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Abstract: Often a question arises as to whether observed data are a sample from

a homogeneous population or from a heterogeneous population. If in particular,

one wants to test for a single normal distribution versus a mixture of two normal

distributions, classic asymptotic results do not apply since the model does not

satisfy regularity conditions. This paper investigates the large sample behavior

of the likelihood ratio statistic for testing homogeneity in the normal mixture in

location parameters with an unknown structural parameter. It is proved that the

asymptotic null distribution of the likelihood ratio statistic is the maximum of a

χ2
2-variable and the supremum of the square of a truncated Gaussian process with

mean 0 and variance 1. This result exposes the unusual large sample behavior of

the likelihood function under the null distribution. The correlation structure of the

process involved in the limiting distribution is presented explicitly. From the large

sample study, it is also found that even though the structural parameter is not part

of the mixing distribution, the convergence rate of its maximum likelihood estimate

is n−1/4 rather than n−1/2, while the mixing distribution has a convergence rate

n−1/8 rather than n−1/4. This is in sharp contrast to ordinary semi-parametric

models and to mixture models without a structural parameter.
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1. Introduction

Let X1, . . . ,Xn be a random sample from a mixture population (1 − α)
N(θ1, σ2) + αN(θ2, σ2) with the probability density function (pdf)

(1− α)σ−1φ{(x− θ1)/σ} + ασ−1φ{(x− θ2)/σ}, (1)

where φ(·) is the pdf of the standard normal N(0, 1). Alternatively, write (1) as∫
σ−1φ{(x− u)/σ}dG(u), with the mixing distribution

G(u) = (1− α)I(u ≥ θ1) + αI(u ≥ θ2). (2)

Suppose we wish to test H0 : α(1 − α) = 0 or θ1 = θ2 versus the full model (1),
i.e., to test N(θ, σ2) versus (1− α)N(θ1, σ2) + αN(θ2, σ2).

There has been increasing interest in finite mixture models in recent years.
The large sample behavior of the likelihood ratio test (LRT) for homogeneity
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in the finite mixture model is a long-standing mystery. Hartigan (1985) showed
that the LRT statistic tends to infinity with probability one if the mean param-
eters are unbounded. The divergence behavior of the LRT is further detailed
by Bickel and Chernoff (1993). On the other hand, Ghosh and Sen (1985) gave
the first version of the asymptotic distributions of the LRT statistic when the
mean parameters are bounded. However, in addition to the boundedness, they
imposed a separation condition, i.e., |θ1 − θ2| > ε for some given ε > 0. The sep-
aration condition is obviously unsatisfactory. There have been many attempts
made to remove the separation condition. Lemdani and Pons (1999) used a
reparameterization approach to investigate the testing problem when one of the
mean parameters is known and their study showed that there is no obvious way
to remove the separation condition. Dacunha-Castelle and Gassiat (1999) de-
veloped a general reparameterization method for the testing problem in locally
conic models. In the meantime, Chen and Chen (2001a and b) took a different
approach, i.e., the so-called sandwich method, to attack the problem without the
separation condition.

In this paper, a structural parameter is included in the mixture model to
bring it closer to the reality. A test for homogeneity is considered when both
the two mean parameters are assumed unknown, and we remove the separation
condition.

We start our study in Section 2 with the single mean parameter mixture
model: one of the mean parameters θ1 and θ2 in (1) is assumed known. While
study of the single mean parameter mixtures has its virtue, the purpose of the
section is to demonstrate the main ideas behind our approach to the general
mixture model (1). The asymptotic distribution of the LRT for homogeneity
under the model (1) is investigated in Section 3. It is shown that the asymp-
totic null distribution of the LRT statistic is the maximum of a χ2

2-variable and
the supremum of the square of a truncated Gaussian process with mean 0 and
variance 1.

Throughout the paper, without loss of generality, let the null underlying
distribution be N(0, 1). For convenience, we write Xn(t) = Op(an) or = op(an)
if supt∈T |Xn(t)/an| = Op(1) or supt∈T |Xn(t)/an| = op(1), where T is a suitably
specified index set and an is a sequence of constants or random variables.

To save space, only the main ideas behind the analyses and results are pre-
sented, and all technical details are in Chen and Chen (2001c), available from the
web site http://www.stats.uwaterloo.ca/Stats Dept/techreports/node8.html.

2. Single Mean Parameter Mixtures

In (1), take θ1 to be 0, θ2 = θ to be unknown. In addition assume that
|θ| ≤ M . Based on the observations Xi, we wish to use the LRT to test the
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null hypothesis H0 : N(0, σ2) versus Ha : (1 − α)N(0, σ2) + αN(θ, σ2). The
log-likelihood function of α, θ and σ is

ln(α, θ, σ) =
n∑

i=1

log[(1−α)σ−1 exp{−X2
i /(2σ

2)}+ασ−1 exp{−(Xi − θ)2/(2σ2)}].

Let σ̂2
0 = n

−1 ∑
X2

i be the MLE of σ
2 under the null hypothesis. Let

rn(α, θ, σ) = 2{ln(α, θ, σ) − ln(0, 0, σ̂0)}

= 2
n∑

i=1

log
{
1 + α

(
exp

{2Xiθ − θ2
2σ2

}
− 1

)}

−n log σ2 −
∑
X2

i

σ2
+ n

(
1 + log

∑
X2

i

n

)
. (3)

Let α̂, θ̂ and σ̂2 be the MLEs for α, θ and σ2 under the full model. Then the
LRT is to reject the null hypothesis when Rn = rn(α̂, θ̂, σ̂) is large.

