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Abstract: In this paper we consider a first order threshold bilinear Markov process,

which can be viewed as an AR model with ARCH-type errors and may be useful

for modelling economic or financial time series. We study the main features of

this process within a wider family of nonlinear models, where the threshold term is

replaced by a smooth approximating function. Under suitable general assumptions,

we provide sufficient conditions for the geometric ergodicity of the processes of this

class and for the existence of their finite moments of a given order. Furthermore,

we state regularity conditions for the invariant measures and we prove that the

invariant measures of the smooth models weakly converge to that of the threshold

one. The problem of estimating the parameters, including the threshold parameter,

is studied and a simple semiparametric procedure based on the theory of optimal

estimating functions is proposed.
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1. Introduction

In this paper we study the first order threshold bilinear Markov process

Xt = aXt−1 +
(
b11{Xt−1<c} + b21{Xt−1≥c}

)
Xt−1et + det, (1.1)

t ∈ IN+ = IN \ {0}, where {et, t ∈ IN+} is a sequence of independent identically
distributed (i.i.d.) absolutely continuous random variables, X0 is a given random
variable independent of {et, t ∈ IN+}, a, b1, b2, c and d are real numbers. This
process can be viewed as an autoregressive (AR) process with autoregressive
conditionally heteroscedastic (ARCH) errors, similar to those introduced in a
more general framework by Weiss (1984), and it is the simplest non-trivial way
to mix together the bilinear and the threshold models. For this reason, the
mathematical interest in such a new model is evident and we believe that there
is an empirical interest as well, since (1.1) is a new element in the class of AR
processes with ARCH-type errors. More precisely, this process combines the
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usual AR part, which targets on the conditional mean of Xt given the past, with
a description for the conditional variance of Xt given the past, similar to that
one given in the TARCH (threshold ARCH) models proposed by Rabemananjara
and Zakoian (1993) (see also Liu, Li and Li (1996)). Here, alternative regimes for
the conditional variance are allowed (in order to account for asymmetries) and
the non-negativity constraint on the parameters is relaxed (in order to introduce
new nonlinear time paths). The present model is analytically tractable and it
may be considered as a prototype for a new larger class of processes useful for
modelling economic or financial time series.

Process (1.1) is clearly discontinuous, since it involves two different bilinear
sub-models, namely two alternative regimes, with change point specified by the
threshold parameter c. It is convenient, in order to provide a useful inferential
procedure, to introduce, as in Chan and Tong (1986), a class of processes en-
compassing (1.1), where the switching between the two regimes takes place in a
smoother way. The main properties of (1.1) are studied within this wider family
of nonlinear models.

The paper is organized as follows. In Section 2, we obtain sufficient condi-
tions for the geometric ergodicity and for the existence of finite moments of pro-
cess (1.1) and of processes belonging to the associated family of smooth models.
In order to apply the drift-criteria of Meyn and Tweedie (1993), we prove a gen-
eral result on irreducibility and T-continuity for first-order nonlinear discontin-
uous processes. For nonlinear models that are not irreducible and T-continuous,
or for which it is too difficult to prove these two properties, results in Fonseca
and Tweedie (2002) may be applied in order to obtain sufficient conditions for
the existence of a stationary measure. In Section 3, we provide sufficient condi-
tions so that the invariant probability measures of the processes turn out to be
absolutely continuous with respect to Lebesgue measure. Indeed, we prove the
weak convergence of the invariant measures of the smooth models to that of the
threshold one. Hence, the first order threshold bilinear Markov process (1.1) may
be approximated within this family of smooth nonlinear models. This result will
be considered in the final section in order to define a useful estimation procedure
for the parameters, including the threshold coefficient, based on the theory of
optimal estimating functions.

2. Sufficient Conditions for Geometric Ergodicity

The aim of the present section is to derive sufficient conditions, on the coeffi-
cients of the equation (1.1) and of similar systems, for the existence of a stationary
solution process and of its moments of order p. Throughout this section, we use
the notation adopted by Meyn and Tweedie (1993).



A THRESHOLD BILINEAR MARKOV PROCESS 369

It is convenient to rewrite the model (1.1) in the equivalent form

Xt = aXt−1 + (b1 + b31{Xt−1≥c})Xt−1et + det, (2.1)

t ∈ IN+, where {et, t ∈ IN+}, X0, a, b1, c and d are defined as previously and
the real parameter b3 = b2 − b1 �= 0. Furthermore, as in Chan and Tong (1986),
we introduce a class of models where the switching between the regimes takes
place in a smoother way. More precisely, letting Φ(·) denote the standard normal
distribution function, we define the AR model with STARCH (Smooth TARCH)
errors by

Xt = aXt−1 +
{
b1 + b3Φ

(
Xt−1 − c

z

)}
Xt−1et + det, (2.2)

t ∈ IN+, with {et, t ∈ IN+}, X0, a, b1, b3, c and d defined previously and
z > 0. The parameter z is called smoothing parameter, since the larger is z

the smoother is the switching between the two bilinear sub-models. Instead of
Φ(·), it is possible to consider different smoothing functions, such as the logistic
distribution function.

Since models (2.1) and (2.2) are quite similar, we present a general result
and we obtain the conditions for (2.1) and (2.2) as a simple corollary. Let us
consider the model

Xt = f(Xt−1) + g(Xt−1)et, (2.3)

where t ∈ IN+, {et, t ∈ IN+} is a sequence of i.i.d. random variables and X0

is a given random variable. Hereafter, given h a real function, we define Nh =
{x ∈ IR : lim infxn→x |h(xn)| = 0 or h(x) = 0}, we denote by Dh the set of
its discontinuities and by h(k)(·) the k-times composition of h with itself. It is
immediate to see that if x ∈ Nh \Dh then h(x) = 0.

