)(1 −
p∑

α=1

ψαi)]

→N(0,Φ−1ΩΦ−1), (A.23)

by the Lindeberg Central Limit Theorem, where Ω = E[U2
i DiD

′
i], Di = Vi +(εi−

Eεi)(1 − ∑p
α=1 ψαi) and εi = ηi − ∑p

α=1 ηαi.

A consistent estimator for Σ

Let Ê(Xi|Zi) denote a kernel estimator of E(Xi|Zi), f̂αi, f̂α i and f̂i denote
the kernel estimators of fα(Zαi), fα(Zα i) and f(Zαi, Zα i), respectively.

Specifically, let Kα,ij ≡ Khα(Zαj − Zαi) and Lα ,ij ≡ Lhα(Zα j − Zα i), then
Ê(Xi|Zi) = n−1 ∑

j XjKα,ijLα ,ij, f̂αi = n−1 ∑
j Kα,ij, f̂α i = n−1 ∑

j Lα ,ij and
f̂i = n−1 ∑

j Kα,ijLα ,ij.
Next, define ψ̂αi = f̂αif̂α i/f̂i, ε̂i = Ê(Xi|Zi) − ∑p

α=1 X̂αi, ε̄ = n−1 ∑
i ε̂i,

V̂i = Xi − Ê(Xi|Zi), D̂i = V̂i + (ε̂i − ε̄)(1 − ∑2
α ψ̂αi), Ûi = Yi − β̂0 − X ′

iβ̂ −∑p
α=1 ĝα(Zαi). Then a consistent estimator of Σ is given by Σ̂ = Φ̂−1Ω̂Φ̂−1,

where Φ̂ = n−1 ∑
i(Xi −

∑p
α=1 X̂αi)(Xi −

∑p
α=1 X̂αi)′ and Ω̂ = n−1 ∑

i Û
2
i D̂iD̂

′
i.

Obviously Ê(Xi|Zi) is a consistent estimator for E(Xi|Zi), and ψ̂αi is a
consistent estimator of ψαi. Also we know that Ûi is a consistent estimator of Ui
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and X̂αi is a consistent estimator of ηαi by Lemma B.5. The above implies that
ε̂i is a consistent estimator for εi.

Using these results, one can easily show that Σ̂ is a consistent estimator of Σ.

Appendix B

As in Appendix A, A = B + (s.o.) means A and B have the same order,
(s.o.) means it has an order smaller than B. Also we use the following short-hand
notations: Kα,ij = Khα(Zαi−Zαj), Lα,ij = L̄hα(Zα i−Zα j), fαi,α j = f(Zαi, Zα j),
and f̂αi,α j = f̂(Zαi, Zα j), where

f̂(Zαi, Zα j) =
1
n

∑
l �=j

Khα(Zαl − Zαi)Lhα(Zα l − Zα j). (B.1)

Because the estimator of β only uses data in the trimmed set Dn (bound-
ary removed), we have supz∈Dn|f̂(z) − f(z)| = Op(hν + ln(n)(nhp)−1/2) and
infz∈Dn|1/f̂(z)| = Op(1). Then for any positive integer m, we have

1
f̂(z)

=
1

f(z)
+

m∑
s=1

(f(z) − f̂(z))m

fm+1(z)
+

(f(z) − f̂(z))m+1

fm+1(z)f̂(z)
. (B.2)

Using (B.2) one can show that whenever there is a term involves 1/f̂ (Zi),
one can replace 1/f̂(Zi) by 1/f(Zi) to obtain its leading term, the remaining
terms will be of smaller orders.

Lemma B.1. (i) n−1 ∑
i(ĝαi−gαi)εi = op(n−1/2), (ii) n−1 ∑

i(ĝαi−gαi)2 = op(1).

Proof of (i). Start with

n−1
∑

i

εi(ĝαi − gαi)

= n−3
∑

i

∑
j

∑
l �=j

εi(gαl − gαi)Kα,ilLα,jl/f̂(Zαi, Zα j)

= n−3
∑

i

∑
j

∑
l �=j

εi(gαl − gαi)Kα,ilLα, jl/f(Zαi, Zα j ) + (s.o.)

≡ A1n + (s.o.) (by using eq. (B.2)).

We need only consider A1n. Since f(., .) is bounded away from zero, A1n

has the same order as B1n = n−3 ∑
i

∑
j

∑
l �=i,l �=j εi(gαl − gαi)Kα,ilLα, jl. B1n

contains three summations, we consider two different cases for B1n: (1) all three
summation indices are different from each other, i.e., i �= j �= l; and (2) j = i �= l.
We use B1n(s), s = 1, 2, to denote these two cases.