2.1. Large sample behavior of the MLE’s

We first show that under the null hypothesis σ̂2 is bounded away from zero
and infinity with probability approaching 1.

Lemma 1. Under the null distribution N(0, 1), there exist constants 0 < ε <

∆ <∞ such that P (ε ≤ σ̂2 ≤ ∆)→ 1 as n→ ∞.

Proof. Consider rn(α, θ, σ) defined by (3). Note that when 2xθ − θ2 ≥ 0,

1 + α
[
exp{2xθ − θ

2

2σ2
} − 1

]
≤ exp

{2xθ − θ2
2σ2

}
.

We thus have the inequality

rn(α, θ, σ) ≤
∑
[(2Xiθ − θ2)+ −X2

i ]
σ2

− n log σ2 + n
(
1 + log

∑
X2

i

n

)
,

where t+ = tI(t > 0) denotes the positive part of t. Since (2Xiθ − θ2)+ −X2
i is

equal to either −(θ −Xi)2 or −X2
i , we see that rn(α, θ, σ) ≤ −n log σ2 + n{1 +

log(
∑
X2

i /n)}. Since log(n−1 ∑
X2

i )→ 0 almost surely, the function rn(α, θ, σ) <
0 for all σ2 > ∆ with probability approaching 1 for some large constant ∆. That
is, limP (σ̂2 > ∆) = 0 for some constant ∆.

Next we show that σ̂2 is also bounded away from zero asymptotically. By
the Uniform Strong Law of Large Numbers (see Rubin (1956)), n−1 ∑{X2

i −
(2θXi − θ2)+} → S(θ) = E{X2 − (2θX − θ2)+}, almost surely and uniformly in
|θ| ≤ M . Since S(θ) is continuous and positive, the minimum value of S(θ) is
positive, say equal to 2q for some q > 0. Then with probability approaching one
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uniformly in α, θ and σ, rn(α, θ, σ) ≤ −nqσ−2 − n log σ2 + n{1 + log(∑X2
i /n)}.

Let ε > 0 be small enough such that −q/ε − log ε + 1 < 0. It follows that
with probability approaching 1 uniformly, the function rn(α, θ, σ) < 0 if σ2 < ε,
implying P (σ̂2 ≥ ε)→ 1 as n→ ∞. The proof is completed.

By Lemma 1, the parametric space of interest can be reduced to a compact
one by restricting σ2 within the interval [ε,∆].

Lemma 2. Under the null distribution N(0, 1), as n→ ∞, α̂θ̂ → 0 and σ̂2 → 1,
in probability.

Proof. Here is an outline of the proof. For a detailed proof see Chen and Chen
(2001c). As remarked, we only need to consider ε ≤ σ2 ≤ ∆ for some constants
0 < ε < 1 < ∆ <∞. Let G = {G(·) : G(u) = (1 − α)I(u ≥ 0) + αI(u ≥ θ), |θ| ≤
M, 0 ≤ α ≤ 1}. The space of the distribution functions metrized by taking the
Lévy distance between two distribution functions is compact because M < ∞.
(Note that the Lévy distance convergence is equivalent to weak convergence of
distribution functions.) So the product space Ω = {ω = (σ2, G) : σ2 ∈ [ε,∆], G ∈
G} is compact. Moreover, for ω = (σ2, G) ∈ Ω, put f(x;ω) = σ−1

∫
φ{(x −

u)/σ}dG(u). Then the parameter ω ∈ Ω is identifiable, i.e., for any ωi ∈ Ω,
i = 1, 2, f(x;ω1) = f(x;ω2) for all x, implies ω1 = ω2. With compactness and
identifiability, Wald (1949)’s argument leads to consistency of the MLE ω̂ =
(σ̂2, Ĝ) for ω = (σ2, G) under the null model. Furthermore, it is implied that
the MLEs of the moments

∫
ukdG(u) = αθk are consistent. Since

∫
ukdG(u) = 0

under N(0, 1), the lemma is proved.

By Lemma 2, σ2 can be technically restricted to any neighborhood of σ2 = 1,
say [1 − δ, 1 + δ] for a small δ > 0. This restriction will be used to ensure the
tightness of some processes later.

Here we would like to point out that Lemma 2 does not imply anything about
the rate of convergence. We also like to remark that Lemma 2 does not say that
α̂ or θ̂ is consistent. In fact, α̂ and θ̂ are inconsistent under the null model. See
Chernoff and Lander (1995)’s discussion of the binomial mixture model that is
also applicable to the normal mixture model.

2.2. Asymptotic distribution of the LRT

We proceed to study the large sample behavior of the LRT using a sandwich
idea to derive the asymptotic null distribution of Rn. We first establish an
asymptotic upper bound for Rn. Write rn(α, θ, σ) = r1n(α, θ, σ) + r2n, where
r1n(α, θ, σ) = 2{ln(α, θ, σ)− ln(0, 0, 1)} and r2n = 2{ln(0, 0, 1) − ln(0, 0, σ̂0)}.

