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Abstract: We consider a regression setting where the response is a scalar and the

predictor is a random function defined on a compact set of R. Many fields of appli-

cations are concerned with this kind of data, for instance chemometrics when the

predictor is a signal digitized in many points. Then, people have mainly considered

the multivariate linear model and have adapted the least squares procedure to take

care of highly correlated predictors. Another point of view is to introduce a con-

tinuous version of this model, i.e., the functional linear model with scalar response.

We are then faced with the estimation of a functional coefficient or, equivalently, of

a linear functional. We first study an estimator based on a B-splines expansion of

the functional coefficient which in some way generalizes ridge regression. We derive

an upper bound for the L2 rate of convergence of this estimator. As an alternative

we also introduce a smooth version of functional principal components regression

for which L2 convergence is achieved. Finally both methods are compared by means

of a simulation study.
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1. Introduction

In several applications, regression analysis is concerned with functional data
as it is the case when the predictor is a curve linked to a scalar response variable.
This arises, for instance, in chemometrics where some chemical variable has to
be predicted by a digitized signal such as the Near Infrared Reflectance (NIR)
spectroscopic information (Osborne, Fearn, Miller and Douglas (1984)). Other
applications may be found in the literature, prediction of total annual precipi-
tation for Canadian weather stations from the pattern of temperature variation
through the year (Ramsay and Silverman (1997)) and the analysis of the re-
lationship between log-spectra of sequences of spoken syllables and phoneme
classification (Marx and Eilers (1996)) being examples.

In this context we are faced with the problem of estimating the link between
a real random response Y and a square integrable random function X defined
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on some compact set C of R. Here we are concerned with the functional linear
model with scalar response, which is defined as

Y =
∫
C
α(t)X(t)dt + ε, (1)

where α is a square integrable function defined on C and ε is a random variable
such that Eε = 0 and EX(t)ε = 0, for t a.e. Model (1) may be written as

Y = Ψ({X(t), t ∈ C}) + ε, (2)

where Ψ is some continuous linear functional and traces back to Hastie and
Mallows (1993) (see also Ramsay and Silverman (1997)). Our goal is to address
the problem of identifiability of (1), that is, existence and unicity of the functional
coefficient α known as the contrast template or the weight regression function, and
to estimate α and/or the linear functional Ψ from a sample (Xi, Yi), i = 1, . . . , n
drawn from (X,Y ).

In applications, the curve X is discretized at points t1, . . . , td. In practi-
cal studies, and especially in chemometrics, one gets used to approximating the
integral in (1) by

∑d
j=1 α(tj)X(tj), and statistical procedures that adapt least

squares to estimate coefficients α(t1), . . . , α(td) have been developed. Indeed,
one considers discretizations X(t1), . . . ,X(td) of X as d real covariates in an ill-
conditioned regression problem in which one has many predictors with a high
degree of collinearity. Frank and Friedman (1993) summarize chemometrics re-
gression tools that are intended for this situation, i.e., partial least squares (PLS)
and principal components regression (PCR). The authors give an unifying ap-
proach of these methods and of ridge regression (RR) since they all constrain
the coefficient vector in a linear regression model to be in some subspace, in
such a way that the projected predictor variables have larger sample variance. A
Bayesian motivation for this is also provided.

Even if these methods perform well, they do not really take into account
the functional nature of the data. As pointed out by Hastie and Mallows (1993)
in the discussion of the aforementioned paper, it is more natural to develop
techniques that take account of the order relation among the index values of the
predictors. Moreover, Frank and Friedman note in the response that a procedure
that constrains the coefficient vector to be a smooth function (such as the one
defined in Section 3 below) might work better than RR, PLS and PCR when the
curve predictor is not smooth. See also Marx and Eilers (1999), who compare
the benefits of a functional technique with PLS and PCR. More generally, a part
of the literature has recently been concerned with functional data in a variety of
statistical problems, and with developing ad hoc procedures based on smoothing
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techniques. The monograph of Ramsay and Silverman (1997) gives good insights
into a variety of models dealing with data taken as curves.

Several procedures have been presented in the literature to estimate the con-
trast template and/or the functional Ψ from a “functional point of view”. Hastie
and Mallows (1993) propose an estimator for α that minimizes a penalized least
squares criterion, the solution being a cubic spline. This method is studied by
Ramsay and Silverman (1997) who discuss various computational aspects. A
second approach, proposed by Hastie and Mallows, is based on a smooth basis
expansion of the function α. Marx and Eilers (1999) use a smooth B-spline ex-
pansion for α and introduce a difference penalty in a log-likelihood criterion in
the context of smoothed generalized linear regression. The estimation procedure
for α defined in Section 3 combines, similarly to the one defined by Marx and
Eilers (1996), a smooth basis expansion procedure with a roughness penalty in
a least squares criterion, both introduced by Hastie and Mallows (1993), and it
can be seen as a smooth version of RR. Thus, adding a roughness penalty in the
least squares criterion allows one to obtain a given level of smoothness in the
representation, as discussed in Ramsay and Silverman (1997, Chapter 4). Direct
estimation of the functional Ψ has been achieved in Cardot, Ferraty and Sarda
(1999) by means of a functional PCR, in the setting of a predictor valued in a
general real separable Hilbert space. We propose a smooth version of this func-
tional principal components regression that we call smooth principal components
regression (SPCR). The first step consists in a least squares regression of Y on
real variables that are coordinates of the projection of the functional predictor on
the space spanned by eigenfunctions associated with the greatest eigenvalues of
the training-sample covariance operator of the predictor. After this a smoothing
procedure is applied to the estimator.