We consider the following assumptions:

(H1) f , g are locally bounded real functions, the sets Ng and Dg ∪Df are count-
able without finite limit points and disjoint, and ∀x ∈ Ng, ∃ k ∈ IN such
that f (k)(x) /∈ Ng ∪Dg ∪Df and ∀ j < k, f (j)(x) ∈ Ng;

(H2) e1 is absolutely continuous with respect to Lebesgue measure λ, with
density p(·) strictly positive almost everywhere and lower semicontinuous
(l.s.c.).

Remark 2.1. Assumption (H1) states that functions f and g are piecewise
continuous and that |g| is bounded away from zero in a neighborhood of any
discontinuity. Moreover, if (2.3) starts from x ∈ Ng, the solution Xt cannot be a
deterministic process (i.e., Xt = f (t)(x) ∀t), since after a finite number of steps
f (k)(x) �∈ Ng. (H1) is fulfilled for (2.1) and (2.2) under the mild conditions that
|a| �= 1, d �= 0, (b1 + b3)c + d �= 0 and b1c + d �= 0.



370 MARCO FERRANTE, GIOVANNI FONSECA AND PAOLO VIDONI

Proposition 2.1. Under (H1) and (H2), the process solution to (2.3) is a λ-
irreducible, aperiodic T-chain.

Proof. By (H1) it is straightforward to prove the aperiodicity of the Markov
chain {Xt, t ∈ IN}, solution to (2.3). As regards irreducibility, we consider an
arbitrary set A ∈ B(IR), where B(IR) is the Borel σ-field, such that λ(A) > 0.
We denote by P (x,A) and P k(x,A), k ∈ IN+, the transition and the k-th step
transition probability of {Xt, t ∈ IN}. If x /∈ Ng, then P (x,A) > 0. Otherwise, by
(H1), there exists k < +∞ such that P k+1(x,A) = P (f (k)(x), A) > 0. Therefore∑∞
i=1 P

i(x,A)2−(i+1) > 0 and the Markov chain is λ-irreducible.
We prove now that the process {Xt, t ∈ IN}, solution to (2.3), is a T-chain.

By Proposition 6.2.4 in Meyn and Tweedie (1993), it will be sufficient to show
that for each x ∈ IR, there exists a k ∈ IN+ and a non-trivial substochastic
transition kernel Tx(·, ·), l.s.c. in the first variable, such that P k(y,A) ≥ Tx(y,A)
for each y ∈ IR and A ∈ B(IR). For future convenience, we state a result which
will be widely used in the following:

(LSC) the product of l.s.c. functions is a l.s.c. function and the composition of
a l.s.c. with a continuous function is l.s.c.

For x ∈ IR, assume first that x /∈ Ng ∪ Dg ∪ Df . By (H1), we may define
Iε(x) = (x−ε, x+ε) with ε > 0, such that for every y ∈ Iε(x), y /∈ Ng ∪Dg ∪Df .
Then, by (LSC) and Fatou’s Lemma we have that, for every y ∈ Iε(x),

P (y,A) =
∫
A
p(y, z)dz =

∫
A

1
|g(y)| p

{
z − f(y)

g(y)

}
dz

is a positive l.s.c. function whenever λ(A) > 0. Therefore, taking ϕ(·) as a smooth
positive function equal to 1 on I ε

2
(x) and 0 outside Iε(x), we define, for every y ∈

IR, the function Tx(y,A) = ϕ(y)P (y,A), which is a l.s.c. non-trivial substochastic
transition kernel. If we take x ∈ Df ∪Dg, by (H1), x /∈ Ng and there exists Iε(x)
such that for every y ∈ Iε(x) with y �= x, we have that y /∈ Ng ∪Dg ∪Df . By the
assumptions, lim infy→x P (y,A) ≥ ∫

A lim infy→x p(y, z) dz =
∫
A h(x, z) dz > 0

whenever λ(A) > 0. Taking ϕ(·) as above we define, for each y ∈ IR, Tx(y,A) =
ϕ(y)

∫
A min{p(y, z), h(x, z)}dz, again a l.s.c. non-trivial substochastic transition

kernel. Finally, we consider the case with x ∈ Ng and, for simplicity, assume
that f (k)(x) /∈ Ng ∪Dg ∪Df with k = 1 (the case with k > 1 follows by similar
arguments). By (H.1), x /∈ Dg ∪Df and there exists Iε0(x) such that for every
y ∈ Iε0(x), with y �= x, we have that y /∈ Ng ∪ Dg ∪ Df . Moreover, there exist
Iε1(x) ⊂ Iε0(x) and δ1 > 0 such that f(y) + g(y)e1 /∈ Ng ∪ Dg ∪ Df , for every
y ∈ Iε1(x) and |e1| < δ1. Hence, there exists C > 0 such that, for every y ∈ Iε1(x)
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and A ∈ B(IR),

P 2(y,A) = P [f{f(y) + g(y)e1} + g{f(y) + g(y)e1}e2 ∈ A]

=
∫
IR

[∫
A

1
|g(f(y) + g(y)s1)|p

{
s2 − f(f(y) + g(y)s1)

g(f(y) + g(y)s1)

}
ds2

]
p(s1) ds1

≥
∫
A

[∫
(−δ1,δ1)

1
|g(f(y)+g(y)s1)|p

{
s2−f(f(y)+g(y)s1)
g(f(y) + g(y)s1)

}
p(s1) ds1

]
ds2

≥ C

∫
A

[∫
(−δ1,δ1)

p

{
s2 − f(f(y) + g(y)s1)

g(f(y) + g(y)s1)

}
p(s1) ds1

]
ds2 = T̃ (y,A).

