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Abstract: Consider the semi-parametric linear regression model, Y = β′X+ ε, with

sample size n, where ε has an unknown cdf Fo. The semi-parametric MLE (SMLE)

β̃n of β under this set-up, called the generalized SMLE or GSMLE, has neither

been studied in the literature nor an algorithm for it. We begin with an algorithm

for the GSMLE. It is then shown that if Fo has a discontinuity point, P{β̃n = β if

n is large} = 1. Simulation suggests that under some discontinuous distributions,

β̃n = β even for n = 50. In contrast the least squares estimator (LSE), β̂n, satisfies

P{β̂n �= β i.o.} = 1. We demonstrate via a real discontinuous data example that

the GSMLE can be better than the LSE in applications. Properties of the GSMLE

in the continuous case are also mentioned.

Key words and phrases: Algorithms, consistency, generalized likelihood, super effi-

ciency.

1. Introduction

We study the semi-parametric maximum likelihood estimator (SMLE) in the
linear regression model with complete data. Specifically, assume
A1. Y = β′X + ε, where only (X, Y ) is observable, β is an unknown p × 1

dimensional regression coefficient vector, β′ is the transpose of β, and ε has
an unknown cdf Fo.
Suppose (Xi, Yi), i = 1, . . . , n, are i.i.d. observations from (X, Y ). Under this

model, there are several estimators for β: the least squares estimator (LSE); the
Theil-Sen estimator (Theil (1950) and Sen (1968)); various M-estimators (Huber
(1964) and Ritov (1990)); adaptive estimators (Bickel (1982)); L-estimators and
R-estimators (see, e.g., Montgomery and Peck (1992)).

The maximum likelihood method is an interesting estimation approach here.
Kiefer and Wolfowitz (1956) define the generalized likelihood function of obser-
vations T1, . . . , Tn as

=L =
n∏

i=1

f(Ti), f(t) = F (t)− F (t−) and F ∈ F , (1.1)
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where F = {F : F is an increasing function, F (−∞) = 0 and F (∞) = 1}.
The MLE of the cdf, also called the generalized MLE (GMLE), is a value of
F that maximizes =L over F . It is well known that the GMLE is the empirical
distribution function. While f in =L is discrete, the GMLE is consistent and
(non-parametrically) efficient even if the cdf is continuous. Under A1, letting
Ti = Yi − b′Xi in =L, the generalized SMLE (GSMLE) of (Fo, β), denoted by
(F̃ , β̃n), is a value of (F,b) that maximizes

=L =
n∏

i=1

f(Yi−b′Xi) over all (F,b)∈F×Rp, where f(t)=F (t)−F (t−). (1.2)

In the literature, the GSMLE has not been studied and there is no algorithm
for obtaining it. In fact, the GSMLE cannot be obtained by standard numerical
methods.

For a fixed b, the likelihood function =L in (1.2) is maximized by the empirical
density function f̂b, where

f̂b(Yi − b′Xi) =
1
n

n∑
j=1

1(Yj−b′Xj=Yi−b′Xi) (1.3)

and 1A is the indicator function of an event A. Thus the GSMLE of β actually
maximizes

L(b) =
n∏

i=1

n∑
j=1

1(Yj−b′Xj=Yi−b′Xi) over all b. (1.4)

For simplicity, suppose p = 1 and that the n pairs (Xi, Yi) are all distinct.
If Yi − bXi are distinct, i = 1, . . . , n, L(b) = ( 1

n)
n, which is the minimum of

L. L(·) increases if Yj − bXj = Yi − bXi for some i �= j. In the latter case,
b = bij =

Yi−Yj

Xi−Xj
∈ Bo, where Bo = { Yi−Yj

Xi−Xj
: 1 ≤ i < j ≤ n,Xi �= Xj}. There are

at most n(n − 1)/2 many distinct bij’s. That is, L equals its minimum almost
everywhere (a.e.) in b, except at b ∈ Bo, and thus d lnL

db = 0 a.e.. Newton-
Raphson and Monte Carlo methods do not work for the GSMLE since L equals
its minimum a.e..

The GSMLE is akin to a class of efficient M-estimators studied in Zhang and
Li (1996). Their M-estimator is a zero-crossing point of a function Φ(b), which
has the form

Φ =
n∑

i=1

φ̂(Yi − Y − b′(Xi − X))(Xi − X), φ(t) =
∂

∂t
ln f(t), (1.5)

φ̂ is an estimator of φ, f is a pdf, and X is the sample mean of Xi’s. In view of
(1.5), this type of M-estimators is essentially a stationary point of a modification
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of the log likelihood. Since (f̂b(t))′ = 0 a.e. (see (1.3)) and ∂
∂b lnL(b) = 0

a.e., β̃n is an M-estimate with φ̂ = (f̂b(t))′/f̂b(t), as Φ = 0 a.e.. Obviously, the
M-estimation approach is non-informative to the GSMLE β̃n.