Notations and definitions for the functional linear model together with a
condition for the existence and unicity of α are given in Section 2. The B-splines
basis expansion of α is defined in Section 3 and some asymptotic properties of this
estimator are studied. Particularly, we derive an upper bound for the L2 rate of
convergence. The alternative SPCR estimator is defined and studied in Section
4. In Section 5, the practical performances of the two different procedures, as
well as computational aspects, are discussed by means of a Monte Carlo study.
Generalized cross validation is used to select the regularization parameter in the
first procedure and the dimension of the projection space in the second one.
Proofs are in Section 6.

2. The Functional Linear Model

Suppose from now on that C = [0, 1] and let H be the separable Hilbert space
of square integrable functions defined on [0, 1]. Let < φ,ψ > denote the usual
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inner product of functions φ and ψ on H and ‖φ‖ the norm of φ. Let (X,Y ) be
a pair of random variables defined on the same probability space, with X valued
in H and Y valued in R. Let f be the conditional mean of Y given X, so that
E [Y |{X(t) = x(t), t ∈ [0, 1]}] = f({x(t), t ∈ [0, 1]}), x ∈ H. If the functional f
is linear and continuous, then by the Riesz Representation Theorem there is a
unique function α in H such that

E [Y |{X(t) = x(t), t ∈ [0, 1]}] =< α, x >, x ∈ H. (3)

When f is not linear or continuous, consider a continuous linear approximation
of f as the function α in H satisfying

α = arg min
β∈H

E
[
(Y− < β,X >)2

]
= arg min

β∈H
E
[
(f(X)− < β,X >)2

]
. (4)

Then consider model (1), equivalently (2), with Ψ the continuous linear functional
defined as

Ψ(x) =< α, x >, x ∈ H. (5)

In this functional setting, α does not necessarily exist and, when it does, it is
not necessarily unique. We give below a condition for the existence and unicity
of α based on the covariance operator of X and the cross covariance operator of
X and Y .

To make everything formal, first introduce the covariance operator Γ of
the H-valued random variable X, assumed to be centered (EX(t) = 0, for
t a.e.) and to have a finite second moment (E(‖X‖2) < ∞). It is defined
as Γx(t) =

∫ 1
0 E [X(t)X(s)] x(s)ds, x ∈ H, t ∈ [0, 1]. Note that Γ is an in-

tegral operator whose kernel is the covariance function of X, and it may be
shown that the operator Γ is nuclear, self-adjoint and non-negative (Dauxois
and Pousse (1976) and Dauxois, Pousse and Romain (1982)). In the same way,
we define the cross covariance operator ∆ of (X,Y ). It is the linear functional
∆x =

∫ 1
0 E [X(t)Y ] x(t)dt, x ∈ H. By analogy with the multivariate case, it is

easy to show that α is a solution of (4) if and only if it satisfies

< E (XY ) , x >= ∆x =< α,Γx >, x ∈ H. (6)

In the following, we denote by λj, j = 1, 2, . . . the eigenvalues of Γ and by vj , j =
1, 2, . . . a complete orthonormal system of eigenfunctions. Then we can write
α =

∑∞
j=1 < α, vj > vj. By (6),

< E (XY ) , vj > = λj < α, vj > , j = 1, 2, . . . , (7)

which allows us to get the coordinates of α on the functions vj .
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Suppose now that N (Γ) = {x ∈ H, Γx = 0} �= {0}. Then some eigenvalues
are null and, if α satisfies (6), α + α0 also satisfies (6), for any α0 ∈ N (Γ).
Consequently unicity of a solution for (4) is not insured, α can only be uniquely
determined in the space N (Γ)⊥. From now on we look for a solution in the closure
of Im(Γ) = {Γx, x ∈ H} or we assume without loss of generality that N (Γ) is
reduced to zero. Now, inverting (7), we get the expansion for α:

α =
∞∑

j=1

< E (XY ) , vj >

λj
vj , (8)

and the function α will belong to H if and only if the following condition is
satisfied.

Condition 1. The random variables X and Y satisfy
∞∑

j=1

< E(XY ), vj >
2

λ2
j

<∞.

Condition 1 insures the existence and unicity of a solution α of the opti-
mization problem (4) in the closure of Im(Γ), it is the Picard condition in the
field of linear inverse problems (see e.g., Kress (1989)). Let us note that this
condition is automatically fulfilled when f is a continuous linear functional and
then f(X) =< α,X > .

Finally, notice that (8) tells us that estimation of α is a hard task since the
eigenvalues λj decrease rapidly towards zero.

3. Penalized B-splines Expansion

When the covariance matrix of the predictor variables is singular or ill-
conditioned, the aim of RR is to stabilize it by adding a multiple of the identity
matrix to it. Thus, the method consists in penalizing the least squares criterion
with a penalty proportional to the squared norm of the coefficient vector. We
may think of a generalization of RR for the functional linear model using a B-
splines expansion of the functional coefficient. From a more general point of view
we will use a penalty proportional to the squared norm of a derivative given the
order of the functional coefficient, the effect of which being to give preference for
a certain degree of smoothness (see Ramsay and Silverman (1997, Chapter 4)).

Let us first define the space of splines. In order to simplify notations and
proofs we consider spline functions defined on equispaced knots. This can be
relaxed by choosing other features for the position of the knots. Suppose that
q and k are integers and let Sqk be the space of splines defined on [0, 1] with
degree q and k − 1 equispaced interior knots. The set Sqk is the set of functions
s satisfying:
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• s is a polynomial of degree q on each interval [(t− 1)/k, t/k], t = 1, . . . , k;
• s is q − 1 times continuously differentiable on [0, 1].