758 YANQIN FAN AND QI LI

It is easy to see that E(B1n(1)) = O(hν
α), its second moment is

E[(B1n(1))
2] = n−6

∑ ∑ ∑
i1 �=i2 �=i3

∑ ∑ ∑
i4 �=i5 �=i6

E{[εi1(gαi3 − gαi1)Kα,i1i3Lα, i2i3 ]

×[εi4(gαi6 − gαi4)Kα,i4i6Lα, i5i6 ]}
= (n6h2

αh
2(p−1)
α )−1{n6O(h2+2ν

α h2(p−1)
α ) + n5O(h2+2ν

α h2(p−1)
α )

+n4O(h3
αh

2(p−1)
α + h2+2ν

α h(p−1)
α ) + (s.o.)}

= O(h2ν
α ) +O(hαn

−2) +O(h2ν
α (n2hp−1

α )−1) + (s.o.) = o(n−1).

We briefly explain the above results. When the six summation indices
i1, . . . , i6 take at least five different values, using the fact that for i �= j, E[(gαi −
gαj)Kα,ij ] = hαO(hν

α) = O(h1+ν
α ), it is easy to see that they are of the order of

(n6 + n5)O(h2+2ν
α h

2(p−1)
α ). Next if the six indices take four different values, it is

easy to check that if i1 = i4 and i3 = i6, we get n4O(h3
αh

2(p−1)
α ); if i2 = i5 and

i3 = i6, we get n4O(h2+2ν
α hp−1

α ); if i1 = i4 and i2 = i5, we get n4O(h2+2ν
α h

2(p−1)
α ).

Finally it is easy to see that when the six indices take three different values, it
has a smaller order smaller than those above. Hence, B1n(1) = op(n−1/2).

Next, B1n(2) = 2n−3 ∑
i

∑
l>i(gαl − gαi)Kα,ilL̄α, il. Its second moment is

E[B2
1n(2)]

= 4n−6
∑ ∑

l>i

∑ ∑
l′>i′

E[(gαl − gαi)Kα,ilLα, il(gαl′ − gαi′)Kα,i′l′Lα, i′l′ ]

= 4(n6h2
αh

2(p−1)
α )−1{n4h2

αh
2(p−1)
α O(h2ν

α ) + n3h2
αh

p−1
α O(h2ν

α ) + n2hαh
p−1
α O(h2

α)}
= n−1{O(n−1h2ν

α ) +O(hα(n3hp−1
α )−1)} = o(n−1).

Hence, B1n(2) = op(n−1/2).
Thus we have shown that B1n = op(n−1/2) which implies n−1 ∑

i(ĝαi −
gαi)εi = op(n−1/2). Obviously the above result holds true if one replaces εi
by 1.

Proof of (ii). By using (B.2) one can easily show that n−1 ∑
i(ĝαi−gαi)2 = A2n+

(s.o.), where A2n = n−1 ∑
i(ĝαi − gαi)2f̂2

αi/f̂
2
αi is the same as n−1 ∑

i(ĝαi − gαi)2

except that the random denominator 1/f̂(Zj) is replaced by 1/f(Zj), which can
be further replaced by 1, i.e., ĝαi−gαi = n−2 ∑

j

∑
l �=j(gαl−gαi)Kα,ilLα , jl/f̂αi,α j

can be replaced by I1n,i
def= n−2 ∑

j

∑
l �=j(gαl − gαi)Kα,ilLα , jl

We use E[n−1 ∑
i I

2
1n,i] = E[I2

1n,1] to bound the leading term of n−1 ∑
i(ĝαi −

gαi)2.

E[I2
1n,1] ≤ Cn−4

∑
i

∑
j �=i

∑
i′

∑
j′ �=i′

E[(gαj − gα1)Kα,1jLα , ij(gαj′ − gα1)Kα,1j′Lα , i′j′]
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= (n4h2
αh

2(p−1)
α )−1{n4h2

αh
2(p−1)
α O(h2ν

α ) + n3h2
αh

2(p−1)
α O(h2ν

α ) + n2hαh
p−1
α O(h2

α)}
= O(h2ν

α ) +O(hα(n2hp−1
α )−1) = o(1).

This implies the leading term of n−1 ∑
i(ĝαi − gαi)2 is op(1).

Lemma B.2. n−1(Ĝα − Ḡα)′ε = op(n−1/2).

