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THE LIMIT DISTRIBUTION OF A TEST STATISTIC

FOR BIVARIATE NORMALITY

Namhyun Kim and Peter J. Bickel

Hongik University and University of California, Berkeley

Abstract: Testing for normality has always been an important part of statistical

methodology. In this paper we propose a test statistic for bivariate normality. We

generalize the statistic proposed by de Wet and Venter to test bivariate normality

using Roy’s union-intersection principle. The generalized statistic is affine invariant.

We show that the limit distribution of an approximation to the suggested statistic

is representable as the supremum over an index set of the integral of a suitable

Gaussian process. We also simulate the null distribution of the statistic, give some

critical values of the distribution and make power comparisons to other procedures

that have been proposed.
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1. Introduction

Let X1 = (X11,X21)T , . . . ,Xn = (X1n,X2n)T be a sample of independent
observations on a random 2-dimensional (column) vector X = (X1,X2)T , where
T denotes transpose. Let us write BVN(µ1, µ2, σ21 , σ

2
2 , ρ) for a bivariate normal

distribution with means µ1, µ2, variances σ21 , σ
2
2 and correlation coefficient ρ.

Most classical multivariate analysis techniques assume multivariate normal-
ity of a data set, and this is a natural assumption to test. In this paper we
consider only bivariate normality H0 : The law of X is BVN(µ1, µ2, σ21 , σ

2
2 , ρ)

for some µ1, µ2, σ21 , σ
2
2 , ρ. However it seems clear that our techniques should

generalize.
In testing multivariate normality, a number of test procedures have been

proposed in the literature. For a general review, see Gnanadesikan (1977), Mar-
dia (1980), Cox and Small (1978), D’Agostino and Stephens (1986, Section 9.7).
Mardia (1970, 1974, 1975), Mardia and Foster (1983), Malkovich and Afifi (1973)
and Machado (1983) proposed multivariate measures of skewness and kurtosis
and used them to develop tests for multinormality. Horsewell and Looney (1992)
presented a comparison of tests that are based on measures of multivariate skew-
ness and kurtosis. Csörgő (1986, 1989) proposed a test based on the empirical
characteristic function. Baringhaus and Henze (1988) extended the approach of
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Epps and Pulley (1983) to the multivariate case. Their test is based on a weighted
integral of the squared modulus of the difference between the empirical charac-
teristic function of the standardized residuals and its pointwise limit under the
null hypothesis. This test was studied by Henze and Zirkler (1990), Henze and
Wagner (1997). Zhu, Wong and Fang (1995) suggested a test for multinormality
based on sample entropy and projection pursuit.

In this paper we begin by considering a test statistic for the simple hypothesis
Hs0 : The law of X is BVN(0, 0, 1, 1, ρ),

P on = sup
c1,c2.�.c21+c22+2ρc1c2=1

n∑
i=1

{
(c1X1 + c2X2)(i) − Φ−1

(
i

n + 1

)}2
, (1)

where (·)(i) means the ith order statistic of the random variables in parentheses
and Φ−1 denotes the inverse of the standard normal distribution function Φ. The
natural extension of P on for testing H0 is

Pn = sup
c1,c2

n∑
i=1

{
(c1X1 + c2X2)(i) −

(
c1X̄1 + c2X̄2

)
sd(c1X1 + c2X2)

− Φ−1
(

i

n + 1

)}2
(2)

:= sup
c1,c2

n∑
i=1

A(c1, c2)2, (3)

where X̄k = n−1∑n
i=1Xki, sd

2(c1X1+ c2X2) = c21σ̂1
2+ c22σ̂2

2+2c1c2ρ̂σ̂1σ̂2, σ̂2k =
n−1∑n

i=1(Xki − X̄k)2, k = 1, 2, and ρ̂ = n−1∑n
i=1(X1i − X̄1)(X2i − X̄2)/(σ̂1σ̂2).

Note that Pn is affine invariant. Consequently, the distribution of Pn under H0
does not depend on the parameters µ1, µ2, σ21 , σ22 , ρ. Hence in studying Pn
and the approximation P Tn to be introduced later, which is also affine invariant
under H0, it is enough to consider its behavior under Hs0 . It should be remarked
that the statistics P on and Pn can be readily generalized to the d-dimensional
case for all d ≥ 2. These statistics P on , Pn generalize those introduced by de Wet
and Venter (1972) for testing univariate normality using Roy’s union-intersection
principle (Roy (1953)).

Let X1, . . . ,Xn be independent and identically distributed (i.i.d.) random
variables from a common distribution F . de Wet and Venter (1972) suggested
a statistic Lon =

∑n
i=1(X(i) − Φ−1( i

n+1))
2 for testing the simple hypothesis HS

0 :

F = Φ, and Ln =
∑n
i=1(

X(i)−X̄
S −Φ−1( i

n+1))
2 for testing the composite hypothesis

HC
0 : F (x) = Φ(x−µσ ), where µ and σ are unknown. X(1), . . . ,X(n) are the order

statistics of X1, . . . ,Xn and X̄ = n−1∑n
i=1Xi, S

2 = n−1∑n
i=1(Xi − X̄)2. They

proved (see de Wet and Venter (1972, 1973))

Lon − aon
D−→

∞∑
i=1

Z2i − 1
i

, (4)
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where D−→ means convergence in distribution, Z1, Z2, . . . are i.i.d. standard nor-
mal random variables, and aon, which is the approximate value of E(Lon), is given
by

aon =
1
n

n∑
i=1

i

n + 1

(
1 − i

n + 1

)
/φ2

(
Φ−1

(
i

n + 1

))
(φ(x) = dΦ(x)/dx). (5)

They also showed the same result for the limit distribution of Ln. The Ln statis-
tic is closely connected with Shapiro-Wilk’s W statistic and Shapiro-Francia’s
W ′ statistic for testing normality. In fact, de Wet-Venter’s Ln-statistic can be
regarded as a simplified version of Shapiro-Francia’s W ′ statistic, which is a mod-
ified version of Shapiro-Wilk’s W statistic; see Shapiro and Wilk (1965), Shapiro
and Francia (1972), de Wet and Venter (1972), D’Agostino and Stephens ((1986),
Section 5.10). Moreover Shapiro-Wilk’s W statistic and Shapiro-Francia’s W ′

statistic are asymptotically equivalent to de Wet-Venter’s Ln-statistic; see, Leslie,
Stephens and Fotopolous (1986) for a rigorous proof.

Malkovich and Afifi (1973) and Fattorini (1986) generalized Shapiro-Wilk’s
W statistic to test multivariate normality based on Roy’s union-intersection prin-
ciple. Their procedures are briefly reviewed in Section 3. The generalized de
Wet-Venter statistic Pn in (2) can be considered as a simplification of Malkovich
and Afifi’s (or Fattorini’s) generalized Shapiro-Wilk statistic just as in the uni-
variate case. Hence the results we give for the approximation P Tn to Pn should
be generalizable to the statistics of Malkovich and Afifi and Fattorini. Their
limiting behavior is a well-known open question (see Henze and Zirkler (1990)).