The space Sqk has dimension q + k and one can derive a basis by means
of normalized B-splines {Bk,j, j = 1, . . . , k + q} (see de Boor (1978)). In the
following we denote by Bk the vector of all the B-splines and by B

(m)
k the vector

of derivatives of order m of all the B-splines for some integer m (m < q).
Strictly speaking the curve Xi is discretized at the locations ti1, . . . , t

i
di

so
that the data consist of ({Xi(tij), j = 1, . . . , di}, Yi), i = 1, . . . , n. However, we
consider in a first attempt that the curves are entirely observed and will discuss
below (see Remarks 2 and 6) the problem of discretization. Our penalized B-
splines estimator of α is thus defined as

α̂PS =
q+k∑
j=1

θ̂jBk,j = B′
kθ̂,

where θ̂ is a solution of the minimization problem

min
θ∈Rq+k

1
n

n∑
i=1

Yi −
q+k∑
j=1

< θjBk,j,Xi >

2

+ ρ
∥∥∥B(m)′

k θ
∥∥∥2
, (9)

with smoothing parameter ρ > 0. Let Γn and ∆n be the empirical version of
operators Γ, respectively ∆, defined as

Γnx(t) =
1
n

n∑
i=1

< Xi, x > Xi(t), x ∈ H, t ∈ [0, 1],

∆nx=
1
n

n∑
i=1

< Xi, x > Yi, x ∈ H.

Then, the solution θ̂ of the minimization problem is given by θ̂ = Ĉ
−1
ρ b̂ =

(Ĉ +ρGk)−1b̂, where Ĉ is the (q+k)× (q+k) matrix with elements n−1∑n
i=1 <

Bk,j,Xi > < Bk,l,Xi >=< ΓnBk,j, Bk,l >, b̂ is the vector in R
q+k with elements

n−1∑n
i=1 < Bk,j,Xi > Yi = ∆nBk,j, and where Gk is the (q + k) × (q + k)

matrix with elements < B
(m)
k,j , B

(m)
k,l >. In the special case where m = 0, the

minimization criterion (9) becomes

1
n

n∑
i=1

(
Yi− < B′

kθ,Xi >
)2 + ρ

∥∥B′
kθ
∥∥2
,

which is a functional generalization of the ridge regression criterion.



FUNCTIONAL LINEAR MODEL 577

We study now the performance of α̂PS in terms of the asymptotic behavior
of the L2 norm in H with respect to the distribution of X defined as ‖φ‖2

2 =<
Γφ, φ >, φ ∈ H. Note that since for each φ in H, there is a unique element Φ in
the space H ′ of continuous linear functional (from H to R) such that Φ(X) =<
φ,X >, the corresponding norm in H ′ is ‖Φ‖2

2 = EΦ2(X), Φ ∈ H ′. Theorem 3.1
is devoted to the existence and unicity of a solution of the minimization problem
(9). An upper bound for the L2 rate of convergence is given in the same Theorem.

To get the L2 convergence of α̂PS , we need the following assumptions on the
functional variable X.

(H.1) ‖X‖ ≤ C1 <∞, a.s.

(H.2) Var (Y |{X(t) = x(t), t ∈ [0, 1]}) ≤ C2 <∞ and |f(x)| ≤ C3 <∞, x ∈ H;

The functional coefficient α is supposed to be sufficiently smooth. Indeed, α is
supposed to have p′ derivatives for some integer p′ with α(p′) satisfying

(H.3) |α(p′)(y1) − α(p′)(y2)| ≤ C4|y1 − y2|ν , C4 > 0, ν ∈ [0, 1].

In the following, we note p = p′ + ν and assume that the degree q of splines is
such that q ≥ p.

Theorem 3.1. Let ρ ∼ n−(1−δ0)/2 for some 0 < δ0 < 1, and suppose that
ρk2(m−p) = o(1). Under (H.1)−(H.3), we have

(i) A unique solution to the minimization problem (9) exists except on an event
whose probability goes to zero as n→ ∞.

(ii) E
(‖α̂PS − α‖2

2|X1, . . . ,Xn

)
= Op(kρ−1n−1) + Op(k−2p) + Op(ρk2(m−p)) +

Op(ρ).

Corollary 3.1. Under the assumptions of Theorem 3.1 and for k ∼ n1/(4p+1)

and ρ ∼ n−2p/(4p+1) we get, for m ≤ p,

E
(
‖α̂PS − α‖2

2|X1, . . . ,Xn

)
= Op(n−2p/(4p+1)). (10)

Remark 1. Condition (H.1) is quite usual in similar functional models, see
for instance Bosq (1991, 2000), whereas condition (H.2) is often assumed in
nonparametric regression estimation.

Remark 2. In practical situations, the curvesXi’s are not observed continuously
but at design points 0 ≤ ti1 < ti2 < · · · < tidi

≤ 1. Then, to compute the estimators
of α one has to replace integrals by summations. One can show that discretization
has no effect on the rates of convergence obtained in Theorem 3.1 provided that
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δ = maxi |ti+1 − ti| = o(ρ/k), i.e., converges to zero sufficiently fast compared to
the number of knots k when n tends to infinity.

4. Smooth Principal Components Regression

When the predictor variables are scalars (that is X is a vector of R
d), PCR

consists of an ordinary least squares (OLS) regression of the response Y on the
projections of X on the eigenfunctions corresponding to the K greatest eigen-
values of the training-sample covariance matrix of X. In our functional linear
model we adapt this method in the following way. First we make an OLS of the
response Y on the variables < v̂k,X >, k = 1, . . . ,K, v̂k being the eigenfunctions
associated with the kth greatest eigenvalues λ̂k of the training-sample covariance
operator of the functional variable X. After this we smooth the estimator of the
functional coefficient by means of a B-spline estimator.