In Section 2, we introduce an algorithm for obtaining the GSMLE. In Sec-
tion 3, we show that if Fo has a discontinuity point then P{β̃n �= β infinitely
often (i.o.)} = 0, i.e., β̃n is super-efficient. Some detailed proofs in Section 3
are relegated to the appendix. In Section 4, we discuss the properties of the
GSMLE when Fo is continuous, compare the GSMLE to other estimators using
real discontinuous data sets and present simulation results when p = 1 or 2.

The maximum likelihood method is an appealing one. For example, most
textbooks on linear regression like to mention that the LSE, denoted by β̂n, is
the (parametric) MLE if ε ∼ N(µ, σ2). However, β̂n is not the (semi-parametric)
MLE under A1. For discontinuous data, the GSMLE β̃n is super-efficient, and
simulation results indicate that β̃n = β even when n = 50 in some cases. Super-
efficiency has not been reported for the existing estimators mentioned above
under linear regression models. On the contrary, we note that the LSE satisfies
P{β̂n �= β i.o.} = 1. A real discontinuous data set is presented in Example 4.4.1,
in which the GSMLE appears better than the LSE. Simulation demonstrates
that our algorithm for the GSMLE is feasible for moderate n and small p. With
fast-growing computing power, one may be able to find an efficient algorithm in
the future, making the GSMLE feasible for large p.

2. The GSMLE

Denote T (b) = Y − b′X and Ti = Ti(b) = Yi − b′Xi. Since εi = Ti(β),
i = 1, . . . , n, are i.i.d. copies of ε, the generalized likelihood function is

=L(F,b) =
n∏

i=1

f(Ti(b)), b ∈ Rp, f(t) = F (t)− F (t−), and F ∈ F . (2.1)

It is well known that, given b, the likelihood function is maximized by the em-
pirical distribution function F̂b based on Ti(b), i = 1, . . . , n. Denote f̂b(t) =
F̂b(t) − F̂b(t−). Then the GSMLE of β is a value of b that maximizes L(b)
over all b ∈ Rp, where L(b) = ∏n

i=1

∑n
j=1 1(Yj−b′Xj=Yi−b′Xi) (see (1.4)) and L(·)

takes on only finitely many values. Thus the GSMLE exists.
If p = 1, b is an GSMLE only if b ∈ Bo, where Bo = {b : b = Yi−Yj

Xi−Xj
, Xi �= Yj

and 1 ≤ i ≤ j ≤ n}. Thus it suffices to compare L(b) over b ∈ Bo. Since L
and Bo are both explicit, one has a non-iterative algorithm for the simple linear
regression as follows. Find all b ∈ Bo. Let Ao be the collection of all distinct
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elements of Bo, say Ao = {a1, . . . , am}. Each value of b that maximizes L(b) over
b ∈ Ao is an GSMLE of β. This is implemented as follows.

Algorithm 1.
Step 1. Let M1 = L(a1), M = 1 and bM = a1.

Step k (k=2, . . . ,m).

{
If L(ak)=M1 then increase M by 1 and set bM=ak;

if L(ak)>M1, then set M1=L(ak), M=1 and bM=ak.
Step m+ 1 (outputs). B = {b1, . . . , bM} is the set of all GSMLE’s of β.

The GSMLE of Fo is then F̂b, where b ∈ B. Under the semi-parametric
assumption, α = E(ε) may not exist. If α exists, a naive GSMLE of α is α̃ =∑

t tf̂β̃(t), where β̃ ∈ B. According to our simulation experience, the algorithm is
feasible if n is up to 1000 for p = 1. Algorithm 1 guarantees to yield all GSMLE’s.
However, it is very time-consuming if n > 1000. For practical purposes, we
introduce another algorithm.

Algorithm 2. (Compute the mode of b ∈ Bo).
Preliminary: Let M(b) be the multiplicity of b in Bo, i.e., M(b) =

∑n
j=2∑j−1

i=1 1(bij=b,bij∈Bo).

Step 1. Let a1, . . . , am be all the distinct elements of the set Bo. If m = ||Bo||
(the cardinality of the set Bo), then stop. Each ai is an GSMLE of β.
Otherwise, proceed.

Step 2. Reorder the ai’s so that M(a1) ≥ · · · ≥ M(am).

Step 3. Find N such that M(a1) = · · · =M(aN ) > M(aN+1).

Step 4. For j ≤ N , if aj maximizes L(ai) over i ≤ N then take aj as an GSMLE.