In Section 2 we discuss the asymptotic distribution theory of P on and Pn
under Hs0 and H0 respectively. In fact we represent the limit distribution as the
supremum over an index set of the integral of a suitably defined Brownian bridge.
In Section 3 we present the critical values of Pn and some power comparisons to
other statistics.

2. The Limiting Null Distribution of Pn

Our goal is to characterize the asymptotic limit of P on and Pn in (1), (2) as
the supremum over an index set of the integral of a suitable Gaussian process.
For this purpose we put c1 = cos θ − ρ√

1−ρ2 sin θ, c2 = sin θ√
1−ρ2 . Then P on in (1)

becomes

P on = sup
θ∈[0,2π)

n∑
i=1

{(
X1 cos θ +

(X2 − ρX1)√
1 − ρ2

sin θ

)
(i)

− Φ−1
(

i

n + 1

)}2
D= sup
θ∈[0,2π)

n∑
i=1

{
(Z1 cos θ + Z2 sin θ)(i) − Φ−1

(
i

n + 1

)}2
(6)
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under Hs0 , where X
D= Y means X and Y have the same distribution and

(Z1i, Z2i), i = 1, . . . , n, are a random sample from BVN(0, 0, 1, 1, 0). In the
following, B(y, θ) is a Brownian bridge with the covariance structure

Cov (B(y1, θ1), B(y2, θ2))

=Pr(Z1cos θ1+Z2sin θ1≤Φ−1(y1) and Z1cos θ2+Z2sin θ2≤Φ−1(y2))−y1y2. (7)

In other words, Cov (B(y1, θ1), B(y2, θ2)) + y1y2 is bivariate normal probability
of a quadrant under BVN(0, 0, 1, 1, ρ) with ρ = cos(θ1 − θ2) and the covariance
function of B is just that of the one dimensional Brownian bridge if θ1 = θ2.

For technical reasons we introduce truncated versions of P on , Pn which we
denote by P oTn and P Tn respectively. They are given by

P oTn = sup
c1,c2.�.c21+c22+2ρc1c2=1

n−In∑
i=In

{
(c1X1 + c2X2)(i) − Φ−1

(
i

n + 1

)}2
(8)

with In = [n1−δ], 0 < δ < 1/8, and

P Tn = sup
c1,c2

n−In∑
i=In

A(c1, c2)2 = sup
θ∈[0,2π)

n−In∑
i=In

A(cos θ, sin θ)2, (9)

where A(c1, c2) defined in (3) denotes the term inside the parentheses on the
right side of (2) and cos θ = c1/(c21 + c22)

1/2, sin θ = c2/(c21 + c22)
1/2.

Theorem 1. Under the simple hypothesis Hs0: The law of X is BVN(0, 0, 1, 1, ρ),

P oTn − aTn
D−→ sup

θ∈[0,2π)

∫ 1

0

B2(y, θ) − y(1 − y)
φ2 (Φ−1(y))

dy, (10)

where aTn is given by

aTn =
1
n

n−In∑
i=In

i

n + 1

(
1 − i

n + 1

)
/φ2

(
Φ−1(

i

n + 1
)
)
. (11)

Conjecture 1. Under the simple hypothesis Hs0 : The law of X is BVN(0, 0, 1, 1,
ρ),

P on − aon
D−→ sup

θ∈[0,2π)

∫ 1

0

B2(y, θ) − y(1 − y)
φ2 (Φ−1(y))

dy,

where aon is given by (5).
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Theorem 2. Under the composite hypothesis H0, the statistic P Tn in (9) has the
following limit distribution,

P Tn − aTn

D−→ sup
θ∈[0,2π)

[∫ 1

0

B2(y, θ) − y(1 − y)
φ2 (Φ−1(y))

dy (12)

−
(∫ 1

0

B(y, θ)
φ(Φ−1(y))

dy

)2
−
(∫ 1

0

B(y, θ)
φ(Φ−1(y))

Φ−1(y)dy
)2]

.

Conjecture 2. Under the composite hypothesis H0, the statistic Pn − aon has
the limit distribution on the right side of (12).

A heuristic argument for the limit distributions in Theorems 1 and 2 is given
below. The rigorous proofs are quite complicated. As already mentioned, de Wet
and Venter (1972) represented the limit null distribution of their statistics as
infinite series of standard normal variables. Recall that their statistics are a one-
dimensional version of P on and Pn. However their approach does not help much
in finding the asymptotic distributions of P on and Pn. On the other hand, del
Barrio, Cuesta, Matrán and Rodŕıguez (1999) represented the limit distribution
of de Wet-Venter’s Ln statistic as an integrable variable in terms of a Brownian
bridge, and Theorem 2 generalizes their result.

Let Fn(x) be the empirical distribution function of a sample X1, . . . ,Xn
defined by Fn(x) = 1

n

∑n
i=1 I(Xi ≤ x). Define the nth sample quantile function

Qn(y) by

Qn(y) =

{
X(k) if k−1

n+1 < y ≤ k
n+1 , k = 1, . . . , n,

X(n) if n
n+1 < y ≤ 1,

and the normed quantile process {ρn(y) : 0 < y < 1} by ρn(y) =
√
nφ(Φ−1(y))

(Qn(y) − Φ−1(y)). Then we have

Lon − aon =
1
n

n∑
i=1

(
ρn( i

n+1)
)2 − i

n+1(1 − i
n+1)

φ2
(
Φ−1( i

n+1 )
)

≈
∫ ∞

−∞
{ρn (Fn(x))}2 − Fn(x)(1 − Fn(x))

φ2 (Φ−1 (Fn(x)))
dFn(x). (13)

By Theorems 4.5.6 and 4.5.7 in Csörgő and Révész (1981), one can define, on
the same probability space, a Brownian bridge {Bn(y) : 0 ≤ y ≤ 1} for each n

such that
sup

δn≤y≤1−δn
|ρn(y) −Bn(y)| a.s.= O(n−1/2 log n),
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where δn = 25n−1 log log n. Recall that a separable Gaussian process {B(y) :
0 ≤ y ≤ 1} is called a Brownian bridge if E(B(y)) = 0 and E(B(y1)B(y2)) =
y1 ∧ y2 − y1y2. Hence the representation of Lon in (13) suggests we should have

Lon − aon
D−→

∫ 1

0

B2(y) − y(1 − y)
φ2(Φ−1(y))

dy. (14)

Since the sequence {∫ 1−1/n

1/n

B2(y) − y(1 − y)
φ2(Φ−1(y))

dy

}
n

(15)

is an L2-Cauchy sequence, the right hand side of (14) is defined as the L2-limit of
the sequence in (15). For a rigorous proof of (14), see del Barrio, Cuesta, Matrán
and Rodŕıguez (1999). Also see Csörgő ((1983), Chapter 7). The right side of (4)
would give the infinite series representation of the random variable on the right
side of (14). By (14) and (6) we would expect Theorem 1 and Conjecture 1 to
hold.

As will become apparent in the Appendix, we cannot establish these heuris-
tics fully and the relation between the obvious generalizations of the Shapiro-Wilk
and Shapiro-Francia statistics for the same reason. Estimates of and bounds for
multinomial tail probabilities are not as simple or available as for bivariate Gaus-
sians.