Thus to overcome the problem of the non-existence of a bounded inverse of
Γ (since it is a nuclear operator), Cardot, Ferraty and Sarda (1999) propose to
project the data on a finite dimensional space spanned by estimators of the first
K eigenfunctions of Γ. Such an approach has also been proposed by Bosq (1991,
2000) in order to predict an Hilbertian autoregressive process. An estimator for
Ψ is then derived by inverting (6) in this space with Γ, respectively ∆, replaced
by their empirical version from the sample (Xi, Yi), i = 1, . . . , n. More precisely,
let K = K(n) be a given integer such that the Kth greatest eigenvalue of Γn is
non-null and let HK be the space spanned by the eigenfunctions v̂K associated
with the K greatest eigenvalues λ̂j , j = 1, . . . ,K. The estimator Ψ̂PCR of Ψ is
then defined as

Ψ̂PCR = ∆nΠK (ΠKΓnΠK)−1 =
K∑

j=1

∆nv̂j

λ̂j

< v̂j , . >, (11)

where ΠK is the orthogonal projection on HK . Equivalently one can define the
corresponding estimator of α as

α̂PCR =
K∑

j=1

∆nv̂j

λ̂j

v̂j .

This estimator of α has been shown to converge in probability and almost surely
(see Cardot, Ferraty and Sarda (1999)). However, it has been pointed out in a
simulation study that this estimator of function α is too rough even for large
n. We then add a second step to the estimation procedure, i.e., we smooth the
curve α̂PCR by means of a B-spline approximation: α̂PCR is the solution of

min
β∈Sqk

∫ 1

0
(α̂PCR(t) − β(t))2 dt. (12)
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To ensure the convergence of the Smooth PCR estimator α̂SPCR, we assume

(H.4) The eigenvalues of Γ are distinct.

We define the sequence (aj)j as a1 = 2
√

2/(λ1 − λ2) and

aj =
2
√

2
min(λj−1 − λj, λj − λj+1)

, j ≥ 2.

Theorem 4.1. Suppose that (H.1)−(H.4) hold and that K and k tend to infinity
when n tends to infinity.
(i) A unique estimator α̂SPCR exists, except on an event whose probability goes

to zero as n→ ∞, if

lim
n→∞

K∑
j=1

exp

{
− n

a2
j

}
= 0. (13)

(ii) If k tends to infinity when n tends to infinity and

lim
n→∞nλ4

K = ∞ and lim
n→∞

nλ2
K(∑K

j=1 aj

)2 = ∞, (14)

then ‖α̂SPCR − α‖2 −→
n→+∞ 0, in probability.

The proof of Theorem 4.1 follows essentially the same line as the proof of
Theorem 3.1 in Cardot, Ferraty and Sarda (1999) so we just give a sketch of it.

Point (i) is insured when the eigenvalues of the empirical covariance operator
Γn are strictly positive and distinct. Define Cj = max((λj−1 − λj)/2, (λj −
λj+1)/2). Lemma 5.3 in Cardot, Ferraty and Sarda (1999) shows that for some
positive constants c3 and c4,

P [∃j = 1, . . . ,K, ‖Γn − Γ‖ > Cj ] ≤
K∑

j=1

2 exp
(
− C2

j n

2c3(c3 + c4Cj)

)
. (15)

Since Γn and Γ are symmetric positive compact operators, we have from Chatelin
(1983) that

|λ̂j − λj | ≤ ‖Γn − Γ‖, j = 1, . . . , n. (16)

Then (15) and (16) complete the proof of (i).
For (ii), noticing that

λ1‖α‖2 ≥ ‖α‖2
2, for all α ∈ L2[0, 1], (17)

we have Theorem 3.1 in Cardot, Ferraty and Sarda (1999),

‖α̂PCR − α‖2 −→
n→+∞ 0, in probability. (18)
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Let us denote by Sk the projection operator onto Sqk defined in H. We have
α̂SPCR = Sk(α̂PCR) and

α̂SPCR − α = (Sk(α) − α) + Sk (α̂PCR − α) . (19)

Now appealing to Theorem XII.1 from de Boor (1978), (17) for the first term
and the contraction property of projections for the second term, we get

‖α̂SPCR − α‖2 ≤ 1√
λ1

‖α− Sk(α)‖ + ‖α̂PCR − α‖2

= O(k−p) + op(1), (20)

which completes the proof.

Remark 3. An upper bound for the rate of convergence in Theorem 4.1 can be
specified for geometrically and exponentially decreasing eigenvalues of Γ. Indeed,
using the developments (see equation (24)) in Cardot, Ferraty and Sarda (1999),
we get

‖α̂SPCR − α‖2
2 = O(k−2p) +O

 +∞∑
j=K+1

λj

+Op

(
1

nλ4
K

)
+Op


(∑K

j=1 aj

)2

nλ2
K

 .
(21)

(i) Suppose that λj = arj, 0 < r < 1. The sum of the variance terms, i.e., the last
two terms in the right side of equation (21), are of order Op(1/nr4K), whereas
the squared bias term O(

∑+∞
j=K+1 λj) is of order O(rK+1). Minimizing the sum

with respect to K, leads to a value Kopt wich realizes the trade-off between bias
and variance:

Kopt = 1/5
[

log n
log(1/r)

]
. (22)

If k−2p = O(n−1/5), we finally get with this value Kopt for K

‖α̂SPCR − α‖2 = Op(n−1/10). (23)

Furthermore, it is easy to check that (13) is fulfilled since

Kopt∑
j=1

exp

(
− n

a2
j

)
≤ Kopt exp

(
−Cnλ2

Kopt

)
≤ exp

(
−Cnλ2

Kopt
+ logKopt

)
for some positive constant C and lim−Cnλ2

Kopt
+ logKopt = −∞ by (21), (23)

and (22).