By (LSC), T̃ (y,A) is a positive l.s.c. function and, as above, we can define the
real function Tx(y,A) = ϕ(y)T̃ (y,A), a l.s.c. nontrivial substochastic transition
kernel. The proof is now complete.

Remark 2.2. It is interesting to note that the previous result is not a con-
sequence of the general conditions proved by Cline and Pu (1998), since the
hypothesis of local boundedness of 1/g(·) is not fulfilled. By its generality, the
previous proposition could be interesting by itself, although it requires much
more regularity on the functions involved.

Now assume that f(x) = αx and g(x) = β(x)x + δ, with α, δ ∈ IR and
β(·) a suitable bounded real function. We provide sufficient conditions for the
geometric ergodicity of the solution process {Xt, t ∈ IN} to (2.3), and for the
existence of its moments.

Proposition 2.2. Let η(p) = |α|+‖β‖∞‖e1‖p, where ‖·‖∞ and ‖·‖p denotes the
sup- and the Lp-norms, respectively, and let {Xt, t ∈ IN} be the solution process
of (2.3), with f(x) = αx and g(x) = β(x)x + δ. Under (H1) and (H2):
(i) if η(1) < 1 then {Xt, t ∈ IN} is geometrically ergodic;
(ii) if η(p) < 1, then ‖Xπ

t ‖p < +∞, where {Xπ
t , t ∈ IN} denotes the stationary

solution process to (2.3).

Remark 2.3. It is immediate to prove that η(p) ≤ η(q), whenever 1 ≤ p ≤ q

and therefore (ii) implies (i).

Corollary 2.1. The solution processes to (2.1) and (2.2) are irreducible, aperi-
odic, T-chains if d �= 0 and |a| �= 1. Moreover, if

|a| + sup{|b1|, |b2|}‖e1‖1 < 1, (2.4)

then the solution processes are geometrically ergodic, while if

|a| + sup{|b1|, |b2|}‖e1‖p < 1, (2.5)
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the stationary solution processes have finite moments up to order p.

Proof (of Proposition 2.2): Adopting a standard procedure (see Cappuccio,
Ferrante and Fonseca (1998)), fix p ≥ 1 and define the Lyapounov function
Vp(x) = (1 + |x|)p and the compact set Kp = {x ∈ IR : (1 + |x|) ≤ Cp+1−η(p)

λ−η(p) },
where η(p) < λ < 1 and Cp = |δ|‖e1‖p. Since the solution process of (2.3)
is an irreducible, aperiodic T-chain, then Kp is a petite set and it holds that

[E{Vp(Xt)|Xt−1 = x}]
1
p ≤ 1 + |x|η(p) + Cp. From this inequality we have that

function Vp complies with condition (iii) of Theorem 15.0.1 in Meyn and Tweedie
(1993). The geometric ergodicity (p = 1) and the existence of finite moments up
to order p for the stationary solution process follow immediately.

3. Properties of the Invariant Probability Measures

In this section we assume that (2.1) and (2.2) admit a stationary solution
process. Here, we consider only the case where c > 0, d > 0, b1 > 0, b1 + b3 < 0
(which implies b3 < 0), (b1 + b3)c + d > 0 and 0 ≤ a < 1. The other cases
can be considered following the same lines. The stochastic difference equation
(2.2) defines a net of Markov processes {Xz

t , t ∈ IN}, indexed by z ∈ IR+, en-
compassing models of the form (2.1). We prove that, under suitable regularity
assumptions on the density of the variables of the noise sequence, the invariant
probability measures associated to (2.1) and (2.2), denoted respectively by π0

and {πz, z ∈ IR+}, admit density functions with respect to the Lebesgue measure.
These densities, defined by a suitable integral equation, are functions continuous
everywhere except at two points, where they diverge to +∞. Moreover, we prove
that πz converge weakly to π0, as z goes to zero. The approach is similar to that
used by Chan and Tong (1986) to prove that the invariant probability measures
associated to a suitable net of STAR (smooth threshold AR) models approximate
that of a SETAR model. The results proved in this section allow us to consider a
suitable AR model with STARCH errors as an approximation for the AR model
with TARCH errors given by (2.1). This can be useful in order to estimate the
threshold parameter c, as shown at the end of the next section.

First, we need to prove the following lemma.

Lemma 3.1. Functions gz(x) = {b1 + b3Φ(x− c
z )}x + d, for a sufficiently small

z ∈ IR+, and g0(x) = {b1 + b31[c,+∞)(x)}x+ d have two zeroes and, for all x �= c,
gz(x) → g0(x) as z → 0.

Proof. Since the pointwise convergence of gz(x) to g0(x) for x �= c is straightfor-
ward, we only prove that gz(x) and g0(x) have two zeroes. With the above
assumptions on the parameters, it is easy to see that g0(·) has two zeroes,
namely x0

1 = −d/b1 < 0 and x0
2 = −d/(b1 + b3) > c. Moreover, we have that
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g0(c−) = b1c + d > 0 and g0(c) = (b1 + b3)c + d > 0. With regard to gz(x),
since Φ(0) = 1

2 , we have gz(c) = (b1 + b3
2 )c + d and g0(c−) > gz(c) > g0(c) > 0.

For x < c, we have gz(x) = g0(x) + b3Φ((x − c)/z)x, while for x ≥ c, gz(x) =
g0(x) + b3{Φ[(x− c)/z]−1}x. Simple computations give that gz(x) is positive on
(x0

1, x
0
2). For a sufficiently small z, it is immediate to prove that gz(x) has two

zeros, xz1, xz2, with xz1 ↑ x0
1 < 0 and xz2 ↓ x0

2 > 0, as z goes to zero.