To prove these theorems we need a series of lemmas. These lemmas and
the proofs of our theorems are given in the Appendix. We define an empirical
process and quantile processes in R2 that are closely related to (6), and show the
processes can be approximated by a sequence of Brownian bridges with covariance
structure (7). For this purpose, the theorems in Massart (1989) and Adler (1990)
play an important role.

Define, for 0 < y < 1, 0 ≤ θ < 2π,

S := S(y, θ) := {(u1, u2)∈ [0, 1]2 : Φ−1(u1) cos θ+Φ−1(u2) sin θ ≤ Φ−1(y)}, (16)

� := {S(y, θ) ⊂ [0, 1]2 : 0 < y < 1, 0 ≤ θ < 2π}. (17)

Consider the empirical measure Pn(S), S = S(y, θ) ∈ �,

Pn(S) := Pn(S(y, θ)) =
1
n

n∑
i=1

I ((U1i, U2i) ∈ S(y, θ))

=
1
n

n∑
i=1

I
(
Φ−1(U1i) cos θ + Φ−1(U2i) sin θ ≤ Φ−1(y)

)
(18)
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and the family of empirical processes

αn(S) := αn(S(y, θ)) =
√
n (Pn − P ) (S(y, θ)), (19)

where I is an indicator function, P is the uniform distribution on [0, 1]2 and U1i,
U2i, i = 1, . . . , n, are independent and identically distributed (i.i.d.) uniform
random variables on (0, 1). Since an element S := S(y, θ) ∈ � defined in (16)
is determined by (y, θ), we can identify a set S := S(y, θ) with the parameters
(y, θ) ∈ (0, 1) × [0, 2π) := Θ without loss of generality. We define Pn(S) :=
Pn(S(y, θ)) := Pn(y, θ), αn(S) := αn(S(y, θ)) := αn(y, θ). We see that P on in
(6) can be expressed in terms of a family of quantile processes that are closely
related to empirical process αn in (19). Therefore we need to show the empirical
process αn(·, ·) can be approximated by a Gaussian process to prove Theorem 1
rigorously. Massart (1989) provided an essential tool for doing this.

According to Theorem 1 in Massart (1989), if a given collection of Borel sets
�d in Rd is not too large in a suitable sense, then the centered and normalized
empirical process with n independent observations with common law µ, the uni-
form distribution on the unit cube in Rd, can be strongly approximated by a
sequence of Brownian bridges indexed by �d. A Gaussian process indexed by
�d, {B(S) : S ∈ �d}, is called a Brownian bridge indexed by �d if E(B(S)) = 0,
E(B(S1)B(S2)) = P (S1 ∩ S2) − P (S1)P (S2), Si ∈ �d, i = 1, 2. Massart (1989)
gave two conditions on �d for the strong invariance principle to hold. One is the
uniform Minkowski condition, which is the smoothness condition on the bound-
aries of S ∈ �d, and the other is a reasonable growth condition on �d. He
denoted the second condition by H(ζ), 0 ≤ ζ < 1. By applying Theorem 1 in
Massart (1989), we have the following result.

Lemma 1. The collection of sets � in R2 defined in (17) satisfies the uniform
Minkowski condition and H(ζ) with ζ = 1/2 in Massart (1989). Hence, for the
empirical process {αn(S) : S ∈ �} in (19), there exists a sequence of Brownian
bridges {Bn(S) : S ∈ �} satisfying

sup
S∈


|αn(S) −Bn(S)| a.s.= O(n−1/8 log n). (20)

The centered Brownian bridge Bn(S) has the covariance structure given in (7).

Now we define a uniform quantile process un corresponding to the empirical
process αn in (19) and establish a weak invariance principle for un. Let Un(y, θ)
be the uniform quantile function defined by

Un(y, θ) := Un(S(y, θ))
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:=
(
Φ
(
Φ−1(U1) cos θ + Φ−1(U2) sin θ

))
(k)

:= U(k)(θ) (21)

if
k − 1
n

< y ≤ k

n
, k = 1, . . . , n,

where (·)(k) denotes the kth order statistic of the random variables in parentheses,
and un(y, θ) be the uniform quantile process defined by

un(y, θ) := un(S(y, θ)) :=
√
n(Un(y, θ) − y). (22)

Lemma 2. For the quantile process un(·) defined in (22), there exists a sequence
of Brownian bridges B′

n indexed by � or Θ satisfying

sup
(y,θ)∈Θ

|un(y, θ) −B′
n(y, θ)| = Op

(
n−1/8 log n

)
.

In fact, B′
n(·) = −Bn(·) with Bn(·) in (20).

Define the quantile function Qn(y, θ) by

Qn(y, θ) :=



(
Φ−1(U1) cos θ + Φ−1(U2) sin θ

)
(k) := X(k)(θ)

if k−1
n+1 < y ≤ k

n+1 , k = 1, . . . , n,(
Φ−1(U1) cos θ + Φ−1(U2) sin θ

)
(n) := X(n)(θ)

if n
n+1 < y ≤ 1

(23)

and the normed quantile process ρn(y, θ) by

ρn(y, θ) := φ
(
Φ−1(y)

)√
n
(
Qn(y, θ) − Φ−1(y)

)
. (24)

The following lemma establishes a weak invariance principle for ρn.

Lemma 3. For 0 < δ < 1/4,

sup
n−δ≤y≤1−n−δ, θ∈[0,2π)

|ρn(y, θ) − un(y, θ)| = Op
(
n−(1/2−2δ)) = op(1).

Proof. The proof is almost the same as that of Theorem 4.5.6 in Csörgő and
Révész (1981). See also Kim (1994) for details.

Lemma 4. For the normed quantile process ρn(·) defined in (24), one can define
a version of Brownian bridge B′

n indexed by � or Θ for each n such that

sup
n−δ≤y≤1−n−δ , θ∈[0,2π)

|ρn(y, θ) −B′
n(y, θ)| = Op

(
n−1/8 log n

)
,

for any 0 < δ ≤ 3/16.

Proof. It follows immediately from Lemmas 2 and 3.
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3. Simulation Studies

A Monte Carlo experiment was performed to determine approximate upper
percentiles of the null distribution of Pn in (2), and to study the power of the test
based on Pn. The critical values are given in Table 1 for sample sizes n = 20, 30,
50, 100 and the usual significance levels α = 0.01, 0.05 and 0.10. Each empirical
percentage point is based on 5000 pseudo-random realizations of Pn. Pseudo
random numbers were generated using S-plus version 3.2. The results indicate
somewhat slow convergence of the quantiles of Pn especially in the upper tail
(α = 0.01).

Table 1. Simulated critical values kα of the statistic Pn : Pr(Pn − ao
n ≥ kα) = α.

n α = 0.10 α = 0.05 α = 0.01
20 0.4073 0.7897 1.7304
30 0.6089 1.0388 1.9452
50 0.7678 1.2270 2.4464

100 0.9617 1.4905 2.7415

When we take the supremum of the Pn statistic, we can assume c21 + c22 = 1
without loss of generality. Hence we put cos θ = c1/(c21 + c22)

1/2, sin θ = c2/(c21 +
c22)

1/2 as in (9), and Pn becomes

Pn = sup
c1,c2 .�. c21+c22=1

n∑
i=1

A(c1, c2)2 = sup
θ∈[0,2π)

n∑
i=1

A(cos θ, sin θ)2.