(ii) Suppose that λj = cj−γ , γ > 1. Since
∑K

j=1 aj = O
(
Kγ+2

)
, the sum of

the variance terms is of order Op(K2γ+4K2γ/n) and the bias term is of order
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O(1/Kγ−1). Realizing the trade-off between bias and variance leads to the value
Kopt =

[
n1/(5γ+3)

]
, and if k−2p = O

(
n−(γ−1)/(5γ+3)

)
,

‖α̂SPCR − α‖2 = OP (n−(γ−1)/(10γ+6)). (24)

With similar arguments as those used in (i) one can check that (13) is also fulfilled
in that case.

Remark 4. Under the additional assumption that Y is bounded and if the
conditions on λK of Theorem 4.1 (ii) are replaced by

lim
n→∞

nλ4
K

log n
= ∞ and lim

n→∞
nλ2

K

log n
(∑K

j=1 aj

)2 = ∞,

we can derive the almost sure convergence of ‖α̂SPCR −α‖2 (see Cardot, Ferraty
and Sarda (1999) for a sketch of the proof). One obtains the same (almost sure)
rates as above for previous specific decreasing rates of the eigenvalues.

Remark 5. Distinctness of eigenvalues simplifies the situation. For getting the
L2 convergence of Theorem 4.1, non-nullity is sufficient, with more complicated
proofs, when there are multiple eigenvalues. Finally, notice that we do not need
any regularity condition on the functional variable X beyond that its norm is
finite almost surely.

Remark 6. Note that the convergence of the estimators of α is rather slow.
This may be related to the fact that the predictor takes values in an infinite
dimensional functional space. We obtain for the penalized spline estimator a
better upper bound for the rate of convergence than for the smooth principal
components estimator: compare (23) and (24) with (10). Let us also stress
the fact that the rate of convergence of α̂PS does not depend directly on the
eigenvalues of the covariance operator Γ.

Remark 7. When the functional random variable X is not observed continu-
ously (see Remark 2) we need to approximate the discretized curve in order to
get estimators of the covariance operators. One can achieve that by linear inter-
polation or spline approximation depending on the regularity of the trajectories.
If the Xi’s satisfy a Lipschitz condition |X(ω, t)−X(ω, s)| ≤ L(ω)|t− s|γ , where
γ ∈]0, 1[ and L is a second order real random variable then one can show, following
arguments similar to Pumo (1998), that the linear interplation of the trajectories
lead to a convergent estimator with similar rates of convergence provided that
δ = O(n−2γ). If, furthermore, X(t) is η times continously differentiable and the
ηth derivative is a second order random function then one can show (see e.g.,
Cardot (1998)) that spline interpolation of the discretized trajectories leads to a
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convergent estimator provided δ = O(n−2η). Finally, fewer discretization points
are needed if the curves are smoother.

5. A Simulation Study

We performed a Monte Carlo experiment to look at the practical performance
of the estimators defined in Section 2 and to check the ability of Generalized Cross
Validation (GCV) to select effective smoothing parameters K and ρ respectively.

The tuning parameters controling the regularity of the estimators are:
- the number of knots and the degree q for spline functions;
- the dimension value K for the estimator α̂SPCR;
- the regularization parameter ρ and the order of derivation m for the estimator
α̂PS .
Convergence results of Section 4 show that the number k of knots of the spline

functions is less important for the SPCR estimator than is the dimension K,
provided that k is large enough to reflect the variability of α (see the condition on
k in Theorem 4.1). This fact has been highlighted in the context of longitudinal
data by Besse, Cardot and Ferraty (1997). For the penalized B-splines estimator,
Theorem 3.1 shows that the number of knots seems to play a more important
role since the upper bound for the L2 rate of convergence depends on the value
of k. For finite sample sizes however we think that, as has been stressed by Marx
and Eilers (1996), one can choose a moderate value for k since overfitting can
be avoided by adding the roughness penalty. For this reason in both cases we
have fixed the number of knots to be 20. The degree of spline functions (which
is known to be less important) has been chosen to be 4.

The number of derivatives m (for penalized B-splines estimator) controls the
smoothness penalty: see the discussion on this topic in Ramsay and Silverman
(1997). Here it was fixed to the moderate value of 2.

We consider a generalized cross validation criterion for the choice of K and
ρ because it is computationally fast, widely used as an automatic procedure to
choose a smoothing parameter, and has been proved to be efficient in many
statistical settings (Green and Silverman (1994)).

We have simulated ns = 200 samples, each being composed of n = 200 inde-
pendent realizations (Xi, Yi), i = 1, . . . , n, from (3), in which X(t) is a Brownian
motion defined on [0, 1], ε = IE[Y |X]−Ψ(X) is normal with mean 0 and variance
σ2. For practicality, the Brownian random functions Xi and the function α were
discretized to 100 design points equispaced in [0, 1]. The eigenelements of the
covariance operator of X are known to be (see Ash and Gardner (1975))

λj =
1

(j − 0.5)2π2
, vj(t) =

√
2 sin {(j − 0.5)πt} , t ∈ [0, 1], j = 1, 2, . . . .
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All eigenvalues are strictly positive and assumptions on the sequence of eigenval-
ues in Theorem 4.1 are fulfilled provided Kn tends slowly enough to infinity (see
Remark 3).

Different functions α (see Figure 1) were considered:
(a) α1(t) = 2 sin(0.5πt) + 4 sin(1.5πt) + 5 sin(2.5πt), t ∈ [0, 1].
(b) α2(t) = log(15t2 + 10) + cos(4πt), t ∈ [0, 1].

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

-2
0

1
2

2
3

4
4

5
6

6
8

1
0

(a)

(b)

true function

true function

ps.gcv

ps.gcv

spcr.gcv

spcr.gcv

Figure 1. Simulations (a) and (b) with estimators having tuning parameter
values chosen by GCV and which errors are close to the median (see Table
1 and Table 2).