First, analyze r1n(α, θ, σ). Write r1n(α, θ, σ) = 2
∑
log(1 + δi), where δi =

(σ2 − 1)Ui(σ) + αθYi(θ, σ), with

Ui(σ) = (σ2 − 1)−1
[ 1
σ
exp

{
− X2

i

2
(
1
σ2

− 1)
}
− 1

]
, (4)
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Yi(θ, σ) =
1
σθ

[
exp

{
− (Xi − θ)2

2σ2
+
X2

i

2

}
− exp

{
− X2

i

2σ2
+
X2

i

2

}]
. (5)

The functions Ui(σ) and Yi(θ, σ) are continuously differentiable with Ui(1) =
(X2

i − 1)/2 and Yi(0, σ) = σ−3Xi exp{−X2
i (σ

−2 − 1)/2}. Also, note that under
the null distribution N(0, 1), E{Ui(σ)}=0 and E{Yi(θ, σ)} = 0 for any σ and θ.

By the inequality 2 log(1+x) ≤ 2x−x2+2x3/3, r1n(α, θ, σ) = 2
∑n

i=1 log(1+
δi) ≤ 2∑n

i=1 δi −
∑n

i=1 δ
2
i + (2/3)

∑n
i=1 δ

3
i . Re-write δi as

δi = (σ2 − 1)Ui(1) + αθYi(θ, 1) + εin, (6)

where the remainder εin = (σ2 − 1){Ui(σ) − Ui(1)} + αθ{Yi(θ, σ) − Yi(θ, 1)}.
Since the processes U∗(σ) = n−1/2 ∑{Ui(σ) − Ui(1)}/(σ2 − 1) and Y ∗(θ, σ) =
n−1/2 ∑{Yi(θ, σ) − Yi(θ, 1)}/(σ2 − 1), σ2 ∈ [1 − δ, 1 + δ] and |θ| ≤ M , are tight
(see Chen and Chen (2001c), Proposition 1), we see that U∗(σ) = Op(1) and
Y ∗(θ, σ) = Op(1), implying

n∑
i=1

εin = n1/2(σ2 − 1)2Op(1) + n1/2αθ(σ2 − 1)Op(1). (7)

Our convention has sup|σ2−1|≤δ |U∗(σ)| = Op(1), and sup|θ|≤M,|σ2−1|≤δ |Y ∗(θ, σ)|
= Op(1). Put En1 = (σ2 − 1)2Op(1), En2 = αθ(σ2 − 1)Op(1), Ui = Ui(1), and
Yi(θ) = Yi(θ, 1). By (6) and (7), we obtain

n∑
i=1

δi =
n∑

i=1

{(σ2 − 1)Ui + αθYi(θ)}+ n1/2(En1 + En2). (8)

Similarly, we can replace σ2 with 1 in the square and cubic terms of δi, and arrive
at

n∑
i=1

δ2i =
n∑

i=1

{(σ2 − 1)Ui + αθYi(θ)}2 + n(E2
n1 + E

2
n2), (9)

∣∣∣∣∣
n∑

i=1

δ3i −
n∑

i=1

{(σ2 − 1)Ui + αθYi(θ)}3

∣∣∣∣∣ = n(|En1|3 + |En2|3). (10)

It is important to note that in (10), the remainder terms have a factor of n rather
than n3/2. To see this, e.g.,

n∑
i=1

|(σ2 − 1){Ui(σ)− Ui(1)}|3 = n(σ2 − 1)6(1/n)
n∑

i=1

|{Ui(σ)− Ui(1)}/(σ2 − 1)|3

= n(σ2 − 1)6Op(1) = n|En1|3.
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Now by (8), (9) and (10),

r1n(α, θ, σ) ≤ 2
n∑

i=1

{(σ2 − 1)Ui + αθYi(θ)} −
n∑

i=1

{(σ2 − 1)Ui + αθYi(θ)}2

+(2/3)
n∑

i=1

{(σ2 − 1)Ui + αθYi(θ)}3 + n1/2(En1 + En2)

+n
3∑

j=2

(|En1|j + |En2|j). (11)

Introduce Zi(θ) = Yi(θ) − θUi. Then (σ2 − 1)Ui + αθYi(θ) = t1Ui + t2Zi(θ),
where t1 = σ2 − 1 + αθ2, and t2 = αθ. Note that EUiZi(θ) = 0. It can be
proved that the cubic and remainder terms in (11) are controlled by the square
term, see Chen and Chen (2001c) for details. As for the remainder terms in
(11), since |θ| ≤ M , n1/2|En1| = n1/2(σ2 − 1)2|Op(1)| ≤ n1/2(t21 + t

2
2)|Op(1)| =

op{∑n
i=1[t1Ui+t2Zi(θ)]2}, and similarly n1/2|En2| ≤ n1/2{t22+(σ2−1)2}|Op(1)| ≤

n1/2(t21 + t
2
2)|Op(1)| = op{

∑n
i=1[t1Ui + t2Zi(θ)]2}. Note that when t1 = t2 = 0,

i.e., σ2 = 1 and θ = 0 in the above inequalities, r1n = 0 = op(1). Thus, this
case can be ignored. The other remainder terms resulting from the square or
cubic sum are of the same (or higher) order as that from the linear sum. In
fact, n(E2

n1 +E
2
n2) ≤ n(t21 + t

2
2)