Algorithm 2 is motivated by super-efficiency, which suggests that if n is large
enough, β is the mode of slopes of line segments connecting two points (Xi, Yi)
and (Xj , Yj), i < j. This is not as rigorous as Algorithm 1 in the sense that
it may sometimes not yield an GSMLE. However, for moderate sample sizes, it
often generates an GSMLE and is much faster than Algorithm 1 (see Example
2.1 below). In applications, one may use Algorithm 1 if n is small, Algorithm 2
otherwise.

Example 2.1. Suppose there are n = 5 data: (Xi, Yi) = (0,1), (1,2), (2,3),
(4,−6) and (3,−6). Bo = {−9, −9/2, −4, −8/3, −7/3, −7/4, 0, 1, 1, 1}. Using
Algorithm 2, we know immediately that the GSMLE is 1, as N = 1, M(1) = 3
and M(b) ≤ 1 if b �= 1. However, Algorithm 1 needs to compute L(·) eight times
in order to find β̃n = 1.
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Remark 2.1. Algorithms 1 and 2 can be extended to the case p > 1 by replacing
Bo by Bm, the set of all possible bi1,...,ip,j1,...,jp which solve the p linearly indepen-
dent equations Yik −b′Xik = Yjk

−b′Xjk
, k = 1, . . . , p, where ik, jk ∈ {1, . . . , n}.

The justification is similar to that for the case p = 1 and Bo. Roughly speaking,
(1) Ti(b) = Yi − b′Xi, (2) L(b) = (1/n)n when Ti(b)’s are all distinct, and (3)
L(b) increases if Ti(b) = Tj(b) for some j (see the expression L in (1.4)). That
is, β̃n should not belong to the subset for which the Ti(b)’s exhibit few ties. By
construction, Bm is the subset for which there are at least p+ 1 ties among the
Ti’s. We skip the details.

3. The Main Result

In this section, we investigate the properties of the GSMLE under the as-
sumption that Fo is discontinuous. Let D be the collection of all discontinuity
points of Fo. We make use of the following assumptions.
A2. ε and X are independent.

A3. P

(
rank

(
1 · · · 1

X1 · · · Xp+1

)
= p+ 1

)
> 0.

A4. D is not empty and |E(ξ ln fo(ε))| < ∞, where fo(t) = Fo(t) − Fo(t−) and
ξ = 1(ε∈D).
A2 and A3 are identifiability conditions. In Bickel (1982), A3 is replaced

by the stronger condition E(|(X1, . . . ,Xn)(X1, . . . ,Xn)′)|) �= 0. It is easy to
understand A3 in case p = 1: we need at least two distinct values x1 �= x2 of X

to identify β. Thus rank

((
1 1
x1 x2

))
= 2.

In proving consistency of an MLE, one often takes advantage of the Shannon-
Kolmogorov inequality which requires |E(ln =L)| < ∞, rather than A4. However,
under the current semi-parametric set-up, E(ln =L(Fo, β)) = −∞ unless ε is dis-
crete. This can be viewed as follows. Let ξi = 1(εi∈D) and

=Ld(F,b) =
n∏

i=1

(f(Ti(b)))ξi and =Lc(F,b) =
n∏

i=1

(f(Ti(b)))1−ξi . (3.1)

Then =L = =Ld(F,b)=Lc(F,b). Define fo(t) = Fo(t) − Fo(t−) (see (2.1)). If P{ε ∈
D} < 1, then fo(t) = 0 at continuity points of Fo. If we take ln 0 = −∞,
E(ln =L(Fo, β)) ≤ E(lnLc(Fo, β)) = nE((1 − ξ) ln fo(ε)) = −∞. Note that A4 is
equivalent to |E(ln =Ld(Fo, β))| = |nE(ξ ln fo(ε))| < ∞.

The following is the main result of the paper.

Theorem 3.1. Suppose A1-A4 hold. If Fo has a discontinuous point, then
P{β̃n �= β i.o.} = 0.
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Proof. We first prove the theorem in a simple case, then outline the proof in
the general case in the Appendix.

First assume that p = 1, X is continuous and Fo has a unique discontinuity
point, say at t0. Then (1) T (b) = ε + (β − b)X, (2) P{T (β) = t} = 0 for all
t �= t0, (3) c =P{T (β) = t0} > 0, and (4) P{T (b) = t} = 0 for all t if b �= β.
If b �= β then by (4), with probability one, except perhaps one pair of Ti(b)’s (if
b ∈ Bo), the rest Tj(b)’s are all distinct and L(b) ≤ ( 1

n)
n−2( 2

n)
2. On the other

hand, L(β) ≈ ( 1
n)

n−nc(nc
n )

nc > ( 1
n)

n−2( 2
n)

2 by (3), if n is large. Thus β̃n = β in
this simple case.