Now it is enough to change θ from 0 to 2π and θ is varied in increments of 2π/720
in the simulation.

For sample sizes n = 20, 50, the power of Pn is investigated under the
testing level α = 0.05. A thousand Monte Carlo samples were generated from
each of various alternative bivariate distributions. Henze and Zirkler (1990)
performed a simulation experiment to assess the power performance of their
proposed test in comparison with other invariant procedures for testing multi-
normality. The procedures compared are Mardia’s (1970), Malkovich and Afifi’s
(1973), and Fattorini’s (1986) test. The alternative distributions included in
Table 2 are a part of their studies. They are (i) distributions with indepen-
dent marginals, (ii) mixtures of normal distributions. The following notations
are used. N(0, 1), C(0, 1), Logis(0, 1) and exp(1) denote the standard normal,
Cauchy, logistic and exponential distributions; χ2k and tk are the Chi-square, stu-
dent’s t-distribution with k degrees of freedom; Γ(a, b) is the Gamma distribution
with density b−aΓ(a)−1xa−1 exp(−x/b), x > 0; B(a, b) stands for the beta distri-
bution with density B(a, b)−1xa−1(1 − x)b−1, 0 < x < 1; LN(a, b) is for the log-
normal distribution with density (

√
2πbx)−1 exp(−(log x−a)2/2b2), x > 0. F1∗F2
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is the distribution having independent marginal distributions F1 and F2. The
product of two independent copies of F1 is denoted by F 21 . NMIX2(κ, δ, ρ1, ρ2)
is the bivariate normal mixture κBV N(0, 0, 1, 1, ρ1) + (1 − κ)BVN(δ, δ, 1, 1, ρ2).

Table 2. Percentage of 1000 Monte Carlo samples declared significant by the
test based on Pn, MA and FA for bivariate normality (α = 0.05).

n = 20 n = 50
alternative Pn MA FA Pn MA FA
N(0, 1)2 5 5 5 5 5 5
exp(1)2 81 76 86 100 100 100

LN(0, .5)2 54 53 59 94 92 97
C(0, 1)2 98 96 96 100 – –
Γ(5, 1)2 24 22 25 56 58 67
(χ25)

2 37 43 44 87 84 93
(χ215)

2 18 18 17 42 42 46
(t2)2 72 69 68 97 94 95
(t5)2 28 24 22 55 46 40

B(1, 1)2 1 2 6 6 4 77
B(1, 2)2 12 9 19 42 35 86
B(2, 2)2 1 2 3 1 2 15

Logis(0, 1)2 15 16 15 30 21 16
N(0, 1) ∗ exp(1) 58 52 63 98 87 99
N(0, 1) ∗ χ25 25 26 28 65 61 73
N(0, 1) ∗ t5 16 16 16 34 24 19

N(0, 1) ∗B(1, 1) 3 4 6 4 4 56
NMIX2(.5, 2, 0, 0) 4 4 4 4 4 17
NMIX2(.5, 4, 0, 0) 14 4 51 95 5 100
NMIX2(.5, 2, .9, 0) 31 27 29 68 54 66
NMIX2(.5, .5, .9, 0) 23 21 20 48 33 29

NMIX2(.5, .5, .9,−.9) 51 47 51 93 76 83

Each number in Table 2 represents the percentage of 1000 Monte Carlo sam-
ples declared significant by the test based on Pn, rounded to the next integer.
For comparison, we also put the power of Malkovich and Afifi’s (MA) general-
ized Shapiro-Wilk’s W statistic and that of Fattorini’s adduced from Henze and
Zirkler (1990). The Shapiro-Wilk’s W statistic for testing univariate normality
is

W (Z1, . . . , Zn) =
[
∑

aj(Z(j) − Z̄)]2∑
(Zj − Z̄)2

, (25)
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where Z(j)’s are the univariate order statistics of Z1, . . . , Zn, Z̄ = n−1∑Zj,
and aj ’s are the coefficients tabulated in Shapiro and Wilk (1965). The test of
Malkovich and Afifi (1973) accepts the hypothesis of multivariate normality if

min
c

W (cTX1, . . . , cTXn) ≥ Kw, (26)

where Kw is a constant. For numerical evaluation of the minimization in (26),
Malkovich and Afifi (1973) proposed an approximate solution based on the obser-
vation that W (cTX1, . . . , cTXn) has a lower bound when c satisfies the conditions
(Shapiro and Wilk (1965)):

cT (Xl − X̄) =
n− 1
na1

, cT (Xj − X̄) = − 1
na1

, j = 1, . . . , n, j �= l,

where X̄ is the sample mean vector. Since a solution c to these equations does
not exist, Malkovich and Afifi proposed to find a vector c which minimizes[

cT (Xl − X̄) − n− 1
na1

]2
+

n∑
j �=l

[
cT (Xj − X̄) +

1
na1

]2
.

This vector is c(l) = 1
a1
A−1(Xl − X̄) with A =

∑n
j=1(Xj − X̄)(Xj − X̄)T . Since

l ∈ {1, . . . , n} is arbitrary, they proposed to choose c(m) ∈ {c(1), . . . , c(n)} such
that the denominator of W (c) is maximized over these n choices, i.e., (Xm −
X̄)TA−1(Xm− X̄) = max1≤l≤n(Xl− X̄)TA−1(Xl− X̄). Hence their test statistic
is

MA(X1, . . . ,Xn) = W (c(m)
T
X1, . . . , c(m)

T
Xn)

=
[
∑n
j=1 ajU(j)]

2

(Xm − X̄)TA−1(Xm − X̄)
,

where U(1) ≤ · · · ≤ U(n) are the order statistics of Uj = (Xm− X̄)TA−1(Xj− X̄),
j = 1, . . . , n.

Since MA(X1, . . . ,Xn) does not even minimize W (cTX1, . . . , cTXn) with re-
spect to the n possible solutions c(1), . . . , c(n), Fattorini (1986) proposed to con-
sider the statistic FA(X1, . . . ,Xn) = min1≤l≤nW (c(l)

T
X1, . . . , c(l)

T
Xn). Both

the MA and the FA test reject the hypothesis of multivariate normality for small
values of the test statistics. In fact FA ≤ MA.

The conclusion that can be drawn from the power study in Table 2 is that,
for sample size n = 50, MA is generally inferior to the Pn statistic and Pn is gen-
erally inferior to the procedure FA of Fattorini, especially against alternatives
with shorter tailed marginals like B(1, 1)2, B(1, 2)2, B(2, 2)2 or N(0, 1)∗B(1, 1).
However FA is slightly inferior to Pn against alternatives with symmetric longer
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tailed marginals like (t5)2, Logis(0, 1)2, N(0, 1) ∗ t5. According to Shapiro and
Francia (1972) and Looney and Gulledge (1985), the power comparison between
Shapiro-Wilk’s W test and Shapiro-Francia’s W ′ test for testing univariate nor-
mality indicates that the W test is more powerful than the W ′ test especially
against symmetric alternatives with shorter tails than normal. And the W ′ test
appeared to be more sensitive than the W test when the alternative was con-
tinuous and symmetric with longer tails than normal. Since de Wet-Venter’s Ln
statistic is a simplified version of W ′, Ln and W ′ are expected to have similar
behavior in power. The Pn statistic in (2) generalizes the Ln statistic to bivariate
cases as we mentioned in Section 1. Thus the power results for dimension 2 are
consistent with those for dimension 1.