2Op(1) = (t21 + t
2
2)Op{∑n

i=1[t1Ui + t2Zi(θ)]2} and
n(|En1|3+ |En2|3) ≤ (|t1|+ |t2|)Op(nE2

n1+nE
2
n2). Then (11) can be expressed as

r1n(α, θ, σ)

≤ 2
n∑

i=1

{t1Ui+t2Zi(θ)} −
n∑

i=1

{t1Ui+t2Zi(θ)}2{1+(|t1|+|t2|)Op(1)+op(1)}. (12)

Since Ui and Zi(θ) are orthogonal, (12) is further reduced to

r1n(α, θ, σ)

≤ 2
n∑

i=1

{t1Ui+t2Zi(θ)} −
n∑

i=1

{t21U2
i +t

2
2Z

2
i (θ)}{1+(|t1|+|t2|)Op(1)+op(1)}. (13)

Let t̂1 = σ̂2 − 1 + α̂θ̂2 and t̂2 = α̂θ̂ be the MLE’s. By Lemma 2, t̂1 = op(1) and
t̂2 = op(1). Consequently, replacement of the MLE’s in (13) gives

r1n(α̂, θ̂, σ̂) ≤ 2
n∑

i=1

{t̂1Ui + t̂2Zi(θ̂)} −
n∑

i=1

{t̂21U2
i + t̂

2
2Z

2
i (θ̂)}{1 + op(1)}

≤ (
∑
Ui)2∑
U2

i

{1 + op(1)}+ sup
|θ|≤M

[{sgn(θ)∑Zi(θ)}+]2∑
Z2

i (θ)
{1 + op(1)}

≤ (
∑
Ui)2∑
U2

i

+ sup
|θ|≤M

[{sgn(θ)∑Zi(θ)}+]2∑
Z2

i (θ)
+ op(1), (14)
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where sgn(θ) is the sign function. For detailed analysis leading to (14), see Chen
and Chen (2001c).

Recall that Rn = rn(α̂, θ̂, σ̂) = r1n(α̂, θ̂, σ̂) + r2n, and note that r2n renders
an ordinary quadratic approximation, i.e., r2n = −(∑Ui)2/

∑
U2

i + op(1). An
upper bound for Rn is obtained as

Rn ≤ sup
|θ|≤M

[{sgn(θ)∑n
i=1 Zi(θ)}+]2

nEZ2
1 (θ)

+ op(1). (15)

To obtain a lower bound for Rn, let ε > 0 be any fixed small number and let
Rn(ε) be the supremum of rn(α, θ, σ) under the restriction ε ≤ |θ| ≤ M . Chen
and Chen (2001c) show that, for any fixed ε ≤ |θ| ≤ M , if α = α̃(θ) and
σ = σ̃(θ) assume the values determined by σ2 − 1 + αθ2 =

∑
Ui/

∑
U2

i and
αθ = [sgn(θ)

∑
Zi(θ)]+/

∑
Z2

i (θ), then

r1n(α̃(θ), θ, σ̃(θ)) =
{∑Ui}2

∑
U2

i

+
[{sgn(θ)∑Zi(θ)}+]2

nEZ2
1 (θ)

+ op(1).

It thus follows that

Rn(ε) ≥ sup
ε≤|θ|≤M

rn(α̃(θ), θ, σ̃(θ)) = sup
ε≤|θ|≤M

[{sgn(θ)∑Zi(θ)}+]2

nEZ2
1 (θ)

+ op(1). (16)

Theorem 1. Let X1, . . . ,Xn be a random sample from the mixture distribution
(1 − α)N(0, σ2) + αN(θ, σ2), where 0 ≤ α ≤ 1, |θ| ≤ M and σ > 0, otherwise
unknown. Let Rn be (twice) the log-likelihood ratio test statistic for testing H0 :
α = 0. Then under the null distribution, Rn → sup|θ|≤M{ζ+(θ)}2, as n → ∞,
where ζ(0) = 0 and, for 0 < |θ| ≤M , ζ(θ) is a Gaussian process with mean 0 and
variance 1 and the autocorrelation given by ρ(s, t) = sgn(st)a(st)/{a(s2)a(t2)}1/2

for s, t �= 0, and ρ(0, t) = |t|/(b2(t))1/2, where a(x) = ex − 1− x2/2.

Proof. In light of (15) and (16), the result follows by first letting n → ∞ and
then ε→ 0. For details, see Chen and Chen (2001c).

3. Two-Mean Parameter Mixtures

In this section we study the testing problem when both mean parameters θ1
and θ2 are unknown. Assume that |θi| ≤ M , i = 1, 2, and that 0 ≤ α ≤ 1/2, so
that θ1 and θ2 are distinguishable. We wish to test H0 : α = 0 versus the full
model (1).

Let rn(α, θ1, θ2, σ) = 2{ln(α, θ1, θ2, σ) − ln(0, θ̂, θ̂, σ̂0)}, where ln is the log-
likelihood function, and θ̂ = X̄ and σ̂2

0 = n−1 ∑
(Xi − X̄)2 are the MLE’s of

θ1 = θ2 = θ and σ2 under the null model. Let α̂, θ̂1, θ̂2 and σ̂2 be the MLEs
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for α, θ1, θ2 and σ2 under the full model (1). The LRT is to reject H0 if Rn =
rn(α̂, θ̂1, θ̂2, σ̂) is large.