Remark 3.1. For different choices of the coefficients than those fixed at the
beginning of the present section, gz(x) may possess one more zero than g0(x).
For example, this happens if b1 > 0, b1+b3 > 0, (b1 +b3)c+d < 0 and b1c+d > 0.
The extra zero converges to c as z goes to zero.

From now on we take z ∈ [0, η], η > 0, such that the functions gz(x) have two
zeros. The next proposition states that, under suitable regularity assumptions
on the noise sequence, the invariant probability measures admit densities. For
this purpose, we follow the procedure considered by Tong (1990, Theorem 4.5).

Proposition 3.1. Suppose that e1 satisfies (H2) with a bounded and uniformly
continuous density pe(·). Then, for each z ≥ 0, the invariant probability mea-
sure πz is absolutely continuous with density function pz(·), continuous on IR \
{axz1, axz2} and such that pz(x) ↑ +∞ as x → axzi , i = 1, 2.

Proof. Fix z ≥ 0. The stationary probability distribution of Xz
t satisfies

Fz(x) = Pr[Xz
t ≤ x] = Pr[aXz

t−1 + gz(Xz
t−1)et ≤ x]

=
∫
IR

{∫
av+gz(v)u≤x

pe(u) du

}
dFz(v).

We first prove that Fz is continuous everywhere. Given x ∈ IR and ε > 0, we
have

Pr[Xz
t ∈ (x− ε, x + ε)] = Pr[x− ε < aXz

t−1 + gz(Xz
t−1)et < x + ε]

=
∫
IR

{∫
x−ε<av+gz(v)u<x+ε

pe(u) du

}
dFz(v)

=
∫
IR\{xz

1,x
z
2}

{∫
x−ε<av+gz(v)u<x+ε

pe(u)du

}
dFz(v)

+
∑
i=1,2

∫
{xz

i }

{∫
x−ε<av+gz(v)u<x+ε

pe(u)du

}
dFz(v).

Define the sequence of measurable functions fn(v)=
∫
x− 1

n
<av+gz(v)u<x+ 1

n
pe(u)du.

If x �= axzi , for i = 1, 2, it is immediate to prove that limn→+∞ fn(v) = 0 for
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every v ∈ IR (since x �= axzi , for i = 1, 2, when v = xzi , fn(v) ≡ 0 for n

sufficiently big) and, by the Dominated Convergence Theorem, we obtain that
limn→+∞

∫
IR fn(v) dFz(v) = 0. Therefore Fz is continuous. Now consider x = axz1

(and the same can be done when x = axz2); we have limn→+∞ fn(v) = 0 for every
v ∈ IR \ {xz1}, while fn(xz1) ≡ 1 for any n. In this case we obtain that

Pr[Xz
t = axz1] = lim

n→+∞

∫
IR

fn(v) dFz(v)

= lim
n→+∞

∫
IR\{xz

1}
fn(v) dFz(v) + lim

n→+∞

∫
{xz

1}
fn(v) dFz(v)

= Pr[Xz
t = xz1] = 0,

and the result is proved.
By Lemma 3.1 we have that gz(·) is positive on (xz1, x

z
2) and negative other-

wise. Thus

Fz(x) =
3∑
i=1

∫
Bi

{∫
av+gz(v)u≤x

pe(u) du

}
dFz(v),

where B1 = (−∞, xz1), B2 = (xz1, x
z
2) and B3 = (xz2,+∞). By the assumptions

on pe(·), for every x such that |x − axzi | ≥ δ > 0, i = 1, 2, there exists kδ < ∞
such that supv(1/|gz(v)|)pe{(x−av)/gz(v)} ≤ kδ. Therefore, for x bounded away
from axzi , i = 1, 2, we may differentiate under the integral sign, obtaining

d

dx
Fz(x) =

3∑
i=1

∫
Bi

1
|gz(v)|pe

{
x− av

gz(v)

}
dFz(v)

=
∫
IR

1
|gz(v)|pe

{
x− av

gz(v)

}
dFz(v) > 0.

We conclude that πz is absolutely continuous, with density function defined by

pz(x) =
∫
IR

1
|gz(v)|pe

{
x− av

gz(v)

}
pz(v)dv, (3.1)

for x �= axzi , i = 1, 2.
Now fix x �= axzi , i = 1, 2 and 0 < δ < mini=1,2{|x− axzi |}. Given |x− y| ≤ δ, we
have

|pz(x)−pz(y)| ≤
∫
IR

∣∣∣∣ 1
|gz(v)|pe

{
x−av

gz(v)

}
− 1
|gz(v)|pe

{
y−av

gz(v)

}∣∣∣∣ pz(v)dv=F (x, y, IR).