4. Appendix. Proofs of Theorems

Proof of Lemma 1. The boundary of a set S := S(y, θ) ∈ �, ∂S, is

∂S =
{
(u1, u2) : Φ−1(u1) cos θ + Φ−1(u2) sin θ = Φ−1(y)

}
=
{
(u1, u2) : u1 = Φ

(Φ−1(y)
cos θ

− Φ−1(u2) tan θ
)

:= f(u2)
}
.

Since the function f(u2) is a monotone function on (0,1), we easily see that
the uniform Minkowski condition (the UM condition) is satisfied. Note that
the UM condition is that for the class �, there exists a constant K such that
P ((∂S)ε) ≤ Kε for any ε ∈ (0, 1] and any S ∈ �, where Aε denotes the set
Aε = {y ∈ [0, 1]2 : |y − z| < ε for some z ∈ A} for any ε(0, 1]. Since the length
of ∂S for any fixed y and θ is

∫ 1
0

√{f ′(u2)}2 + 1du2 ≤ ∫ 1
0 (|f ′(s)| + 1) ds = 2,

we have P ((∂S)ε) ≤ 4ε for any S ∈ � and ε ∈ (0, 1] and the UM condition is
satisfied.

To show the condition H(ζ) for ζ = 1/2, which is a minimal cardinality
condition on the set �, recall that S(y, θ) ∈ � is determined by (y, θ) ∈ Θ =
(0, 1) × [0, 2π). Hence it is enough to consider the cardinality of the set Θ =
(0, 1) × [0, 2π) instead of that of the set �. Although the rigorous proof is long
and tedious, the basic idea is to show

P (S(y1, θ1)∆S(y2, θ2)) ≤ Cδ, (27)

whenever |y1−y2| ≤ δ and |θ1−θ2| ≤ δ, where ∆ means the symmetric difference
of two sets. Using (27), we can show H(ζ) is satisfied with ζ = 1/2. In fact,
N (ε,�) ≤ (M/ε)2 ≤ e2

√
M/ε = eKε

−1/2
, where N (ε,�) denotes the minimal

cardinality of a collection �(ε) of Borel sets such that for any S ∈ � there exist
S−(ε), S+(ε) ∈ �(ε) with S−(ε) ⊆ S ⊆ S+(ε) and P (S+(ε) − S−(ε)) ≤ ε. For
details of the rigorous proof, see Kim (1994).
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To prove Lemma 2, we need to find the size of the modulus of continuity of
a Brownian bridge B indexed by � or Θ. The following lemmas are devoted to
this goal.

Lemma 5. For a fixed (y1, θ1)∈Θ and 0 < η ≤ π/2, let ∆(η) := ∆((y1, θ1), η) :=
{(y2, θ2) ∈ Θ : y1 < y2 < y1 + η, θ1 < θ2 < θ1 + η}. Then for a Brownian bridge
B indexed by Θ,

sup
(y2,θ2)∈∆((y1,θ1),η)

E (B(y1, θ1) −B(y2, θ2))
2 ≤ Cη

is satisfied for a constant C, i.e.,

sup
(y2,θ2)∈∆((y1,θ1),η)

d ((y1, θ1), (y2, θ2)) ≤
√
Cη, (28)

where d is a canonical metric defined by

d ((y1, θ1), (y2, θ2)) :=
[
E (B(y1, θ1) −B(y2, θ2))2

]1/2
. (29)

Proof. Let (ξ(r)1 , ξ
(r)
2 ) beBVN(0, 0, 1, 1, r) with joint density function φ(x1, x2; r).

It is known that
∂φ(x1, x2; r)

∂r
=

∂2φ(x1, x2; r)
∂x1∂x2

. (30)

See for example Johnson and Kotz ((1972), Chapter 35). Assume y1 < y2 and
ρ = cos(θ2 − θ1) > 0. By (7) and (30),

E (B(y1, θ1)B(y2, θ2)) + y1y2 = Pr(ξ(ρ)1 ≤ Φ−1(y1), ξ
(ρ)
2 ≤ Φ−1(y2))

:= G(ρ) = G(1) −
∫ 1

ρ
G′(r)dr

= y1 −
∫ 1

ρ

∫ Φ−1(y2)

−∞

∫ Φ−1(y1)

−∞
∂2φ

∂x1∂x2
dx1dx2dr

= y1 −
∫ 1

ρ
φ(Φ−1(y1),Φ−1(y2); r) dr ≥ y1 −

∫ 1

ρ

1
2
√

1 − r2
dr

≥ y1 −
∫ 1

ρ

1
2
√

1 − r
dr = y1 −

√
1 − ρ

= y1 −
√

1 − cos(θ2 − θ1) ≥ y1 − |θ2 − θ1|.
Therefore E(B(y1, θ1) − B(y2, θ2))2 ≤ (y2 − y1) + 2(θ2 − θ1) and the lemma is
proved.

Lemma 6. For a Brownian bridge B indexed by Θ, Nd(ε) ≤ Kε−4, where Nd(ε)
denotes the smallest number of closed d-balls of radius ε that cover Θ, d the
canonical metric defined in (29).
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Proof. By (28), one way to cover Θ by d-balls of radius ε is with the (2 +
C/ε2)(2 + 2πC/ε2) balls of radius ε2/C centered at points of the form (i1ε2/C,
i2ε

2/C), i1 = 0, 1, . . . , [C/ε2], i2 = 0, 1, . . . , [2πC/ε2]. Hence we have Nd(ε) ≤
(2 + C/ε2)(2 + 2πC/ε2) ≤ Kε−4.

Lemma 7. A Brownian bridge B indexed by Θ is a.s. bounded on Θ.

Proof. By Theorem 5.3 in Adler (1990) and Lemma 6, there exists a finite
positive constant C such that for all λ > 0,

Pr
(

sup
(y,θ)∈Θ

B(y, θ) > λ
)
≤ Cλ4

(
1 − Φ (λ/σΘ)

)
, (31)

with σ2Θ := supΘE(B(y, θ))2. Since σ2Θ = supΘ y(1 − y) ≤ 1/4, (31) implies the
a.s. boundedness of B on Θ.

Lemma 8. If we define a metric τ on Θ by τ((y1, θ1), (y2, θ2)) = sup(|y1 −
y2|, |θ1− θ2|), then there exists an a.s. finite random variable δ = δ(ω) such that,
for almost all ω,

sup
τ((y1,θ1),(y2,θ2))<η

|B(y1, θ1) −B(y2, θ2)| ≤ Cη

for η ≤ δ(ω).