In general, we show that P{β̃n �= β i.o.} > 0 leads to a contradiction. Under
the given assumptions, with probability one (w.p.1),

f̂b(t) converges uniformly in (b, t) (Lemma 5.1); (3.2)

lim
n→∞

1
n
ln =Ld(F̂β , β) ≥ E(ξ ln fo(ε)) (=E(

1
n
ln =Ld(Fo, β))) (Lemma 5.2); (3.3)

lim
n→∞

1
n
ln =Ld(F̂β̃n

, β̃n) ≥ lim
n→∞

1
n
ln =Ld(F̂β , β) (Lemma 5.3). (3.4)

It follows from (3.3) and (3.4) that w.p.1,

lim
n→∞

1
n
ln =Ld(F̂β̃n

, β̃n) ≥ E(ξ ln fo(ε)). (3.5)

Let Ω0 be the event that (3.2), (3.3), (3.4) and (3.5) hold. Then P{Ω0} = 1.
Now if P{β̃n �= β i.o.} > 0, then Ω0 ∩ {β̃n �= β i.o.} is not empty.

Suppose X is discrete. Then it is shown in Lemma 5.4 that

lim
k→∞

sup
n≥k,β̃n �=β

1
n
ln =Ld(F̂β̃n

, β̃n) < E(ξ ln fo(ε)) if ω ∈ Ω0 ∩ {β̃n �= β i.o.}, (3.6)

contradicting (3.5) since limn→∞ 1
n ln =Ld (F̂β̃n

, β̃n) ≤ limk→∞ supn≥ k, β̃n �= β
1
n

ln =Ld(F̂β̃n
, β̃n). If X is not discrete, our Lemma 5.5 has

lim
k→∞

sup
n≥k,β̃n �=β

1
n
ln =Ld(F̂β̃n

, β̃n) < E(ξ ln fo(ε)) with positive probability. (3.7)

Then (3.7) contradicts (3.5) again as P{Ω0} = 1, concluding the proof of the
theorem.

4. Discussion

We have established asymptotic properties of the GSMLE when Fo is discon-
tinuous. In this section we discuss the continuous case. Moreover, we apply the
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method to real data. Finally, we provide some simulation results on computing
the GSMLE when p = 1 or 2 and discuss variance estimation of the GSMLE.

4.1. The continuous case

When Fo is continuous, Theorem 3.1 cannot apply. For example, if p = 1 and
both X and ε are continuous then, w.p.1, there are exactly n(n − 1)/2 distinct
bij = (Yi − Yj)/(Xi −Xj), 1 ≤ i < j ≤ n. These are all the GSMLE’s, as L(b)
equals (1/n)n or (1/n)n−2(2/n)2.

Remark 4.1. If the GSMLE of β is not unique, one can choose an GSMLE
closest to the LSE. Let this be β̃ and the LSE be β̂. If both ε and X are
continuous, β̃ and β̂ can be expected to have the same asymptotic properties.
This can be viewed as follows with p = 1. The LSE is between two consecutive
GSMLE’s of which there are n(n−1)/2. Thus one expects |β̃− β̂| = O(n−2) and
Var (β̃)/Var (β̂)→ 1.

We present simulation results to support the last statement. Examples 4.1.1
and 4.1.2 are continuous cases, while Examples 4.1.3 and 4.1.4 are discontinuous.

Example 4.1.1. Suppose ε has a uniform distribution on the interval (−1, 1)
(ε ∼ U(−1, 1)), X ∼ U(0, 9) and (α, β) = (0, 2).

Example 4.1.2. Suppose ε ∼ N(0, 0.09), X ∼ U(0, 9) and (α, β) = (0, 1).

Example 4.1.3. Suppose ε is a mixture of U(0, 0.9) and the constant 0.45, with
probabilities 0.9 and 0.1, respectively, X ∼ U(1, 2) and (α, β) = (0, 1).

Example 4.1.4. Suppose ε+ α is a mixture of U(0, 0.6) and the constant 0.2,
with probabilities 0.6 and 0.4, respectively, X ∼ U(1, 2) and (α, β) = (0.26, 1).

For each sample size and each situation, we carried out 1000 simulations
and computed the sample mean and sample standard error (SE) of the 1000
estimates. It took less than a minute at a Pentium III PC in each case. The
results of the above examples are summarized in Table 1.

It is seen in our continuous examples (see Examples 4.1.1 and 4.1.2), β̃ and β̂
are equivalent in the sense that both of them are consistent and their asymptotic
standard deviations are almost the same for moderate sample sizes (n ≥ 200).
These results support the statement in Remark 4.1. In particular, since β̂ is
efficient in Example 4.1.2, so is β̃. If Fo is discontinuous, the SE of β̃ is obviously
smaller than the SE of β̂. When n is large enough, the SE of β̃ is 0 while the SE
of β̂ is positive. In fact, it is so even when n = 32 in Example 4.1.4. This suggests
that the GSMLE has some advantage over the LSE even when n is moderate,
provides the underlying distribution is not continuous.
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Table 1. Simulation results on estimating β when p = 1.