Denoting by Iε(x) the interval (x− ε, x + ε), with ε > 0, we have that

F (x, y, IR) = F{x, y, Iε(xz1) ∪ Iε(xz2)} + F{x, y, (Iε(xz1) ∪ Iε(xz2))c}.
By the uniform continuity of pe(·) and the continuity of gz(·), we easily get that,
for any positive ε and ε1, there exists a δ ∈ (0,mini=1,2{|x − axzi |}) such that
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F{x, y, (Iε(xz1) ∪ Iε(xz2))c} ≤ ε1. Since pe is uniformly continuous and bounded,
we have that limv→xz

i

1
|gz(v)|pe{x−avgz(v) } = 0 for any x �= axzi ; therefore, for every

fixed δ, we can choose ε sufficiently small so that F{x, y, Iε(xz1) ∪ Iε(xz2)} ≤ ε1,
and the continuity of pz(·) on IR \ {axz1, axz2} is proved.
Let us now prove that pz(x) ↑ +∞, as x → axzi , i = 1, 2. Indeed, let x ↑ axz1 (the
other cases follow analogously). By (3.1), we have that

pz(x) ≥
∫
[xz

1−1,xz
1−ε]

1
|gz(v)|pe

{
x− av

gz(v)

}
pz(v)dv, (3.2)

for any x ≤ axz1 and any 0 < ε ≤ 1. Since xz1 < axz1, we have that pz(·) is
continuous on [xz1 − 1, xz1] and, therefore, there exists C1 > 0 such that

min
v∈[xz

1−1,xz
1]
pz(v) ≥ C1. (3.3)

Now consider the function (x, v) �→ u(x, v) := (x−av)/gz(v) on (−∞, axz1]×
(−∞, xz1). It is sufficient to consider the behaviour of the function u(x, v) on the
rectangle [a(xz1 − ε), axz1] × [xz1 − 1, xz1 − ε]. The upper left corner is on the line
x = av, where u(x, v(x)) ≡ 0, and for all the other points (x, v) in the rectangle
u(x, v) < 0. Since the function u is decreasing in x and increasing in v, the maxi-
mum of |u(x, v)| on the rectangle is at the lower right corner (x, v) = (axz1, x

z
1−1)

which is fixed for every value of ε. Hence if M = |u(axz1, x
z
1−1)| = −a/gz(xz1 − 1),

for any 0 < ε < 1 we have max(x,v)∈[axz
1−aε,axz

1]×[xz
1−1,xz

1−ε] |u(x, v)| = M . The
continuity of pe(·) ensures that there exists a constant C2 = C2(M) such that

min
(x,v)∈[axz

1−aε,axz
1]×[xz

1−1,xz
1−ε]

pe(u(x, v)) ≥ C2. (3.4)

By (3.2), (3.3) and (3.4) we have

inf
x∈[axz

1−aε,axz
1)
pz(x) ≥ C1C2

∫
[xz

1−1,xz
1−ε]

1
|gz(v)|dv.

Since
∫
[xz

1−1,xz
1)

1
|gz(v)|dv = +∞, we have that pz(x) ↑ +∞ as x ↑ axz1.

The aim now is to prove that the invariant probability measures πz, z ∈ IR+,
converge in some sense to π0, as z goes to zero. To do this, we prove that the
family {πz, z ∈ [0, η]} is tight and that the weak limit (abbreviated as w→) of a
suitable sequence {πzn , n ∈ IN} coincides with π0, as zn goes to zero.

Proposition 3.2. Suppose that e1 satisfies (H2) with a bounded and uniformly
continuous density pe(·), and that (2.4) holds. Then the family of the invariant
probability measures {πz, z ∈ [0, η]} is tight and πzn

w→ π0, as zn → 0.
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Proof. By Proposition 3.1, we know that, for z ∈ [0, η], πz is an absolutely
continuous probability measure. To prove the tightness of the family {πz, z ∈
[0, η]}, we define γ = supθ∈[0,1] |b1 + θb3| = sup{|b1|, |b2|}. Recalling (2.1) and
(2.2), we find |Xz

t | ≤ (|a|+γ|et|)|Xz
t−1|+|d||et|. Therefore, if we define recursively

the process {Yt, t ∈ IN} as Yt = (|a|+ γ|et|)Yt−1 + |d||et|, with the same sequence
of error terms {et, t ∈ IN+}, we have that

|Xz
t | ≤ Yt, t ∈ IN. (3.5)

Furthermore, by condition (2.4), the process {Yt, t ∈ IN} is geometrically er-
godic and, hence, it possess a unique invariant stationary distribution πy. If the
processes {Yt, t ∈ IN} and {Xz

t , t ∈ IN} have the same positive starting value
Y0 = Xz

0 , by (3.5), we conclude that

πz([−k, k]) ≥ πy([0, k]) → 1 (3.6)

as k → ∞. This implies that, ∀ε > 0, ∃k > 0 such that 1 − ε ≤ πz([−k, k]) ≤ 1
and, hence, the family of distributions {πz z ∈ [0, δ]} is tight.
By Prokhorov’s theorem, for every sequence {πzn , n ∈ IN} with zn → 0, there
exists a subsequence {πznk

, k ∈ IN} and a probability measure π̂ such that πznk

w→
π̂. For convenience, we refer to such a subsequence as {πzn , n ∈ IN} and we prove
that π̂ is an invariant measure satisfying

π̂(x) =
∫
IR

1
|g0(v)|pe

{
x− av

g0(v)

}
π̂(dv),

for every x �= ax0
1, ax

0
2. Consider again the set Iε(x) = (x− ε, x + ε), with ε > 0.