Proof. By Theorem 5.3 in Adler (1990) and Lemma 6, there exists a finite
positive constant C such that for all λ > 0,

Pr
(

sup
τ((y1,θ1),(y2,θ2))<η

(
B(y1, θ1) −B(y2, θ2)

)
> λ

)
≤ Cλ4

(
1 − Φ (λ/ση)

)
, (32)

where σ2η := supτ((y1,θ1),(y2,θ2))<η E (B(y1, θ1) −B(y2, θ2))
2 . Hence

E sup
τ((y1,θ1),(y2,θ2))<η

(B(y1, θ1) −B(y2, θ2))

≤
∫ ∞

0
Pr

(
sup

τ((y1,θ1),(y2,θ2))<η
(B(y1, θ1) −B(y2, θ2)) > λ

)
dλ

≤ C

∫ ∞

0
λ4 (1 − Φ(λ/ση)) dλ ≤ C

∫ ∞

0
λ4

φ(λ/ση)
λ/ση

dλ

= Cσ5η

∫ ∞

0
λ3φ(λ)dλ

= C
(

sup
τ((y1,θ1),(y2,θ2))<η

E (B(y1, θ1) −B(y2, θ2))
2
) 5

2

≤ Cη, for 0 < η < 1, (33)
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by (32) and Lemma 5. Note that the generic constants C’s appearing at different
places need not be the same. By Lemma 7 and (33), all the conditions in Theorem
4.6 in Adler (1990) are satisfied and the lemma is proved.

Proof of Lemma 2. From the definition of P n(·) in (18) and the uniform
quantile function Un(·) in (21), |P n(Un(y, θ), θ) − y| ≤ 1/n and un(y, θ) =√
n(Un(y, θ)−y) = −√

n(P n(Un(y, θ), θ)−Un(y, θ))+
√
n(P n(Un(y, θ), θ)−y) =

−αn(Un(y, θ), θ) + O(1/
√
n). Hence

sup
(y,θ)∈Θ

|un(y, θ) −B′
n(y, θ)|

≤ sup
(y,θ)∈Θ

|αn (Un(y, θ), θ) − αn(y, θ)| + sup
(y,θ)∈Θ

|αn(y, θ) −Bn(y, θ)| + O (
1/
√
n
)

≤ sup
(y,θ)∈Θ

|Bn (Un(y, θ), θ) −Bn(y, θ)| + O
(
n−1/8 log n

)
a.s. (34)

by Lemma 1. Using Lemma 8, it follows

sup
(y,θ)∈Θ

|Bn(Un(y, θ), θ) −Bn(y, θ)| ≤ C/
√
n sup
(y,θ)∈Θ

|√n(Un(y, θ) − y)|

= C/
√
n sup
(y,θ)∈Θ

|un(y, θ)| = Op(1/
√
n) (35)

and the result follows by (34) and (35).

Lemma 9. Under the simple hypothesis Hs0: The law of X is BVN(0, 0, 1, 1, ρ),∣∣∣∣∣(P oTn − aTn ) − sup
θ∈[0,2π)

∫ 1−In/n

In/n

B2n(y, θ) − y(1 − y)
φ2 (Φ−1(y))

dy

∣∣∣∣∣ p→ 0

for In such that In/n = n−δ with 0 < δ < 1/8, where P oTn is given in (8) and aTn
is in (11).

Proof. By the same equation in (6),

P oTn
D= sup
θ∈[0,2π)

n−In∑
i=In

{(
Φ−1(U1) cos θ + Φ−1(U2) sin θ

)
(i)

− Φ−1
(

i

n + 1

)}2
,

where U1i, U2i’s are i.i.d. random variables with the uniform (0, 1). By the
definition of the normed quantile process ρn(·) in (24), P oTn can be written as

P oTn − aTn
D= sup
θ∈[0,2π)

1
n

n−In∑
i=In

(
ρn

(
i
n+1 , θ

))2 − i
n+1

(
1 − i

n+1

)
φ2

(
Φ−1( i

n+1)
) .
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By Lemma 4 and φ(Φ−1(y)) ≈ y
√

2| log y| as y → 0,

sup
θ∈[0,2π)

n−In∑
i=In

∣∣∣∣(ρn ( i
n+1 , θ

))2 −B2n

(
i
n+1 , θ

)∣∣∣∣
nφ2

(
Φ−1( i

n+1)
)

= sup
θ∈[0,2π)

n−In∑
i=In

∣∣∣ρn ( i
n+1 , θ

)
−Bn

(
i
n+1 , θ

)∣∣∣ ∣∣∣ρn ( i
n+1 , θ

)
+ Bn

(
i
n+1 , θ

)∣∣∣
nφ2

(
Φ−1( i

n+1)
)

≤ sup
n−δ≤y≤1−n−δ, θ∈[0,2π)

|ρn(y, θ) −Bn(y, θ)|(
sup

n−δ≤y≤1−n−δ, θ∈[0,2π)
|ρn(y, θ) −Bn(y, θ)| + sup

(y,θ)∈Θ
2|Bn(y, θ)|

)
n−In∑
i=In

1
nφ2(Φ−1( i

n+1 ))

= Op(n− 1
8 log n)(Op(n− 1

8 log n) + Op(1))
∫ 1−n−δ

n−δ
1/φ2(Φ−1(y))dy

= Op(n− 1
8 log n)O(nδ log log n)

= Op(n−( 1
8
−δ)(log n)(log log n))

= op(1) for 0 < δ < 1/8.

By Lemma 7, B2(y, θ) is a.s. bounded on [0, 2π). Hence

sup
θ∈[0,2π)

∫ 1−In/n

In/n

B2n(y, θ)−y(1−y)
φ2(Φ−1(y))

dy ≤
∫ 1−In/n

In/n
sup

θ∈[0,2π)
B2n(y, θ)−y(1−y)

φ2 (Φ−1(y))
dy<∞

and the lemma is proved.

Proof of Theorem 1. We show the existence of the integral supθ∈[0,2π)∫ 1
0
B2(y,θ)−y(1−y)
φ2(Φ−1(y)) dy, suitably defined. Then it will follow that

(P oTn − aTn ) D−→ sup
θ∈[0,2π)

∫ 1

0

B2(y, θ) − y(1 − y)
φ2 (Φ−1(y))

dy

by Lemma 9. del Barrio, et al. (1999) showed that
∫ 1
0
B2(y,0)−y(1−y)
φ2(Φ−1(y)) dy is defined

as an L2-limit. To prove the existence, it is enough to show in view of the del
Barrio et al. result that

sup
|θ1−θ2|<η

E

(∫ 1/2

0

B2(y, θ1) −B2(y, θ2)
φ2(Φ−1(y))

dy

)2
< Cη1+ε

by Billingsley (1968, Theorem 12.3).
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Now let us show

E

(∫ ε
0

B2(y, θ + η) −B2(y, θ)
ψ2(y)

dy

)2
< Cη2| log η| (36)

with ψ(y) = φ(Φ−1(y)). We can write∫ ε
0

B2(y, θ + η) −B2(y, θ)
ψ2(y)

dy

=
∫ ε
0

((B(y, θ + η) −B(y, θ))2 − 2Pr(Z ≤ Φ−1(y),W (η) > Φ−1(y))
ψ2(y)

dy

−2
∫ ε
0

B(y, θ)(B(y, θ) −B(y, θ + η)) − Pr(Z ≤ Φ−1(y),W (η) > Φ−1(y))
ψ2(y)

dy

:= I1 − 2I2,

where W (η) = Z cos η+Z ′ sin η and Z, Z ′ are i.i.d. N(0, 1). Therefore (Z,W (η))
follows BVN(0, 0, 1, 1, cos η). Note that