One has to notice that case (a) favors the SPCR estimator since α1 is a linear
combination of the first three eigenfunctions of Γ. Case (b) is more general since
α2 combines log and periodic components.

Three Monte Carlo experiments are presented corresponding to three differ-
ent configurations of α and the signal-to-noise ratio: (a) α = α1 and noise with
moderate standard deviation σ/σ<α,X> = 0.18; (b) α = α2 and noise with small
standard deviation σ/σ<α,X> = 0.02; (c) α = α2 and noise with large standard
deviation σ/σ<α,X> = 0.54. Here σ2

<α,X> = E < α,X >2 is the variance of the
“true” response.
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The tuning parameters (i.e., the smoothing parameter for the penalized
spline and the dimension K of the projection space for the SPCR) are chosen by
minimizing the GCV criterion (see Marx and Eilers (1999) for the use of GCV
in a similar context):

GCV =

n∑
i=1

(
Yi − Ŷi

)2

(
1 − 1

n
tr(H)

)2
, (25)

where H is the Hat matrix defined by Ŷ = HY with Y = (Y1, . . . , Yn)′ and
Ŷ = (Ŷ1, . . . , Ŷn)′ the vector of estimated values. For the penalized spline it
is easy to check that tr(H) = tr((Ĉ + ρGk)−1Ĉ). For the SPCR, tr(H) is
the trace of the composition of two projection matrices onto the K-dimensional
space spanned by the eigenfunctions and the k + q dimensional space Skq. The
estimators are denoted by α̂gcv

SPCR (for the estimator derived by SPCR method
with dimension chosen by GCV) and α̂gcv

PS (for the penalized B-splines estimator
with ρ minimizing the GCV criterion above).

Two risk functions were used to evaluate the performances of these estima-
tors: the mean square error of prediction of the response variable Y ,

R(Y ) =
1
n

n∑
i=1

(
< α,Xi > −Ŷi

)2
, (26)

and the mean square error of estimation of α,

R(α) =
∫ 1

0
(α(t) − α̂(t))2 dt. (27)

Furthermore, for each method, we have defined “optimal” estimators and denote
them by α̂opt

SPCR and α̂opt
PS . These estimators are constructed simililary as α̂SPCR

and α̂PS (derived by SPCR and penalized B-splines, respectively) but their tun-
ing parameters ρ, respectively K, are chosen in order to minimize the prediction
error of the true signal; 1

n

∑n
i=1 (< α,Xi > − < α̂,Xi >)2 . Actually, they are the

best estimators attainable by means of GCV and are used as a benchmark to
check if GCV is an effective way to select smoothing parameters.

Boxplots of R(Y ) and log(R(α)) are shown in Figure 2, and statistical sum-
maries are given in Tables 1, 2 and 3.

We may draw the following remarks from that Monte Carlo experiment.
• The GCV criterion seems to be effective for choosing the tuning parameters

for both estimators according to the prediction error of the response variable.
They are close to “optimal”. For (a) (the most favourable case for the SPCR),
the SPCR gives results that are slightly better than the penalized spline. For
(b) and (c), the penalized spline gives better predictions.
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• On the other hand, estimators of α have a high variability resulting from a
small number of “outliers” which penalize the mean of the risk. This may
be a consequence of the behaviour of the GCV criterion that leads, with a
small probability, to gross undersmoothing (see Wahba and Wang (1995) for
a study of this property in the classical nonparametric framework) by selecting
K too large or ρ too small. Actually, if we consider the median of the risk,
then results are rather good for both estimators with the SPCR being better
in case (a), whereas the penalized spline gives better estimators for the two
other cases.

Table 1. Simulation (a). Comparison of the mean and the median of pre-
diction errors: α̂opt

PS (resp. α̂opt
SPCR) is the best penalized spline (resp. best

SPCR) estimator with respect to the prediction of the response variable;
α̂gcv

PS (resp. α̂gcv
SPCR) is the penalized spline (resp. SPCR) estimator whose

regularization parameter values are chosen by minimizing the GCV cirterion.

α̂opt
PS α̂opt

SPCR α̂gcv
PS α̂gcv

SPCR

mean(R(Y )) (×100) 1.08 0.98 1.60 1.44
median(R(Y )) (×100) 0.94 0.79 1.39 1.17
mean(R(α)) (×10) 1.59 0.94 6.33 3.37
median(R(α)) (×10) 1.18 0.82 2.82 1.28

Table 2. Simulation (b). Comparison of the mean and the median of pre-
diction errors for the different estimators, notation as in Table 1.

α̂opt
PS α̂opt

SPCR α̂gcv
PS α̂gcv

SPCR

mean(R(Y )) (×103) 0.91 1.18 1.44 1.71

median(R(Y )) (×103) 0.77 1.02 1.09 1.47

mean(R(α)) (×10) 1.08 3.51 7.06 7.84

median(R(α)) (×10) 0.82 3.35 1.52 4.11

Table 3. Simulation (c). Comparison of the mean and the median of predic-
tion errors for the different estimators, notation as in Table 1.

α̂opt
PS α̂opt

SPCR α̂gcv
PS α̂gcv

SPCR

mean(R(Y )) (×100) 1.06 1.17 1.86 2.17
median(R(Y )) (×100) 0.75 0.85 1.25 1.60
mean(R(α)) 0.59 1.04 3.58 3.80
median(R(α)) 0.56 1.08 0.69 1.22

Both estimators are easy to compute and programs for carrying out the
estimation are avalaible on request. It is difficult, from this simulation study, to
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give the advantage to one estimator over the other. However, from our experience
and from results obtained in (b) and (c), we have a slight preference for the
penalized B-splines estimator since it does not directly depend on estimation of
the eigenfunctions of the covariance operator Γ (see also the theoretical results
in Section 3). It also appears to us that this estimator is more accurate when
the curve X is rough and when the functional coefficient is smooth.
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Figure 2. Comparison of “optimal” and GCV estimators with respect to
the MSE of prediction of the response Y and the MSE of estimation of
the functional parameter α: (a1) simulation (a) and R(Y ); (a2) simulation
(a) and log(R(α)); (b1) simulation (b) and R(Y ); (b2) simulation (b) and
log(R(α)); (c1) simulation (c) and R(Y ); (c2) simulation (c) and log(R(α)).