For every function f(·) ∈ Cb(IR) (where Cb(IR) is the set of the continuous and
bounded function over IR), with suppf ⊂ IR \ (Iε(ax0

1) ∪ Iε(ax0
2)), we have that∫

IR
f(x)πzn(dx) →

∫
IR

f(x)π̂(dx), (3.7)

as n → ∞. Define h(x, z, v) = 1
|gz(v)|pe{x−avgz(v) } and h̄(x, z, v) = h(x, z, v) −

h(x, 0, v). By Fubini’s theorem, the left-hand side of (3.7) is∫
IR

f(x)
{∫

IR
pzn(v)h(x, zn, v)dv

}
dx

=
∫
IR

pzn(v)
{∫

IR
f(x)h(x, zn, v)dx

}
dv

=
∫
IR

pzn(v)
{∫

IR
f(x)h(x, 0, v)dx

}
dv +

∫
IR

pzn(v)
{∫

IR
f(x)h̄(x, zn, v)dx

}
dv.
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Since, by Lemma 3.1, ∀ε̄>0 there exists N∈IN such that sup
(v,x)∈IR×suppf

|h̄(x, zn, v)|
< ε̄, for every n > N , we obtain that∫

IR
pzn(v)

{∫
IR

f(x)h(x, zn, v)dx
}
dv →

∫
IR

{∫
IR

f(x)h(x, 0, v)dx
}

π̂(dv)

=
∫
IR

f(x)
{∫

IR
h(x, 0, v)π̂(dv)

}
dx,

as n → ∞. By (3.7), we get
∫
IR f(x)π̂(dx) =

∫
IR f(x){∫IR h(x, 0, v)π̂(dv)}dx and π̂

has density function p̂(·), on IR \ {ax0
1, ax

0
2}, such that p̂(x) =

∫
IR h(x, 0, v)π̂(dv).

By the uniqueness of the invariant probability measure, we can conclude that
π̂ = π0 and then πzn

w→ π0, as n → ∞. The conclusion clearly holds for the full
sequence.

Corollary 3.1. Assume that the hypotheses of Proposition 3.2 are satisfied and
that (2.5) is fulfilled for some p > 1. Then, for every 1 ≤ q < p, E[Xq

πzn
] →

E[Xq
π0

] as n → ∞, where Xπz is a random variable with probability distribution
πz.

Proof. By (3.6) and (2.5) we have that supn E[|Xπzn
|p] < +∞. Then, by the

Corollary to Theorem 25.12 in Billingsley (1995), we are done.

Remark 3.2. For bilinear models (Tong (1990, p.159)) and for STAR models
(Chan and Tong (1986)), there are stronger convergence results than those stated
here, involving pointwise or uniform convergence of the density functions. The
mean square convergence of the invariant distributions, in the former case, and
the uniformly boundedness of the invariant densities, in the latter case, play a
fundamental role. None of these conditions are satisfied here.

4. Simulations and Inference Using Estimating Functions

This final section provides a simple simulation study describing the sample
path behaviour of processes satisfying (1.1). Moreover an inferential procedure,
based on the theory of optimal estimating functions, is proposed for the class of
AR models with (Smooth) TARCH errors.

Consider (1.1), with {et, t ∈ IN} a sequence of i.i.d. random variables, such
that E(et) = 0, E(e2

t ) = 1, E(e3
t ) = 0 and E(e4

t ) = ρ, t ∈ IN , ρ ∈ IR+. Indeed,
X0 is assumed to be distributed as e0. We study the cases (A) {et, t ∈ IN} is a
sequence of standard normally distributed random variables, and (B) et, t ∈ IN

are distributed as Z{(ν − 2)/ν}1/2, where Z follows a Student’s t-distribution
with ν > 2 degrees of freedom. Assumption (B) assures that E(e2

t ) = 1 and
E(e4

t ) = 3ν−2
ν−4 , whenever ν > 4. Figure 1 gives simulated sample paths of the

model (1.1), for different parameter values. For each set of values, simulations are
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presented for both (A) and (B), with ν = 5. The extreme behaviour of {Xt, t ∈
IN} under (B) shows larger fluctuations than under (A). This is a consequence of
the well-known fact that the density of the Student’s t-distribution has heavier
tails than those of the standard Gaussian density.
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Figure 1. Simulated sample paths of the model (1.1), with parameters:
a = 0.2, b1 = −0.5, b2 = 0.2, c = 0, d = 1 (figures (a) and (b)) and a = 0.2,
b1 = 1.1, b2 = 0.3, c = 0, d = 1 (figures (c) and (d)); et, t ∈ IN , follow
a standard normal distribution (figures (a) and (c)) or are distributed as
Z

√
3/5, where Z is a Student’s t-distributed random variable with ν = 5

(figures (b) and (d)).

With regard to the estimation problem, a useful and relatively simple solution
is based on the theory of optimal estimating functions, first considered for nonlin-
ear time series models by Thavaneswaran and Abraham (1988). This approach,
which approximates in some sense that based on likelihood, is usually applied
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when the likelihood function is not explicitly known or is not computationally
tractable. We adopt this method since (1.1) is defined without any particular
distributional assumption (such as the Gaussian one). Furthermore maximum
likelihood inference, with the standard normal distribution for {et, t ∈ IN+}, is
obtained as a special case. This general semiparametric specification may be
relevant, for example, in the field of finance where there is enough evidence for
rejecting the usual assumption of normality. It is known that the unconditional
distribution of returns to financial assets presents fatter tails than a Gaussian
distribution and that ARCH-type models, under the assumption of conditional
normality, describe such a behaviour. However, leptokurtosis may be found in
the conditional distribution as well (see, for example, Bollerslev (1987)) and this
fact justifies a non-Gaussian distributional assumption or, in a more general
framework, the above semiparametric specification.

Let us briefly recall some basic definitions and fundamental results on es-
timating functions for stochastic processes. For an extensive introduction, see
Godambe (1985), Godambe and Heyde (1987), Heyde (1988) and Heyde (1997).
Consider X0, . . . ,Xn as a discrete time sample from a stochastic process whose
probability measure is parameterized by an unknown parameter θ ∈ Θ ⊆ IRq.
Let P = {Pθ, θ ∈ Θ} denote the corresponding class of finite-parameterized dis-
tributions on IRn+1 and Fm the σ-field generated by X0, . . . ,Xm, m = 0, . . . , n.
In order to simplify the exposition, take q = 1; the extension to the multi-
dimensional parameter case is straightforward.