E[B(y, θ)(B(y, θ) −B(y, θ + η))]

= y(1 − y) − Pr(Z ≤ Φ−1(y),W (η) ≤ Φ−1(y)) + y2

= Pr(Z ≤ Φ−1(y),W (η) > Φ−1(y)) (37)

by (7). Let B(yj, θ) := Bj , j = 1, 2, B(yj, θ + η) := Bj(η), j = 1, 2, LU(y1, y2; η)
:= Pr(Z ≤ Φ−1(y1), W (η) > Φ−1(y2)). Then we also have

E[(B1(η) −B1)(B2(η) −B2)] = 2LU(y1, y2; η). (38)

Using (38) and the fact E(Y 21 Y
2
2 ) = σ21σ

2
2 + 2(ρσ1σ2)2 when (Y1, Y2) follows

BVN(0, 0, σ21 , σ
2
2 , ρ), we get

E(I21 )

= 2
∫ ε
0

∫ ε
y1

E[(B1(η) −B1)2(B2(η) −B2)2] − 4LU(y1, y1; η)LU(y2, y2; η)
ψ2(y1)ψ2(y2)

dy2dy1

= 16
∫ ε
0

∫ ε
y1

(LU(y1, y2; η))2

ψ2(y1)ψ2(y2)
dy2dy1. (39)

Note that the following result (sometimes known as Wick’s theorem) holds

E(X1X2X3X4) = E(X1X2)E(X3X4) + E(X1X3)E(X2X4) + E(X1X4)E(X2X3)
(40)
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if (X1,X2,X3,X4) follows the multivariate normal with mean 0. By (37) and
(40), we have

E(I22 )

= 2
∫ ε
0

∫ ε
y1
{E[B1B2(B1 −B1(η))(B2 −B2(η))]

−E[B1(B1 −B1(η))]E[B2(B2 −B2(η))]} /ψ2(y1)ψ2(y2)dy2dy1
= 2

∫ ε
0

∫ ε
y1
{E[B2(B1 −B1(η))]E[B1(B2 −B2(η))]

+E(B1B2)E[(B1 −B1(η))(B2 −B2(η))]} /ψ2(y1)ψ2(y2)dy2dy1
= 2

∫ ε
0

∫ ε
y1

(LU(y1, y2; η))2 + E(B1B2)E[(B1−B1(η))(B2−B2(η))]
ψ2(y1)ψ2(y2)

dy2dy1. (41)

To get (36), it is enough to show

L1 :=
∫ ε
0

∫ ε
y1

(LU(y1, y2; η))2

ψ2(y1)ψ2(y2)
dy2dy1 ≤ Cη2, (42)

L2 :=
∫ ε
0

∫ ε
y1

E(B1B2)E[B1 −B1(η))(B2 −B2(η))]
ψ2(y1)ψ2(y2)

dy2dy1 ≤ Cη2| log η|, (43)

by (39) and (41).
Let us show (43). By (38) and cos η

sin η = (1−ξ2)1/2

ξ ≤ 1
ξ − ξ

2 with ξ = sin η,

L2 = 2
∫ ε
0

∫ ε
y1

y1(1 − y2)LU(y1, y2; η)
ψ2(y1)ψ2(y2)

dy2dy1

≤ 2
∫ −δ

−∞

∫ −δ

x1

Φ(x1)
φ(x1)φ(x2)

∫ x1
−∞

φ(z)Φ̄
(
x2 − z

ξ
+

ξz

2

)
dzdx2dx1

:= 2∆(ξ)

with Φ−1(ε) = −δ and Φ̄(x) = 1 − Φ(x). To prove (43), it is enough to show

|∆′(ξ)| ≤ Cξ| log ξ|. (44)

By differentiating with respect to ξ, we get

∆′(ξ) =
∫ −δ

−∞

∫ −δ

x1

Φ(x1)
φ(x1)φ(x2)

∫ x1
−∞

φ(z)
(
x2−z

ξ2
− z

2

)
φ

(
x2−z

ξ
+

ξz

2

)
dzdx2dx1.

By change of variables to w = (x2 − z)/ξ and the fact x2w ≤ 0, we can easily
show

φ(z)φ
(
x2 − z

ξ
+

ξz

2

)
≤ φ(w)φ(x2)e−ξ

2x22/8.
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Therefore the inner integral in ∆′(ξ) becomes∫ x1
−∞

φ(z)
(
x2 − z

ξ2
− z

2

)
φ

(
x2 − z

ξ
+

ξz

2

)
dz

≤ e−ξ
2x22/8φ(x2)

∫ ∞

(x2−x1)/ξ

(
1 +

ξ2

2

)
wφ(w) − ξx2

2
φ(w)dw

= e−ξ
2x22/8φ(x2)

[(
1 +

ξ2

2

)
φ

(
x2 − x1

ξ

)
− ξx2

2
Φ̄
(
x2 − x1

ξ

)]
.

Using Φ(x)
φ(x) <

1
|x| , x ≤ −δ we get

|∆′(ξ)| ≤ C

∫ −δ

−∞

∫ −δ

x1

1
|x1|e

−ξ2x22/8φ
(
x2 − x1

ξ

)
dx2dx1

−ξ

2

∫ −δ

−∞

∫ −δ

x1

1
|x1|e

−ξ2x22/8x2Φ̄
(
x2 − x1

ξ

)
dx2dx1 := J1 − J2/2.

By change of variables to (x2 − x1)/ξ = v, J1 becomes

J1 = Cξ

∫ −δ

−∞

∫ (−δ−x1)/ξ

0

1
|x1|φ(v) exp[−ξ2(ξ2v2 + 2x1ξv + x21)/8]dvdx1.

Since the inner integral in J1 is∫ (−δ−x1)/ξ

0
φ(v) exp[−ξ4v2/8 − x1ξ

3v/4]dv ≤
∫ ∞

−∞
φ(v)e−x1ξ

3v/4dv = eξ
6x21/32,

we have J1 ≤ Cξ
∫ −δ
−∞

1
|x1|e

−(ξ2/8)(1−ξ4/4)x21dx1. By change of variables to ξx1 = t,
we get

J1 ≤ Cξ

∫ −ξδ

−∞
1
|t|e

−(1−ξ4/4)(t2/8)dt

≤ Cξ + Cξ

∫ −ξδ

−1
1
|t|dt = O(ξ| log ξ|). (45)

In the same way, we can show

J2 = O(ξ| log ξ|). (46)

Then (44) follows from (45) and (46), and (43) follows from (44). We can show
(42) in the exactly same way and the claim (36) follows. This proves the existence
of the integral.