Proof. Note that Ḡα = c ι with c = n−1 ∑
j Gα j (see (A.6)). Then

n−1(Ĝα − Ḡα)′ε = n−1
∑

i

εi[Ĝα i − c]

= n−3
∑

i

∑
j

∑
l �=j

εi(Gα l −Gα j)Kα,ilLα, jl/f̂(Zαi, Zα j)

= n−3
∑

i

∑
j

∑
l �=j

εi(Gα l −Gα j)Kα,ilLα, jl/f(Zαi, Zα j) + (s.o.)

≡ A2n + (s.o.).

Obviously A2n has the same order as B2n = n−31 ∑
i

∑
j

∑
l �=j εi(Gα l −Gα j)Kα,il

Lα, jl.
B2n contains three summations, we consider three different cases for B3n:

(1) all three summation indices are different from each other, (2) i = l �= j and
(3) i = j �= l. We use B2n(s), s = 1, 2, 3, to denote these cases.

Similar to the proof of E[(B1n(1))2] = op(n−1) in the proof of Lemma B.1,
one can easily show that

E[(B2n(1))
2]

= n−6
∑ ∑ ∑

i1 �=i2 �=i3

∑ ∑ ∑
i4 �=i5 �=i6

E{[εi1(Gα i3 −Gα i2)Kα,i1i3Lα, i2i3 ]

×[εi4(Gα i6 −Gα i5)Kα,i4i6Lα, i5i6 ]}
= (n6h2

αh
2(p−1)
α )−1{n6O(h2

αh
2ν
α ) + n5O(h2

αh
2ν
α ) + n4O(h2

αh
3
α + hαh

2ν
α ) + (s.o.)}

= O(h2ν
α ) +O((n2h(p−4)

α ) + (s.o.) = o(n−1).

Hence, B2n(1) = op(n−1/2).
Next, B2n(2) = 2(n3hα)−1K(0)

∑
i

∑
j>i εi(Gα i −Gα j)Lα, ij . Its second mo-

ment is

E[B2
2n(2)]≤C(n6h2

α)−1
∑ ∑

j>i

∑ ∑
j′>i′

E[(Gα i −Gα j)Lα, ij(Gα i′ −Gα j′)Lα, i′j′ ]

=4(n6h2
αh

2(p−1)
α )−1{n4h2(p−1)

α O(h2ν
α )+n3h2(p−1)

α O(h2ν
α )+n2hp−1

α O(h2
α)}

=n−1{O(h2ν
α (nhα)−2) +O((n3h2

αh
(p−3)
α )−1)} = o(n−1).

Hence, B2n(2) = op(n−1/2).
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Finally, B2n(3) = 2n−3 ∑
i

∑
l>i εi(Gα l −Gα i)Kα, ilLα, il. Its second moment

is bounded by

E[B2
2n(3)]

≤ Cn−6
∑ ∑

l>i

∑ ∑
l′>i′

E[(Gα l −Gα i)Kα, ilLα, il(Gα l′ −Gα i′)Kα, i′l′Lα, i′l′ ]

= 4(n6h2
αh

2(p−1)
α )−1{n4h2

αh
2(p−1)
α O(h2ν

α ) + n3h2
αh

p−1
α O(h2ν

α )

+n2hαh
p−1
α O(h2

α)} = o(n−1)

(this term has an smaller order than E[B2
2n(2)]). Hence, B2n(3) = op(n−1/2).

Thus we have shown that n−1(Ĝα − Ḡα)′ε = op(n−1/2). Obviously the above
proof holds true if one replaces εi by 1.

Lemma B.3. (i) n−1||V̂α||2 = op(n−1/2), (ii) n−1||Ûα||2 = op(n−1/2).

Proof of (i). n−1||V̂α||2 =n−1 ∑
i V̂

′
αiV̂αi. Using (B.2) we can replace V̂αi = n−2∑

j

∑
l �=jKα,ilLα, jlVl/f̂(Zαi, Zα j) by Dα,i =n−2∑

j

∑
l �=jKα,ilLα, jlVl/f(Zαi, Zα j)

to obtain the leading term of V̂αi, where Dα,i is the same as V̂α,i except that
1/f̂(Zαi, Zα j) is replaced by 1/f(Zαi, Zα j). Hence, n−1 ∑

i ||V̂α1||2 has the same
order as n−1 ∑

i ||Dα,i||2. We can bound n−1 ∑
i ||Dα,i||2 by E[n−1 ∑

i ||Dα,i||2] =
E[||Dα,1||2], moreover

E[||Dα,1||2] ≤ Cn−4
∑ ∑

j �=i

∑ ∑
j′ �=i′

E[Kα,1jLα, ijKα,1j′Lα, i′j′V
′
jVj′ ]

= Cn−4
∑ ∑

j �=i

∑
i′ �=j

E[(Kα,1j)2Lα, ijLα, i′jV
′
jVj ]

= C(n2hαh
p−1
α )−2{n3hαh

2(p−1)
α O(1) + n2hαh

p−1
α O(1)}

= n−1/2{O((n1/2hα)−1) +O((n3/2hαh
p−1
α )−1)} = o(n−1/2).