Example sample size β GSMLE β̃(SE) LSE (SE)
continuous Fo

4.1.1 32 2 1.992 (0.047) 1.996 (0.040)
100 2 1.997 (0.021) 1.996 (0.021)

4.1.2 32 1 0.998 (0.025) 1.000 (0.022)
200 1 1.000 (0.009) 1.000 (0.009)

discontinuous Fo

4.1.3 32 1 1.003 (0.121) 1.000 (0.156)
200 1 1.000 (0.000) 0.997 (0.060)

4.1.4 32 1 1.000 (0.000) 1.002 (0.088)

4.2. Computation in multiple regression

We carried out simulations for p > 1 as well. For example, let X and ε have
the same distribution as in Example 4.1.4 and let Y = 2X + 4X2 + ε. That is,
(α, β1, β2) = (0.26, 2, 4) and p = 2. We took n = 50, 100 and 200, respectively,
each with 1000 simulations. The results are in Table 2. It is seen that the
sample average of the GSMLE of (β1, β2) is always (2, 4), with SE (0, 0) even
when n = 50.

Table 2. Simulation results on estimating β when p = 2.

(β̃50,1, β̃50,2) (β̃100,1, β̃100,2) (β̃200,1, β̃200,2) (β1, β2)
sample mean (2.000,4.000) (2.000,4.000) (2.000,4.000) (2,4)

SE (0.000,0.000) (0.000,0.000) (0.000,0.000)

It is obvious that the computing cost is expensive if n or p is large. However,
for small p and n ≤ 1000, the cost of computation is not bad since it only
involves finding solutions of linear equations and empirical distribution functions.
If n > 1000, say, then the LSE is pretty accurate and one does not need to
compute the GSMLE.

4.3. Variance estimation

Theorem 3.1 suggests that if n is large and Fo is discontinuous, then nVar (β̃n)
= 0. Simulation results in Table 1 suggest that if there is severe discontinuity
in Fo (i.e., c = P{X ∈ D} is not small, say nc >> p), then the sample variance
of 1000 replications is 0 even for n as small as 30. In applications, there are
two problems: (1) it is not clear in general how large the sample size should
be so that β̃n = β; (2) the model assumption Y = β′X + ε is at best a linear
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approximation of a non-linear model using the first-order Taylor expansion. Thus
one needs some method to estimate the variance of the GSMLE. We propose two
methods: (1) estimating Var (β̃n) by the estimator of the variance of the LSE;
(2) estimating Var (β̃n) by the Bootstrap method.

In view of the super-efficiency of the GSMLE under discontinuous assump-
tions, by modifying the GSMLE it may be able to construct a semi-parametric
efficient estimator under continuous assumptions. This is an interesting open
problem.

4.4. Applications

The GSMLE is extremely good under the assumption that Fo is discontin-
uous, which is true if both Y and X are discontinuous, as ε = Y − β′X. The
following are real discontinuous data examples. We compare the GSMLE to
the LSE and/or the Theil-Sen estimator. We do not bring in M-estimators, R-
estimators or L-estimators, as each of them refers to a wide class of estimators.
In fact, the LSE is an M-estimator.

Example 4.4.1. In a study of revenue from advertising (see Chatterjee and Price
(1991), p.257), data were collected from 41 magazines in 1986. They are plotted
in Figure 1. Let X denote the number of pages of advertising (in hundreds) and
Y the advertising revenue (in millions of dollars). Chatterjee and Price fitted
them to a simple linear regression model.
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Figure 1. Plot of advertising pages and advertising revenue.

This is a discontinuous data set, as there are ties among the (Xi, Yi)’s (e.g.,
two (3, 1.3)’s). Furthermore, X and Y are discrete by nature. The GSMLE of
β is 1.2 and the LSE is 0.35 with an SE 0.14. It is seen from Figure 1 that the
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GSMLE is more reasonable than the LSE due to an outlier. If it is deleted, the
GSMLE remains the same and the LSE is 1.238 with an SE 0.14.

Example 4.4.2. The weight and the systolic blood pressure of 26 randomly
selected males in the age group 25-30 were collected. The data can be found
in Montgomery and Peck ((1992), p.63)). Letting X denote the weight and
Y the systolic blood pressure, Montgomery and Peck fit the data to a simple
linear regression model. While weight and blood pressure are continuous random
variables in theory, they are discrete in practice. Moreover, there are ties among
the Xi’s or Yi’s in this data set (e.g., (Xi, Yi) = (180, 156), (180, 150), or (170,
150)).