6. Proof of Theorem 3.1

Let K(Gk) = {θ ∈ R
q+k|Gkθ = 0}. The proof of the following Lemma can

be found in Cardot (2002).

Lemma 6.1. There are two positive constants C5 and C6 such that C5k
−1‖u‖2 ≤

u′Gku, u ∈ K(Gk)⊥, and u′Gku ≤ C6k
2m−1‖u‖2, u ∈ R

q+k.
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Define the matrices C̄ and C̄ρ as the population versions of matrices Ĉ and
Ĉρ. Then C̄ is the (q+ k)× (q+ k) matrix with elements < ΓBk,j, Bk,l >, while
C̄ρ = C̄ + ρGk. The behavior of the eigenvalues of C̄ρ and of Ĉρ is described in
the following lemma.

Lemma 6.2. (i) There exist positive constants C7 and C8 such that the eigen-
values of C̄ρ lie between C7ρk

−1 and C8k
−1. (ii) ‖Ĉρ− C̄ρ‖ = oP ((k2n1−δ)−1/2).

Proof. (i) Let u ∈ R
q+k with ‖u‖2 = 1. We have

u′C̄ρu = E(
∑

j

∫
ujBk,jX)2 + ρu′Gku.

The Cauchy-Schwartz inequality, inequality (12) of Stone (1986) and (H.1) give
us E(

∑
j

∫
ujBk,jX)2 = O(k−1). On the other hand, we have by Lemma 6.1 that

ρu′Gku ≤ C6ρk
2m−1 = O(k−1). Decompose u = u1 + u2 with u1 ∈ K(Gk) and

u2 ∈ K(Gk)⊥. Then, using Lemma 6.1,we have u′C̄ρu ≥ u′
1C̄u1 + ρu′

2Gku2 ≥
< ΓB′

ku1,B
′
ku1 > +C5ρk

−1‖u2‖2.

Denote by Pm the set of polynomials defined on [0, 1] whose degree is less
or equal to m. Since the eigenvalues of the covariance operator Γ are strictly
positive, there exists C9 > 0 such that

〈Γf, f〉 ≥ C9‖f‖2, f ∈ Pm. (28)

Since Pm = {B′
kθ|θ ∈ K(Gk)}, we have B′

ku1 ∈ Pm and then, we have with
(28) and inequality (12) of Stone (1986), < ΓB′

ku1,B
′
ku1 > ≥ C10‖u1‖2k−1.

This implies that u′C̄ρu ≥ min
(
C10k

−1, C5ρk
−1
)
, which gives us the result.

(ii) Noticing that Ĉρ − C̄ρ = Ĉ − C̄ one gets, with Theorem 1.19 in Chatelin
(1983),

‖Ĉρ − C̄ρ‖ ≤ sup
1≤i≤q+k

q+k∑
j=1

‖Γn − Γ‖ | < Bk,j, Bk,i > |.

One can deduce from Lemma 5.3 in Cardot, Ferraty and Sarda (1999) that
‖Γn − Γ‖ = oP (n(δ−1)/2). For |i − j| > q + 1, we have Bk,iBk,j ≡ 0. Then
sup1≤i≤q+k

∑q+k
j=1 | < Bk,j, Bk,i > | = O(k−1), which gives the result.

From Lemma 6.2, Ĉρ is non singular except on an event whose probability
tends to zero as n → ∞. Indeed, let λ̂q+k and λ̄q+k be the smallest eigenvalues
of Ĉρ and C̄ρ respectively. From (ii), one gets λ̂q+k = λ̄q+k + oP ((k2n1−δ)−1/2).

From (i),
λ̂q+k ≥ C7ρk

−1 + oP ((k2n1−δ)−1/2) (29)

and, taking δ0 > δ, the result (i) of Theorem 3.1 follows.
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Now write α̂PS as α̂PS =
∑n

i=1 ŴiYi, where Ŵi = (n−1B′
kĈ

−1
ρ A′)i and A is

the n× (q + k) matrix with generic element < Bk,j,Xi >.

Lemma 6.3.
∑n

i=1 ‖Ŵi‖2 = Op(k/ρn).

Proof. We have
∑n

i=1 ‖Ŵi‖2 =
∑n

i=1 ‖n−1B′
kĈ

−1
ρ A′

i‖2, where Ai is the ith row
of the matrix A. Then

n∑
i=1

‖Ŵi‖2 ≤ n−1

∥∥∥∥∫ 1

0
Bk(t)B′

k(t)dt
∥∥∥∥ ‖Ĉ−1

ρ ‖ tr
(
ĈĈ

−1
ρ

)
. (30)

By construction, ‖ĈĈ
−1
ρ ‖ ≤ 1 and then tr(ĈĈ

−1
ρ ) = O(k). In addition, one can

show, using the same arguments as in Lemma 6.2 (i), that ‖ ∫ 1
0 Bk(t)B′

k(t)dt‖ =

O(k−1). The result is obtained since ‖Ĉ−1
ρ ‖ = OP (kρ−1).

Now consider α̃PS , the solution of the minimization problem (9) where Yi

has been replaced by f(Xi) and let ‖φ‖2
n =< Γnφ, φ >, φ ∈ H.