Proof of Theorem 2. The affine invariance of Pn in (2) allows us to assume that
the law of X is BVN(0, 0, 1, 1, 0). Let Qn(y, θ) be the sample quantile function



346 NAMHYUN KIM AND PETER J. BICKEL

of X1i cos θ + X2i sin θ defined as in (23) and σ̂2(θ) := σ̂21 cos2 θ + σ̂22 sin2 θ +
2ρ̂σ̂1σ̂2 cos θ sin θ = sd2(X1 cos θ + X2 sin θ). Putting Q̃n(y, θ) := (Qn(y, θ) −
(X̄1 cos θ + X̄2 sin θ))/σ̂(θ), let us show the result for the truncated statistic

P̃ Tn = sup
θ∈[0,2π)

∫ 1−n−δ

n−δ
n(Q̃n(y, θ) − Φ−1(y))2dy (47)

with 0 < δ < 1/8. Let An(y, θ) := Qn(y, θ) − Φ−1(y) + Φ−1(y)(1 − σ̂(θ)) −
(X̄1 cos θ + X̄2 sin θ) and

MT
n := sup

θ∈[0,2π)

∫ 1−n−δ

n−δ
nA2n(y, θ)dy.

Then we can easily show the equality Q̃n(y, θ) − Φ−1(y) = An(y, θ) + An(y, θ)
(1 − σ̂(θ))/σ̂(θ). Since

(Q̃n(y, θ) − Φ−1(y))2 ≤ A2n(y, θ) + A2n(y, θ)
(

1 − σ̂(θ)
σ̂(θ)

)2
+ 2A2n(y, θ)

∣∣∣∣1 − σ̂(θ)
σ̂(θ)

∣∣∣∣ ,
P̃ Tn in (47) becomes

|P̃ Tn −MT
n |

≤ sup
θ∈[0,2π)

∫ 1−n−δ

n−δ
nA2n(y, θ)dy

(
(1 − σ̂(θ))2

σ̂2(θ)
+ 2

∣∣∣1 − σ̂(θ)
σ̂(θ)

∣∣∣)
≤ C

(
sup

θ∈[0,2π)

∫ 1−n−δ

n−δ
n(Qn(y, θ) − Φ−1(y))2dy

(
sup

θ∈[0,2π)
(1 − σ̂(θ))2

σ̂2(θ)

+ sup
θ∈[0,2π)

2
∣∣∣1−σ̂(θ)

σ̂(θ)

∣∣∣)+
∫ 1

0
(Φ−1(y))2dy

(
sup
θ∈[0,2π)

n(1−σ̂(θ))4

σ̂2(θ)
+ sup
θ∈[0,2π)

2n|1−σ̂(θ)|3
|σ̂(θ)|

)
+ sup
θ∈[0,2π)

n(X̄1 cos θ+X̄2 sin θ)2
(

sup
θ∈[0,2π)

(1−σ̂(θ))2

σ̂2(θ)
+ sup
θ∈[0,2π)

2
∣∣∣1−σ̂(θ)

σ̂(θ)

∣∣∣)) (48)

by the inequality (x + y + z)2 ≤ C(x2 + y2 + z2) . Since the terms on the right
hand side of (48) are all op(1), we have∣∣∣P̃ Tn −MT

n

∣∣∣ p−→ 0. (49)

Note that

√
n(X̄1 cos θ + X̄2 sin θ) =

∫ 1

0

√
n(Qn(y, θ) − Φ−1(y))dy. (50)



THE LIMIT DISTRIBUTION OF A TEST STATISTIC 347

Note also that

σ̂2(θ) =
∫ 1

0
(Qn(y, θ))2dy −

(∫ 1

0
Qn(y, θ)dy

)2
= 1 + 2

∫ 1

0
(Qn(y, θ) − Φ−1(y))Φ−1(y)dy

+
∫ 1

0
(Qn(y, θ) − Φ−1(y))2dy −

(∫ 1

0
Qn(y, θ) − Φ−1(y)dy

)2
,

√
n(σ̂(θ) − 1) ≈√

n(σ̂2(θ) − 1)/2

≈√
n

∫ 1

0
(Qn(y, θ) − Φ−1(y))Φ−1(y)dy. (51)

By expanding the square in MT
n and using (50) and (51), we can easily show∣∣∣MT

n − sup
θ∈[0,2π)

{ ∫ 1−n−δ

n−δ
n(Qn(y, θ) − Φ−1(y))2dy

−
( ∫ 1−n−δ

n−δ

√
n(Qn(y, θ) − Φ−1(y))dy

)2
−
( ∫ 1−n−δ

n−δ

√
n(Qn(y, θ) − Φ−1(y))Φ−1(y)dy

)2}∣∣∣
=

∣∣∣MT
n − sup

θ∈[0,2π)

{ ∫ 1−n−δ

n−δ

ρ2n(y, θ)
φ2(Φ−1(y))

dy

−
( ∫ 1−n−δ

n−δ

ρn(y, θ)
φ(Φ−1(y))

dy
)2 − ( ∫ 1−n−δ

n−δ

ρn(y, θ)
φ(Φ−1(y))

Φ−1(y)dy
)2}∣∣∣

p−→ 0,

where ρn(y, θ) is defined in (24). Therefore our claim reduces to showing that on
the same probability space one can define a Brownian bridge such that∣∣∣ sup

θ∈[0,2π)

{∫ 1−n−δ

n−δ

ρ2n(y, θ)
φ2(Φ−1(y))

dy

−
( ∫ 1−n−δ

n−δ

ρn(y, θ)
φ(Φ−1(y))

dy
)2 − ( ∫ 1−n−δ

n−δ

ρn(y, θ)
φ(Φ−1(y))

Φ−1(y)dy
)2}

− sup
θ∈[0,2π)

{ ∫ 1−n−δ

n−δ

B2n(y, θ)
φ2(Φ−1(y))

dy

−
( ∫ 1−n−δ

n−δ

Bn(y, θ)
φ(Φ−1(y))

dy
)2 − ( ∫ 1−n−δ

n−δ

Bn(y, θ)
φ(Φ−1(y))

Φ−1(y)dy
)2}∣∣∣

:= |Sρn − SBn| p−→ 0.
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This can be shown easily by Lemma 4 and Lemma 9. By (49), we have |P̃ Tn −
SBn| p−→ 0. Since P Tn = P̃ Tn + op(1), we still have |P Tn − SBn| p−→ 0.

To complete the proof we should show the existence of the right hand side
of (12). The existence of

sup
θ∈[0,2π)

∫ 1

0

B2(y, θ) − y(1 − y)
φ2(Φ−1(y))

dy

is given in the proof of Theorem 1. Note that supθ∈[0,2π)
√
n(X̄1 cos θ+X̄2 sin θ) ≤

√
n
√
X̄2
1 + X̄2

2 = Op(1). Therefore supθ∈[0,2π)
(∫ 1
0

B(y,θ)
φ(Φ−1(y))dy

)2
< ∞. Also note

that supθ∈[0,2π) n(σ̂2(θ)) ≤ supθ∈[0,2π) n(σ̂21 + σ̂22) ≤ supθ∈[0,2π) 2nmax(σ̂21 , σ̂
2
2) =

Op(1) and therefore supθ∈[0,2π)
(∫ 1
0

B(y,θ)
φ(Φ−1(y))

Φ−1(y)dy
)2

< ∞.

To prove Conjecture 2 we need to show the tails of Pn−aon are negligible for
large n.
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