The LSE of β̂ is 0.4194 with an SE 0.0674; the Theil-Sen estimate is 0.4857;
the (unique) GSMLE of β is 1 with an SE 0.0674 (using the SE of the LSE).
There are differences, but it is not clear which estimator is better.

5. Appendix

In this appendix, we assume A1-A4 and give proofs of some technical details
in the proof of Theorem 3.1.

Lemma 5.1. Statement (3.2) holds.

Proof. Denote Fb(t) = P{T (b) ≤ t} and fb(t) = Fb(t)−Fb(t−). An estimator
of Fb is F̂b(t) = 1

n

∑n
i=1 1(Ti(b)≤t). Since f̂b(t) = F̂b(t) − F̂b(t−) and fb(t) =

Fb(t) − Fb(t−) by definition, it suffices to show that w.p.1, F̂b(t) converges to
Fb(t) uniformly in t and b.

Note that T (b) = ε + (β − b)′X, Fb(t) =
∫ ∫

1e+(β−b)′x≤tdFε,X(e,x), and
F̂b(t) =

∫ ∫
1(e+(β−b)′x≤t)dF̂ε,X(e,x), where F̂ε,X(e,x) = 1

n

∑n
i=1 1(εi≤e,Xi≤x).

Thus,

F̂b(t)− Fb(t) =
∫ ∫

1(e+(β−b)′x≤t)(dF̂ε,X(e,x) − dFε,X(e,x)).

Since F̂ε,X(e,x) converges to Fε,X(e,x) uniformly in (e,x) w.p.1, F̂b(t) converges
to Fb(t) uniformly in t and b w.p.1. This completes the proof of the lemma.

Lemma 5.2. Statement (3.3) holds.

Proof. Suppose that given n observations, there are nd εi’s that belong to D, the
non-empty set of all discontinuous point of Fo. Let d1, d2, . . ., be the elements of
D, and Ni the replications at di, that is, Ni =

∑n
k=1 1(εk=di). Then

∑
i

Ni

nd
ln
Ni

nd
≥
∑

i

Ni

nd
ln f(di), where f ≥ 0 and

∑
i f(di) ≤ 1
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(the Shannon-Kolmogorov inequality). Consequently,

1
n
ln =Ld(F̂β , β)

= (
∑

i

Ni

n
ln
Ni

nd
) +

nd

n
ln
nd

n

≥
∑

i

Ni

n
ln(

fo(di)
p

) +
nd

n
ln
nd

n
(by (5.2.1) with f = fo

p and p = P (ε ∈ D))

=
n∑

j=1

1
n
ξj ln fo(εj) +

nd

n
ln
nd

np
(noting

nd

np
→ 1)

→ E(ξ ln fo(ε)) w.p.1 (by the Strong Law of Large Numbers).

This yields (3.3).

Lemma 5.3. limn→∞ 1
n ln �Ld(F̂β̃n

, β̃n) ≥ limn→∞ 1
n ln �Ld(F̂β , β) w.p.1.

Proof. Since β̃n is an GSMLE, ln =L(F̂β̃n
, β̃n) ≥ ln =L(F̂β , β). Thus ln =Ld(F̂β̃n

, β̃n)−
ln =Ld(F̂β , β) ≥ ln =Lc(F̂β , β) − ln =Lc(F̂β̃n

, β̃n), as =L = =Ld =Lc (see (3.1)). It suffices
then to show that limn→∞ 1

n [ln =Lc(F̂β , β)− ln =Lc(F̂β̃n
, β̃n)] = 0 w.p.1.

By our notations, ε1, . . . , εn are i.i.d. copies of ε, Ti(b) = Yi − b′Xi and
Yi = β′Xi + εi. For ease in understanding, we first consider the case that Fo is
discontinuous and p = 1, and then consider the general case.

The solution to Ti(b) = Tj(b), say bij , satisfies bij = β + (εi − εj)/(Xi −Xj).
By the independent assumption on εi’s and Xi’s, it can be verified that P{b12 =
t|ξ1 = 0 & ξ2 = 1} = 0 for all t. Hence P{b12 = bij |ξ1 = ξi = 0 & ξ2 = 1} = 0
if i /∈ {1, 2}. This implies that, w.p.1 among all Ti(b)’s with ξi = 0, either
there is only one element such that Ti(b) = Tj(b) with ξj = 1 (and ξi = 0), or
there is at most one pair (Ti(b), Tj(b)) with ξi = ξj = 0 such that Ti(b) = Tj(b).
Consequently, w.p.1,

=Lc(F̂b, b) =



( 1

n)
n−nξ̄ if there is no tie among Ti(b)’s with ξi = 0,

( 2
n)