An estimating function is a suitable real function of X0, . . . ,Xn and θ given
by Gn(θ) = Gn(θ;X0, . . . ,Xn). We get an estimator for θ by solving Gn(θ) = 0.
Since Gn(θ) is to substitute for the score function when it is unknown or compu-
tationally untreatable, one wishes to choose a function which is, in some sense,
similar to that one. Thus, it may be natural to consider martingale estimating
functions, namely to assume that {Gn(θ), n ∈ IN} is a martingale with respect to
{Fn, n ∈ IN}, when θ is the true parameter value. Indeed, an estimating function
is called unbiased if Eθ{Gn(θ)} = 0, where the expectation is with respect to Pθ,
for every θ ∈ Θ and n ∈ IN . Godambe and Heyde (1987) discuss the problem
of choosing a suitable estimating function and present criteria for determining,
within a class of martingale estimating functions, the one closest to the true score
function (fixed sample criterion) or the one with the smallest asymptotic variance
as n tends to infinity (asymptotic criterion).

We assume that X0, . . . ,Xn is a sample from a Markov process and we
consider the class G of unbiased martingale estimating functions of the general
form

Gn(θ) =
n∑
i=1

r∑
j=1

αj(Xi−1; θ)hj(Xi−1,Xi; θ),
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where hj(Xi−1,Xi; θ), j = 1, . . . , r, are real valued functions such that Eθ{hj
(Xi−1,Xi; θ)|Fi−1} = 0, for all θ and i = 1, . . . , n. Note that the above in-
ferential procedure is conditioned on X0 = x0. Whenever θ is a q-dimensional
parameter with q > 1, functions αj(·), j = 1, . . . , r, and therefore Gn(θ), are
q-dimensional. A theorem by Kessler (1995) gives a procedure for finding, within
the class G, the optimal estimating function with respect to both the fixed sample
criterion and the asymptotic criterion of Godambe and Heyde (1987). The result
applies to general Markov processes and to discretely observed continuous-time
Markov processes; some regularity assumptions on the transition probabilities
of the Markov model and the conditional square integrability of hj(Xi−1,Xi; θ),
j = 1, . . . , r, i = 1, . . . , n, are usually required. For a Markov process model,
we may consider estimating functions of the class G with h(1)(Xi−1,Xi; θ) =
Xi − Γ(Xi−1; θ) and h(2)(Xi−1,Xi; θ) = {Xi − Γ(Xi−1; θ)}2 − ∆(Xi−1; θ), where
Γ(Xi−1; θ) = Eθ(Xi|Fi−1) and ∆(Xi−1; θ) = Var θ(Xi|Fi−1). Thus, we can define
quadratic martingale estimating functions

Gn(θ) =
n∑
i=1

[α1(Xi−1; θ){Xi − Γ(Xi−1; θ)}

+α2(Xi−1; θ){(Xi − Γ(Xi−1; θ))2 − ∆(Xi−1; θ)}],

which are useful for inference within AR models with (Smooth) TARCH errors.
From the theory of optimal martingale estimating functions (see, for example,
Kessler (1995)), the optimal choice for α1 and α2 is

α1(Xi−1; θ) =
{∂θ∆(Xi−1; θ)}Λ(Xi−1; θ) − {∂θΓ(Xi−1; θ)}Ψ(Xi−1; θ)

∆(Xi−1; θ)Ψ(Xi−1; θ) − Λ(Xi−1; θ)2
,

α2(Xi−1; θ) =
{∂θΓ(Xi−1; θ)}Λ(Xi−1; θ) − {∂θ∆(Xi−1; θ)}∆(Xi−1; θ)

∆(Xi−1; θ)Ψ(Xi−1; θ) − Λ(Xi−1; θ)2
,

where Λ(Xi−1; θ) = Eθ[{Xi−Γ(Xi−1; θ)}3|Fi−1], Ψ(Xi−1; θ) = Eθ[{Xi−Γ(Xi−1;
θ)}4|Fi−1] − {∆(Xi−1; θ)}2 and ∂θg(θ) denotes the (column vector of partial)
derivatives of a function g(θ) with respect to θ. Usually, the above conditional
moments are unknown and they have to be found by simulation or by numerical
methods.

We now consider an application of these general results to the threshold bi-
linear model expressed in the equivalent form (2.1). We assume that the random
variables {et, t ∈ IN+} satisfy the above assumptions on the first four moments,
without considering any specific distribution. The extension to the more general
case where E(e3

t ) = τ , with τ ∈ IR, is straightforward. We first assume that ρ is
known and denote θ = (a, b1, b3, c, d). In general, estimating thresholds in non-
linear time series models is not a simple problem and, within the class of TAR
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(Threshold AR) processes, is usually solved by means of a two stage conditional
least squares estimation procedure (see, for example, Chan (1993)). Alterna-
tively, estimation is performed within an enlarged class of smooth models, such
as those introduced in Section 2, which encompass the initial one (Chan and Tong
(1986)). However, we consider the smooth models not as a new enlarged class
of models but as an approximating model useful in order to define an estimating
function suitable as well for the threshold c. Thus, the smoothing parameter z

is fixed at a convenient value close to zero.
Recall the following well-known result on the tail probabilities of the standard

normal distribution: for u → +∞, 1−Φ(u) = (u
√

2π)−1 exp(−u2/2){1+O(u−2)}.
Therefore, if the random variables {et, t ∈ IN+} are absolutely continuous with
respect to the Lebesgue measure, it is easy to see that, for z → 0,

Φ
(
Xt−1 − c

z

)
= 1{Xt−1≥c} + O(z exp(−(Xt−1 − c)2/(2z2))), t ∈ IN+,

almost surely, since Pr(Xt−1 = c) = 0. A possible choice for the smoothing
parameter could be z = n−1, where n is the sample size, so that the error term
is of order o(n−1).