3.1. The MLE’s

The statement of Lemma 1 remains true, i.e., under the null distribution,
there are constants 0 < ε < ∆ < ∞ such that P (ε ≤ σ̂2 ≤ ∆) → 1 as n → ∞.
The proof is also similar to that of Lemma 1 (see Chen and Chen (2001c)).
Lemma 2 can be re-written as follows.

Lemma 3. Under the null distribution, θ̂1 → 0, α̂θ̂2 + (1− α̂)θ̂1 → 0, α̂θ̂2
2 → 0

and σ̂2 → 1 in probability, as n→ ∞.

Proof. The proof is similar to that of Lemma 2. See Chen and Chen (2001c)
for details.

In light of Lemma 3, without loss of generality, σ2 can be restricted to a
neighborhood of σ2 = 1, say [1− δ, 1 + δ] for a small number δ > 0.

To derive the asymptotic distribution of the LRT in the present case, we face
the challenge of a loss of positive-definiteness of the quadratic term in (11). To
overcome the difficulty, the parameter space is partitioned into two parts: |θ2| > ε
and |θ2| ≤ ε, for an arbitrarily small ε > 0. The LRT will be analyzed within
each part by using the sandwich approach. Let Rn(ε; I) denote the supremum
of the likelihood function within the part |θ2| ≥ ε, and Rn(ε; II) the supremum
within |θ2| ≤ ε. Then Rn = max{Rn(ε; I), Rn(ε; II)}. The number ε will remain
fixed as n approaches infinity. It is easily seen that Lemma 3 remains true
under either restriction |θ2| ≥ ε or |θ2| ≤ ε. Dependence on ε will be suppressed
notationally for the MLE’s of the parameters. Thus α̂, θ̂1, θ̂2 and σ̂ will denote
the constrained MLE’s of α, θ1, θ2 and σ with restriction |θ2| ≥ ε in the analysis
of Rn(ε; I), but stand for the constrained MLE’s with restriction |θ2| ≤ ε in the
analysis of Rn(ε; II).

3.2. Analysis of Rn(ε; I)

We first establish an asymptotic upper bound for Rn(ε; I). As in Section
2.2, write rn(α, θ1, θ2, σ) = r1n(α, θ1, θ2, σ) + r2n, where r2n = 2{ln(0, 0, 0, 1) −
ln(0, θ̂, θ̂, σ̂0)}. To analyze r1n(α, θ1, θ2, σ), express r1n(α, θ1, θ2, σ) = 2

∑
log(1+

δi) with
δi = (1− α)θ1Yi(θ1, σ) + αθ2Yi(θ2, σ) + (σ2 − 1)Ui(σ), (17)

where Yi(θ, σ) and Ui(σ) are defined in (5) and (4). Re-write δi = m1Yi(0, 1) +
(σ2 − 1 + m2)Ui(1) + m3Vi(θ2) + εin, where εin is the remainder, m1 = (1 −
α)θ1+αθ2, m2 = (1−α)θ21 +αθ22, m3 = αθ32, and Vi(θ2) = {Yi(θ2, 1)−Yi(0, 1)−
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θ2Ui(1)}/θ22 . Define Vi(0) = −(Xi/2) + (X3
i /6) so that the function Vi(θ) is

continuously differentiable. By an analysis similar to the single mean parameter
case, the sum of the remainder εin’s satisfies

εn =
n∑

i=1

εin = Op{
√
n|σ2 − 1|[|m1|+ θ21 + αθ22 + |σ2 − 1|] +√

n|θ31|}. (18)

Note that Ui = Ui(1) = (X2
i − 1)/2 and Yi(0, 1) = Xi. We have

∑n
i=1 δi =

m1
∑n

i=1Xi+(σ2 − 1+m2)
∑n

i=1 Ui+m3
∑n

i=1 Vi(θ2)+ εn. Since the remainders
resulting from the square and cubic sums are of the same (or higher) order as
the remainder from the linear sum (see the similar analysis in the case of single
mean parameter mixtures), we have

r1n(α, θ1, θ2, σ) ≤ 2
n∑

i=1

δi −
n∑

i=1

δ2i + (2/3)
n∑

i=1

δ3i

= 2
n∑

i=1

{m1Xi + (σ2 − 1 +m2)Ui +m3Vi(θ2)}

−
n∑

i=1

{m1Xi + (σ2 − 1 +m2)Ui +m3Vi(θ2)}2

+(2/3)
n∑

i=1

{m1Xi + (σ2 − 1 +m2)Ui +m3Vi(θ2)}3

+Op{
√
n|σ2 − 1|[|m1|+ θ21 + αθ22 + |σ2 − 1|] +√

n|θ31|}.

Furthermore, the cubic sum is negligible when compared to the square sum. This
can be justified by using the idea leading to (14). First, the square sum times
n−1 approaches E{m1X1+(σ2−1+m2)U1+m3V1(θ2)}2 uniformly. The limit is
a positive definitive quadratic form in variables m1, σ2 − 1 +m2 and m3. Next,
noting that Xi, Ui and Vi(θ2) are mutually orthogonal, we have that

r1n(α̂, θ̂1, θ̂2, σ̂)

≤ 2
{
m̂1

n∑
i=1

Xi + (σ̂2 − 1 + m̂2)
n∑

i=1

Ui + m̂3

n∑
i=1

Vi(θ̂2)
}

−
{
m̂2

1

n∑
i=1

X2
i + (σ̂

2 − 1 + m̂2)2
n∑

i=1

U2
i + m̂

2
3

n∑
i=1

V 2
i (θ̂2)

}
{1 + op(1)} + ε̂n.