2( 1
n)

n−nξ̄−2 if there is a tie between Ti(b)’s with ξi = 0,
k
n(

1
n)

n−nξ̄−1 if Ti(b) = Tj(b) for some i and j such that ξi �=ξj,

where k ≥ 2. It follows that, w.p.1,

lim
n→∞

1
n
|{ln =Lc(F̂β , β) − ln =Lc(F̂β̃n

, β̃n)}|

≤ lim
n→∞

1
n
| ln{(n

n
)2(

1
n
)n−nξ̄−2} − ln (

1
n
)n−nξ̄|

= lim
n→∞

1
n
lnn2 = 0,
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the required conclusion.
If Fo is discontinuous and p > 1, the same conclusion holds since

lim
n→∞

1
n
|{ln =Lc(F̂β , β) − ln =Lc(F̂β̃n

, β̃n)}|

≤ lim
n→∞

1
n
| ln{(n

n
)p+1(

1
n
)n−nξ̄−p−1} − ln (

1
n
)n−nξ̄|.

The proof is similar and is skipped.

Lemma 5.4. If X is discrete, ω ∈ Ω0 ∩ {β̃n �= β i.o.}, and (3.6) holds.

Proof. Fix an ω ∈ Ω0. By assumption the range of X, RX, is discrete. Write
RX = {xi : i ≥ 1}. Note D = {dj : i ≥ 1}. If β̃n �= β i.o., by taking a
subsequence, we can assume β̃n �= β for all n. By taking a further subsequence,
we can assume that β̃n → b∗, where b∗ may not be finite. By Helly’s lemma,
we can further assume that {f̂β̃n

(dj + (β − β̃n)′xi)}n≥1 converges to a function

f∗ for all (dj ,xi), as f̂β̃n
is bounded and there at most countably many dj ’s and

xi’s. Then

lim
n→∞

1
n
ln =Ln(F̂β̃n

, β̃n)

= lim
n→∞

∑
i,j

1
n

n∑
k=1

1(εk=dj ,Xk=xi) ln f̂β̃n
(dj + (β − β̃n)′xi)

≤ E(ξ ln f∗(ε+ (β − b∗)′X)) (by Fatou’s lemma). (5.4.1)

Note that (3.6) follows from (5.4.1) and

E(ξ ln f∗(ε+ (β − b∗)′X)) < E(ξ ln fo(ε)). (5.4.2)

We now prove (5.4.2). Hereafter, let C be the collection of all real-valued
functions f such that f ≥ 0 and

∑
j f(dj) ≤

∑
j fo(dj). Note that E(ξ ln f(ε)) =∑

j fo(dj) ln f(dj) for each f ∈ C. By the Shannon-Kolmogorov inequality, fo

uniquely maximizes
∑

j fo(dj) ln f(dj) + p ln p over all f ∈ C, where p = P{ε /∈
D}. Thus if f ∈ C, E(ξ ln f(ε)) < E(ξ ln fo(ε)) unless f(dj) = fo(dj) for all j.
Letting f(dj) = f∗(dj + (β − b∗)′x),

E(ξ ln f∗(ε+(β−b∗)′x)|x) < E(ξ ln fo(ε)) if supj |f∗(dj+(β−b∗)′x)−fo(dj)|>0.
(5.4.3)

We prove in Lemma 5.6 that

lim
n→∞

inf
b�=β,xi �=0

sup
j

|f̂b(dj + (β − b)′xi)− fo(dj)| > 0. (5.4.4)
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Since f∗ is the limit of f̂β̃n
, where β̃n �= β, (5.4.4) implies that if x �= 0, then

sup
j

|f∗(dj + (β − b∗)′x)− fo(dj)|

≥ lim
n→∞

inf
b�=β,xi �=0

sup
j

|F̂b(dj + (β − b)′xi)− fo(dj)| > 0.

Thus, (5.4.3) yields E(ξ ln f∗(ε+ (β − b∗)′X)|X) < E(ξ ln fo(ε)). Taking expec-
tation on both sides of the above inequality yields (5.4.2). This concludes the
proof of the lemma.

Lemma 5.5. If X is not discrete and P{β̃n �= β i.o.} > 0, then (3.7) holds.

Proof. Write X = (X1, . . . ,Xp)′, β = (β1, . . . , βp)′ and β̃n = (β̃n,1, . . . , β̃n,p)′.
By assumption, X is not discrete so there is a non-discrete coordinate Xk, k ∈
{1, . . . , p}. There are two possibilities: (1) β̃n,k �= βk i.o.; (2) β̃n,k = βk for all n.