With regard to the smooth model (2.2), which approximates (in the sense of
Proposition 3.2) model (2.1), the (approximated) optimal quadratic martingale
estimating function for θ, is

Gn(θ) = (Gn,a(θ), Gn,b1(θ), Gn,b3(θ), Gn,c(θ), Gn,d(θ))T. (4.1)

Here, since
Eθ(Xi|Fi−1) = Γ(Xi−1; θ) = aXi−1,

Var θ(Xi|Fi−1) = ∆(Xi−1; θ) = [{b1 + b3Φ(
Xi−1 − c

z
)}Xi−1 + d ]2,

Eθ[{Xi − Eθ(Xi|Fi−1)}3|Fi−1] = Λ(Xi−1; θ) = 0,

Eθ[{Xi − Eθ(Xi|Fi−1)}4|Fi−1] = ρ{∆(Xi−1; θ)}2,

deleting a constant term depending on ρ, we obtain

Gn,a(θ) =
n∑
i=1

Xi−1(Xi − aXi−1)
∆(Xi−1; θ)

,

Gn,b1(θ) =
n∑
i=1

Xi−1{(Xi − aXi−1)2 − ∆(Xi−1; θ)}
∆(Xi−1; θ)3/2

,

Gn,b3(θ) =
n∑
i=1

Xi−1{(Xi − aXi−1)2 − ∆(Xi−1; θ)}Φ(Xi−1−c
z )

∆(Xi−1; θ)3/2
,



382 MARCO FERRANTE, GIOVANNI FONSECA AND PAOLO VIDONI

Gn,c(θ) =
n∑
i=1

Xi−1{(Xi − aXi−1)2 − ∆(Xi−1; θ)}φ(Xi−1−c
z )(−b3z

−1)
∆(Xi−1; θ)3/2

,

Gn,d(θ) =
n∑
i=1

{(Xi − aXi−1)2 − ∆(Xi−1; θ)}
∆(Xi−1; θ)3/2

,

with φ(·) the standard normal density function. The estimator θ̂, obtained as
a solution to Gn(θ) = 0, does not depend on the kurtosis parameter ρ, which
can be eventually estimated by ρ̂ = 1

n

∑n
i=1

(Xi−âXi−1)4

∆(Xi−1;θ̂)2
. When the threshold

parameter c is assumed to be known, the optimal quadratic estimating function
may be easily obtained, by considering the model in the form (2.1). Note that,
in this context, conditional least squares methods are not appropriate, since they
provide estimates only for the regression parameter a.

A simple numerical example is presented to illustrate the usefulness of this
inferential procedure. We analyze observations from the model (2.1), with b1,
b3 and c unknown and known a = 0.2, d = 1, ρ = 6. Estimation is based
on the (approximated) quadratic estimating function for (b1, b3, c), obtained by
choosing the second, the third and the fourth components of (4.1). We consider
1,000 simulated sample paths of dimension n = 50, 100, 200, 300 from a threshold
bilinear model with b1 = −0.5, b3 = 0.7, c = 0.5 and et, t ∈ IN , distributed as
Z{(ν − 2)/ν}1/2, where Z follows a Student’s t-distribution with ν = 6 degrees
of freedom.

The estimates for b1, b3 and c, with respect to a given sample path, cannot
be obtained by a simple application of a Newton-Raphson iterative procedure
since, in this case, the algorithm does not converge. This is related to the fact
that, when the smoothing parameter z is close to zero (in this application we
assume z = n−1), the slope of the smoothing function Φ[(x− c)z−1] is steep and
the component of the estimating function referred to the threshold c is extremely
peaked. In order to overcome this problem, our suggestion is to consider a set of
possible values for c; a convenient grid of values may be C = {(Xi−1 +Xi)/2, i =
1, . . . , n}. With respect to a given sample path, the estimates for b1, b3 and
c may be obtained by the following two steps procedure. First, for each fixed
value c ∈ C, we determine the conditional estimates b̂1(c), b̂3(c) by means of an
iterative procedure of Newton-Raphson type with initial values (0, 0). Second, we
consider as estimates for b1, b3 and c the quantities b̂1(c∗), b̂3(c∗), c∗, respectively,
where c∗ is the element c ∈ C such that the component of the estimating function
referred to the threshold, namely Gn,c(b̂1(c), b̂3(c)), is closest to zero.

Table 1 presents the sample mean values, and the associated standard de-
viations, for the corresponding estimators. These simulations show that, as ex-
pected, the larger the sample size the better the conformance of the estimators
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to the theoretical parameter values. Although the results are encouraging, this
numerical example is very simple. A further numerical investigation is needed to
verify the usefulness of the method for estimating, in particular, the threshold
parameter c.

Table 1. Sample means and standard deviations (s.d.) for the estimators of
b1, b3 and c. Computation based on 1,000 replications of samples of size n

from model (2.1), with b1 = −0.5, b3 = 0.7, a = 0.2, c = 0.5, d = 1, ρ = 6,
and underlying Student’s t-distribution.

True value Sample n = 50 n = 100 n = 200 n = 300
b1 = −0.5 mean -0.401 -0.463 -0.483 -0.488

s.d. 0.379 0.210 0.148 0.121
b3 = 0.7 mean 0.492 0.603 0.666 0.672

s.d. 0.622 0.362 0.196 0.156
c = 0.5 mean 0.545 0.509 0.501 0.499

s.d. 0.242 0.111 0.053 0.035
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