Here the terms with a hat are their (constrained) MLE’s with restriction |θ2| ≥ ε

as remarked at the end of Section 3.1. In particular, from (18), ε̂n = Op{
√
n|σ̂2−

1|[|m̂1|+ θ̂21+ α̂θ̂22+ |σ̂2−1|]+√
n|θ̂31|}. By the Cauchy inequality (e.g.,

√
n|m̂1| ≤
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1 + nm̂2
1) and the restriction |θ2| ≥ ε (hence |θ̂2| ≥ ε), we have

√
n|σ̂2 − 1|[|m̂1|+ θ̂21 + α̂θ̂22 + |σ̂2 − 1|] +√

n|θ̂31|
≤ |σ̂2 − 1|[4 + n{m̂2

1 + θ̂
4
1 + (α̂θ̂

2
2)

2 + (σ̂2 − 1)2}] + |θ̂1|(1 + nθ̂41)
= op(1) + nop{m̂2

1 + θ̂
4
1 + (α̂θ̂

2
2)

2 + (σ̂2 − 1)2}
= op(1) + nop{m̂2

1 + (σ̂
2 − 1 + m̂2)2 + m̂2

3}.
Thus the remainder term ε̂n can also be absorbed into the quadratic sum, i.e.,

r1n(α̂, θ̂1, θ̂2, σ̂)

≤ 2
{
m̂1

n∑
i=1

Xi + (σ̂2 − 1 + m̂2)
n∑

i=1

Ui + m̂3

n∑
i=1

Vi(θ̂2)
}

−
{
m̂2

1

n∑
i=1

X2
i + (σ̂

2 − 1 + m̂2)2
n∑

i=1

U2
i + m̂

2
3

n∑
i=1

V 2
i (θ̂2)

}
{1 + op(1)} + op(1).

Similar to (14), the right-hand side of the above inequality becomes even greater
when m̂1, σ̂2 − 1 + m̂2 and m̂3 are replaced with

m̃1 =
∑
Xi∑
X2

i

, σ̃2 − 1 + m̃2 =
∑
Ui∑
U2

i

, m̃3 =
{sgn(θ2)

∑
Vi(θ2)}+

∑
V 2

i (θ2)
, (19)

for any ε ≤ |θ2| ≤M , so that

r1n(α̂, θ̂1, θ̂2, σ̂) ≤ {∑Xi}2

n
+ 2

{∑Ui}2

n
+ sup

ε≤|θ|≤M

[{sgn(θ)∑Vi(θ)}+]2

nEV 2
1 (θ)

+ op(1).

(20)
On the other hand, classic analysis gives

r2n = 2{ln(0, 0, 0, 1) − ln(0, θ̂, θ̂, σ̂0)} = −nX̄2 − (2/n)
{ n∑

i=1

Ui

}2
+ op(1). (21)

Combining (20) and (21) yields

Rn(ε; I) ≤ sup
ε≤|θ|≤M

[{sgn(θ)∑Vi(θ)}+]2

nEV 2
1 (θ)

+ op(1). (22)

We have thus established an asymptotic upper bound for Rn(ε; I). The upper
bound is also achievable. To see this, for |θ2| ≥ ε fixed, let α̃, θ̃1 and σ̃ be
the solutions for α, θ1 and σ of (19). Then α̃ = Op(n−1/2), θ̃1 = Op(n−1/2)
and σ̃2 − 1 = Op(n−1/2) uniformly in θ2. Chen and Chen (2001c) show that
r1n(α̃, θ̃1, θ2, σ̃) = 2

∑
δ̃i − ∑

δ̃2i (1 + op(1)). By (19), α̃, θ̃1 and σ̃ are such that

sup
ε≤|θ|≤M

rn(α̃, θ̃1, θ, σ̃) = sup
ε≤|θ|≤M

[{sgn(θ)∑Vi(θ)}+]2

nEV 2
1 (θ)

+ op(1).
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It is thus shown that the upper bound in (22) is achievable and hence

Rn(ε; I) = sup
ε≤|θ|≤M

[{sgn(θ)∑Vi(θ)}+]2

nEV 2
1 (θ)

+ op(1). (23)

3.3. Analysis of Rn(ε; II)

Now consider the restriction |θ2| ≤ ε. In this case, θ1 and θ2 can be treated
equally. In fact, since the MLE of θ1 is consistent, we can take |θ1| ≤ ε as well.