Lemma 6.4. ‖α̃PS −α‖2
n = OP (k−2p) +OP (ρk2(m−p)) +OP (ρ) +OP (k(ρn)−1).

Proof. The proof of this Lemma is based on approximation properties of B-
splines and convexity arguments. We have f(x) =< α, x > +f(x)− < α, x >,
x ∈ H. Then (4) implies that the lemma has to be proved only in the two cases
f(x) =< α, x > and α = 0. For a ∈ H, let ln(a) = 1

n

∑n
i=1 (f(Xi)− < a,Xi >)2

and ln,ρ(a) = 1
n

∑n
i=1 (f(Xi)− < a,Xi >)2 + ρ‖a(m)‖2.

Suppose that f(x) =< α, x >, x ∈ H. Let a1 and a2 be two elements in H

and t ∈ [0, 1], then d2

dt2
ln(ta1 + (1 − t)a2) = ‖a1 − a‖2

n ≥ 0. Now ln(α) = 0 and

then for a ∈ H, t ∈ [0, 1] and a(t) = ta + (1 − t)α, we have d
dt ln(a(t))

∣∣∣
t=0

= 0.

Then ln(a)− ln(α) =
∫ 1
0 (1− t) d2

dt2 ln(a(t))dt = (‖a− α‖2
n)/2. From Theorem XII.1

in de Boor (1978) and (H.3), there is some s ∈ Sqk such that ‖s−α‖∞ ≤ C11k
−p,

where C11 is a positive constant. From (H.1), (H.3) and Lemma 8 from Stone
(1985), we have (‖s − α‖2

n)/2 + ρ‖s(m)‖2 ≤ C12(k−2p + ρk2(m−p) + ρ), a.s. Let
δn = k−2p + ρk2(m−p) + ρ and c a positive constant such that (‖s − α‖2

n)/2 +
ρ‖s(m)‖2 < cδn, a.s. One has almost surely ln,ρ(a) > ln,ρ(s), for every a ∈ Sqk

such that (‖a − α‖2
n)/2 + ρ‖a(m)‖2 = cδn. By Lemma 6.2, α̃PS in Sqk and is

strictly convex, except on a set whose probability tends to zero when n tends to
infinity. Using convexity arguments, one can deduce that

‖α̃PS − α‖2
n + ρ‖α̃(m)

PS ‖2 = OP (δn), (31)

‖α̃PS − α‖2
n = OP (δn). (32)

Suppose now that α = 0. Then we have for every β in the closure of Im(Γ)

E < β,X > f(X) = 0. (33)
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Now α̃PS can be written as
∑n

i=1 Ŵif(Xi) = B′
kĈ

−1
ρ b̃, where b̃ is the vector in

R
k+q with generic elements 1

n

∑n
j=1 < Bk,l,Xj > f(Xj) = ∆̃nBk,l. Using (33)

for β = Bk,l when Bk,l ∈ Im(Γ), and noting that when Bk,l /∈ Im(Γ) we have
< X,Bk,l >= 0, we get with the same arguments as in the proof of Lemma 5.2
in Cardot, Ferraty and Sarda (1999), ‖∆̃n − ∆‖2∞ = ‖∆̃n‖2∞ = OP (n−1). Since
f is bounded, the arguments in the proof of Lemma 6.3 show that ‖α̃PS‖2

n =
OP (k(ρn)−1), from which the result follows with (32).

We have E(‖α̂PS−α‖2|X1, . . . ,Xn) ≤ E(‖α̂PS−α̃PS‖2|X1, . . . ,Xn)+‖α̃PS−
α‖2. Noting that E((Yi − f(Xi))|X1, . . . ,Xn) = 0, we find

E(‖α̂PS − α̃PS‖2
2|X1, . . . ,Xn) ≤

n∑
i=1

E((Yi − f(Xi))2|X1, . . . ,Xn)‖Ŵi‖2E‖X‖2.

This gives us, with (H.1), (H.2) and Lemma 6.3,

E(‖α̂PS − α̃PS‖2
2|X1, . . . ,Xn) = OP (k/(ρn)). (34)

Now we have

‖α̃PS − α‖2
2 ≤ 2‖Γ − Γn‖

(
‖α̃PS‖2 + ‖α‖2

)
+ 2‖α̃PS − α‖2

n (35)

and ‖α‖ ≤ C13. When f = 0, one can show with the arguments in the proof of
Lemma 6.4, that

‖α̃PS‖2 = OP

(
k

nρ2

)
. (36)

When f(x) =< α, x >, (31) and (32) give us

‖α̃PS‖2 = OP (1). (37)

Indeed, let us expand α̃PS as follows: α̃PS(t) = P̃ (t) + R̃(t), t ∈ [0, 1], where
P̃ (t) =

∑m−1
�=0

t�

�! α̃
(�)
PS(0) and R̃(t) =

∫ t
0 α̃

(m)
PS (u) (t−u)m−1

(m−1)! du. Since P̃ belongs
to the m-dimensional space Pm−1, one obtains easily that on a space whose
probability tends to one, when n tends to infinity,

‖α̃PS‖2 ≤ 2‖P̃‖2 + 2‖R̃‖2

≤ 2C14‖P̃‖2
n + 2‖R̃‖2

≤ 4C14‖α̃PS‖2
n + 4C14‖Γn‖2‖R̃‖2 + 2‖R̃‖2.

Since by the Schwarz inequality (R̃(t))2 ≤ C15
∫ t
0 (α̃(m)

PS (u))2du, one gets ‖α̃PS‖2 =
OP (1)+OP (δnρ−1). Now Theorem 3.1 (ii) is a consequence of (34)−(37), Lemma
5.3 of Cardot, Ferraty and Sarda (1999) and Lemma 6.4.
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