Summarizing, we have shown that E[||n−1V̂α1||2] = o(n−1/2), which implies
that n−1||V̂α||2 = op(n−1/2).

The proof of (ii). follows exactly the same steps as in (i) above.

Lemma B.4. n−1(ĝα − gα)′V = op(n−1/2).

Proof. Let Zn = {Zi}n
i=1. We have E[||n−1(ĝα−gα)′V ||2|Zn] = n−2 ∑

iE[(ĝαi −
gαi)2V ′

i Vi|Zn] ≤ Cn−2 ∑
i(ĝαi − gαi)2 = op(n−1) by Lemma B.1 (ii). Hence,

n−1(ĝα − gα)′V = op(n−1/2).

Lemma B.5. n−1||ηα − X̂α||2 = op(n−1/2).

Proof. Define η̃αi = n−1 ∑
j η(Zαi, Zα j), and η̂αi =

∑
lWαi,l η(Zl). We first

prove two intermediate results:
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(i) n−1||η̃α − ηα||2 = Op(n−1) = op(n−1/2), and (ii) n−1||η̂α − η̃α||2 =
op(n−1/2).

Proof of (i).

E[n−1||η̃α − ηα||2]
= E[(η̃α1 − ηα1)′(η̃α1 − ηα1)]

= n−2
∑
i�=1

∑
j

E[(η(Zα1, Zα i) − ηα1)′(η(Zα1, Zα j) − ηα1)] +O(n−1)

= n−2
∑
i�=1

E[(η(Zα1, Zα i) − ηα1)′(η(Zα1, Zα i) − ηα1)]

+n−2
∑
i�=1

∑
j �=i

E[η(Zα1, Zα i) − ηα1]′E[η(Zα1, Zα j) − ηα1] +O(n−1)

= n−2{O(n) + 0} +O(n−1) = O(n−1),

because E[η(Zα1, Zα i) − ηα(Zα1)] = 0 for i �= 1.

Proof of (ii) Note that n−1||η̂− η̃||2 = n−1 ∑
i(η̂αi− η̃αi)′(η̂αi− η̃αi); η̂α1− η̃α1

= n−2 ∑
j

∑
l �=j(ηα1,α l − ηα1,α j)Kα,1lLα, jl/f̂α1,α j can be replaced by F1n,i = n−2∑

j

∑
l �=j(ηα1,α l−ηα1,α j)Kα,1lLα, jl/fα1,α j to obtain the leading term of η̂α1−η̃α1;

n−1||η̂ − η̃||2 has the same order as n−1 ∑
i ||F1n,i||2. We bound n−1 ∑

i ||F1n,i||2
by E[n−1 ∑

i ||F1n,i||2] = E[||F1n,1||2], then note that

E[||F1n,1||2]
≤ Cn−4

∑
j

∑
l �=j

∑
j

∑
l′ �=j′

E[(ηα1,α l − ηα1,α j)′Kα,1lLα, jl

×(ηα1,α l′ − ηα1,α j′)Kα,1l′L̄α, j′l′

= (n2hαh
p−1
α )−2{n4h2

αh
2(p−1)
α O(h2ν

α ) + n4h2
αh

2(p−1)
α O(h2ν

α ) + n2hαh
p−1
α O(h2

α)}
= {O(h2ν

α ) +O((n2hαh
p−3
α )−1)} = o(n−1/2).

We now prove Lemma B.5. From Xi = η(Zi) + Vi, we have X̂α = η̂α + V̂α.
Hence,

n−1||ηα − X̂α||2 = n−1||ηα − η̂α − V̂α||2 ≤ Cn−1{||ηα − η̃α||2 + ||η̃α − η̂α||2 +
||V̂α||2} = op(n−1/2) by (i) and (ii) above, and by Lemma B.3 (i).
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Chen, R., Härdle, W., Linton, O. and Severance-Lossin, E. (1995). Estimation and vari-
able selection in additive nonparametric regression models. Discussion paper, SFB 373,

Humboldt-Universität zu Berlin.



762 YANQIN FAN AND QI LI

Fan, J. (1992). Design-adaptive nonparametric regression. J. Amer. Statist. Assoc. 87,

998-1004.
Fan, J. (1993). Local linear regression smoothers and their minimax efficiency. Ann. Statist.

21, 196-216.
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