As before, we know that r1n(α, θ1, θ2, σ) = 2
∑n

i=1 log(1 + δi) ≤ 2
∑n

i=1 δi −∑n
i=1 δ

2
i + (2/3)

∑n
i=1 δ

3
i . Let m̂k = (1 − α̂)θ̂k

1 + α̂θ̂
k
2 . Expanding Yi(θ, σ) and

Ui(σ) at θ = 0 and σ = 1 in (17), we have

δ̂i = m̂1Yi(0, 1) + (σ̂2 − 1 + m̂2)Y ′
i (0, 1) +

1
2
m̂3Y

′′
i (0, 1)

+
1
6
{3(σ̂2 − 1)2 + m̂4 + 6(σ̂2 − 1)m̂2}Y ′′′

i (0, 1) + ε̂in, (24)

where Y ′
i (0, 1) is the first partial derivative of Yi(θ, σ) with respect to θ at θ = 0

and σ2 = 1, and similarly for Y ′′
i (0, 1) and Y

′′′
i (0, 1). As before, put Yi = Yi(0, 1),

Y ′
i = Y

′
i (0, 1), Y

′′
i = Y

′′
i (0, 1) and Y

′′′
i = Y ′′′

i (0, 1). By calculation, Y
′
i = Ui(1) =

(X2
i − 1)/2, Y ′′

i = (X3
i − 3Xi)/3, and Y ′′′

i = 2U ′
i(1) = (X4

i − 6X2
i + 3)/4. The

sum of the remainders, ε̂n =
∑
ε̂in satisfies

ε̂n = n1/2(σ̂2−1)3Op(1)+n(m̂2
1+m̂

2
3)op(1)+n

1/2(|m̂5|+m̂6)Op(1)+op(1). (25)

Note that the cross-product terms in the Taylor expansion of (24) have been taken
into account in the remainder, e.g., n1/2(σ̂2 −1)m̂1 = op(n1/2m̂1) = op(1+nm̂2

1).
Also note that 3(σ̂2 − 1)2 + m̂4 + 6(σ̂2 − 1)m̂2 = 3(σ̂2 − 1 + m̂2)2 + m̂4 − 3m̂2

2.
Hence (24) can be written as δ̂i = ŝ1Yi + ŝ2Y ′

i + ŝ3Y
′′
i + ŝ4Y

′′′
i + ε̂′in, where

ŝ1 = m̂1, ŝ2 = σ̂2 − 1 + m̂2, ŝ3 = (1/2)m̂3, ŝ4 = (1/6)(m̂4 − 3m̂2
2). (26)

Combining with (25), the sum of the remainders, ε̂′n =
∑
ε̂′in, becomes

ε̂′n = n
1/2ŝ22Op(1) + n1/2(σ̂2 − 1)3Op(1) + n(m̂2

1 + m̂
2
3)op(1)

+n1/2(|m̂5|+ m̂6)Op(1) + op(1). (27)

Therefore, an upper bound for r1n(α̂, θ̂1, θ̂2, σ̂) is

r1n(α̂, θ̂1, θ̂2, σ̂)

≤ 2
n∑

i=1

{ŝ1Yi + ŝ2Y ′
i + ŝ3Y

′′
i + ŝ4Y

′′′
i } −

n∑
i=1

{ŝ1Yi + ŝ2Y ′
i + ŝ3Y

′′
i + ŝ4Y

′′′
i }2

+
2
3

n∑
i=1

{ŝ1Yi + ŝ2Y ′
i + ŝ3Y

′′
i + ŝ4Y

′′′
i }3 + ε̂′n.



362 HANFENG CHEN AND JIAHUA CHEN

Similarly to the analysis in Section 2, the cubic sum is controlled by the square
sum (see Chen and Chen (2001c)). Moreover, Yi, Y ′

i , Y
′′
i and Y ′′′

i are mutually
orthogonal and hence the quadratic sum is positive-definite. We arrive at

r1n(α̂, θ̂1, θ̂2, σ̂) ≤ 2Ln −Qn{1 + εOp(1)} + ε̂′n, (28)

where Ln = ŝ1
∑
Yi + ŝ2

∑
Y ′

i + ŝ3
∑
Y ′′

i + ŝ4
∑
Y ′′′

i , and Qn = ŝ21
∑n

i=1 Y
2
i +

ŝ22
∑n

i=1(Y
′
i )

2 + ŝ23
∑n

i=1(Y
′′
i )

2 + ŝ24
∑n

i=1(Y
′′′
i )

2. Since σ̂2 − 1 = op(1), m̂2
2 ≤ ε2

and m̂3
2 ≤ m̂6, we have n1/2|(σ̂2 − 1)3| ≤ 8n1/2{|ŝ2|3 + m̂3

2} ≤ εn1/2ŝ22Op(1) +
n1/2m̂6Op(1). Thus (27) can be expressed as

ε̂′n = εn
1/2ŝ22Op(1) + n(m̂2

1 + m̂
2
3)op(1) + n

1/2(|m̂5|+ m̂6)Op(1) + op(1). (29)

Now the key point is to show that

ε̂′n = op(1) + εn{ŝ21 + ŝ22 + ŝ23 + ŝ24}Op(1). (30)

This result implies that the remainder is also negligible when compared to the
square sum in (28). Put τ̂ = (1 − α̂)|θ̂1|5 + α̂|θ̂2|5. Then |m̂5| + m̂6 = Op(τ̂).
Therefore, (30) follows immediately from (29) and the following lemma.

Lemma 4. τ̂ = op(1) + ε{|ŝ1|+ |ŝ2|+ |ŝ3|+ |ŝ4|}Op(1).

Proof. Let γ > 1 be a constant. Partition the sample space into several parts:
(1 − α̂)|θ̂1|k ≥ γα̂|θ̂2|k and γ−1 ≤ (1 − α̂)|θ̂1|k/(α̂|θ̂2|k) ≤ γ, k = 1 and 3. The
proof is accomplished by showing that in each part, one of ŝi, i = 1, . . . , 4,
controls τ̂ . For details, see Chen and Chen (2001c).

From (28) and (30), it follows that r1n(α̂, θ̂1, θ̂2, σ̂) ≤ 2Ln−Qn{1+εOp(1)}+
op(1). We thus see that Rn(ε; II) ≤ (∑Y ′′

i )
2/{nE(Y ′′

1 )
2}+(∑Y ′′′

i )
2/{nE(Y ′′′

1 )
2}

+εOp(1). The upper bound in this inequality is attained when the parame-
ters α, θ1, θ2 and σ assume the values determined by s1 =

∑
Yi/

∑
Y 2

i , s2 =∑
Y ′

i /
∑
(Y ′

i )
2, s3 =

∑
Y ′′

i /
∑
(Y ′′

i )
2, s4 =

∑
Y ′′′

i /
∑
(Y ′′′

i )
2, where s1, s2, s3 and

s4 are defined by (26). It then follows that

Rn(ε; II) =
(
∑
Y ′′

i )
2

nE(Y ′′
1 )2

+
(
∑
Y ′′′

i )
2

nE(Y ′′′
1 )2

+ εOp(1). (31)

Remark. A by-product of the above analysis shows that the MLE of σ2 has
a convergence rate of at most n−1/4. To see this, consider the submodel where
θ1 = −θ2 = θ, α = 1/2 and σ2 − 1 = −θ2. The maximum of the likelihood
function is achieved when m4 − 3m2

2 = −2θ4 = 6∑
Y ′′′

i /
∑
(Y ′′′

i )
2 = Op(n−1/2).

This implies that θ̂ = Op(n−1/8) and σ̂2 − 1 = n−1/4. This is in contrast to
ordinary semi-parametric models, where one may still have the usual rate of
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n−1/2 for parametric components, see Van der Vaart (1996). Moreover, the result
suggests that the best possible rate for estimating the mixing distribution when
a structural parameter is present is n−1/8, rather than n−1/4 as found by Chen
(1995) for mixture models without a structural parameter.

3.4. Asymptotic distribution of the LRT

Theorem 2. Let X1, . . . ,Xn be a random sample from the mixture distribution
(1−α)N(θ1, σ2) +αN(θ2, σ2), where 0 ≤ α ≤ 1/2, |θi| ≤M , i = 1, 2 and σ > 0.
Let Rn be (twice) the log-likelihood ratio test statistic for testing H0 : α = 0. Then
under the null distribution, Rn → sup|θ|≤M [{ς+(θ)}2I(θ �= 0)+{ς(0)2+Z2}I(θ =
0)] as n → ∞, where the process involved in the limiting distribution is defined
as follows: (1) ς(θ), |θ| ≤M , is a Gaussian process with mean 0, variance 1 and
the autocorrelation function ρ(s, t) = sgn(st){b(st)}/{b(s2)b(t2)}1/2 for s, t �= 0
and ρ(0, t) = |t|3/{6b(t2)}1/2, where b(x) = ex − 1 − x− x2/2, and (2) ς(0) and
Z ∼ N(0, 1) are independent and for s �= 0, Cov {ς(s), Z} = s4/2{6a(s2)}1/2.

Proof. For any fixed ε, Rn = max{Rn(ε; I), Rn(ε; II)}. By (23) and (31), the
results follow by first letting n → ∞ and then ε→ 0. For details, see Chen and
Chen (2001c).

4. Conclusion Remark

The asymptotic null distribution of the LRT for homogeneity in finite nor-
mal mixture models in the presence of a structural parameter has been derived
without separation conditions on the mean parameters. It is proved that the
asymptotic null distribution of the LRT is the maximum of a χ2-variable and the
supremum of the square of a truncated Gaussian process.

If the structural parameter were removed from the model, the peculiar large
sample behavior of the LRT would disappear and the limiting null distribution
would be simply the supremum of the square of the truncated Gaussian process
and reduce to the one discovered by Chen and Chen (2001a). If in addition
M → ∞, the supremum is distributed approximately as (2 logM)1/2 + {X −
log(2π)}/(2 logM)1/2, where P (X ≤ x) = exp{−e−x}, the type-I extreme value
distribution, see Chernoff and Lander (1995), Appendix D and Adler (1990). The
result in Bickel and Chernoff (1993) can be obtained in a heuristic way by letting
M = (log n/2)1/2. It is interesting to see that the results from different model
set-ups agree formally. Bickel and Chernoff actually dealt with a modified LRT
by replacing a random element in the LRT statistic with its mean in order to
simplify the analysis. It seems that their modification might not have changed
the asymptotic behavior of the LRT substantially.

Computing the quantiles of the supremum of a Gaussian process over a region
is a difficult problem. See the comments by Dacunha-Castelle and Gassiat (1999),
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and Chen and Chen (2001b). Some approximations in special cases can be found
in Adler (1990) and Sun (1993).

Owing to the large sample study it is found that, even though the struc-
tural parameter is not part of the mixing distribution, the convergence rate of
the MLE is n−1/4 rather than n−1/2. This is in sharp contrast to the ordinary
semi-parametric models. Moreover, the estimated mixing distribution has a con-
vergence rate n−1/8 rather than n−1/4, as discovered by Chen (1995) for finite
mixture models without a structural parameter.
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