If (2) holds for each non-discrete Xk, then it follows that β̃n,h �= βh i.o.
implies Xh is discrete. By rearranging indices, we can assume that (a) Xh is
discrete if h = 1, . . . , q; (b) Xh is non-discrete and β̃n,h = βh ∀ n if h > q. It is
conceivable that the proof of the lemma in such case is similar to the proof in
the case that X is discrete (i.e., Lemma 5.4). We skip the details for the sake of
simplicity.

Now assume that (1) holds. Thus Xk is not discrete and β̃n,k �= βk i.o..
Let Qb the be event {T (b) /∈ Db : T (b) = ε + (β − b)′X, ε ∈ D}, where
Db is the collection of all discontinuity points of Fb Since X is not discrete,
P{Qb} ≥ p1, where p1 = P (Xk /∈ DXk

) and DXk
is the set of discontinuity

points of the cdf FXk
. Note that p1 does not depend on b. Hereafter, we as-

sume that b satisfies bk �= βk, where b = (b1, . . . , bp)′. Since Qb is the set of
continuous points of Fb, P(T (b) = t) = 0 for each t ∈ Qb. Thus, except on an
event of zero probability, if t ∈ Qb there is no tie at t among T1(b), . . . , Tn(b).
Without loss of generality, take

∑n
i=1 1(Ti(b)=t) ≤ 1 if t ∈ Qb. Since f̂b is

the empirical pdf of Fb, f̂b(Ti(b)) = 1
n

∑n
j=1 1(Tj(b)=Ti(b)) = 1

n if Ti(b) ∈ Qb.

Thus, 1n
∑n

i=1 1(Ti(b)∈Qb) ln f̂b(Ti(b)) = 1
n

∑n
i=1 1(Ti(b)∈Qb) ln 1

n . By assumption,
P{β̃n �= β i.o.} > 0. Along a subsequence, take β̃n,k �= βk for all n. It follows
that

lim
j→∞

inf
n≥j,β̃n,k �=βk

1
n
ln =Ld(F̂β̃n

, β̃n)

= lim
j→∞ inf

n≥j,β̃n,k �=βk

1
n

{ n∑
i=1

1(Ti(β̃n)∈Qβ̃n
) ln

1
n
+

n∑
i=1

ξi1(Ti(β̃n)/∈Qβ̃n
) ln f̂β̃n

(Ti(β̃n))
}

≤ lim
n→∞

1
n

n∑
i=1

1(Ti(β̃n)∈Qβ̃n
) ln

1
n

(as ln f̂β̃n
≤ 0)
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= p1 lim
n→∞ ln

1
n

(as β̃n,k �= βk for all n and P{Qb} ≥ p1)

= −∞ with probability P{β̃n �= β i.o.} > 0.

Consequently, (3.7) is trivially true, as E(ξ ln fo(ε)) is finite by A4. This com-
pletes the proof of the lemma.

Lemma 5.6. Suppose X is discrete. Then (5.4.4) holds.

Proof. Fix an ω ∈ Ω0. In order to prove (5.4.4), it suffices to show that there
exists an n1 such that

inf
b�=β,xi �=0

sup
j

|F̂b(dj + (β − b)′xi)− fo(dj)| > 0 if n ≥ n1. (5.6.1)

To this end, we prove later that

t0 > 0, where t0 = inf
b�=β,xi �=0

sup
j

|fo(dj)− fb(dj + (β − b)′xi)|. (5.6.2)

Since ω ∈ Ω0, f̂b converges uniformly in b and t. Consequently, there exists
n1 such that supj,b�=β,xi �=0 |f̂b(dj + (β − b)′xi) − fb(dj + (β − b)′xi)| ≤ t0/2, if
n ≥ n1. Thus, it follows from (5.6.2) that for each b0 �= β and x �= 0,

sup
j

|f̂b0(dj + (β − b0)′x)− fo(dj)|

≥ inf
b�=β,xi �=0

sup
j

|fb(dj + (β − b)′xi)− fo(dj)|

− sup
j,b�=β,xi �=0

|f̂b(dj + (β − b)′xi)− fb(dj + (β − b)′xi)|

≥ t0/2, if n ≥ n1.

Then (5.6.1) holds. The proof of the lemma will be completed after we prove
(5.6.2).

By A3, there exists xi �= 0 such that fX(xi) > 0. Suppose that there are ex-
actly j1 points in D at which fo achieves the maximum. By rearranging indices,
we can assume that fo(d1) = · · · = fo(dj1) > fo(dj1+1) ≥ fo(di) for each i > j1,

where d1 > · · · > dj1 . Note that j1 is finite as
∑

i fo(di) ≤ 1 and fo ≥
0. Without loss of generality take j1 = 1. Suppose b �= β. Since fb(t) =∑

(xk ,dh):dh+(β−b)′xk=t fo(dh)fX(xk) if t ∈ Db,

fb(dj + (β − b)′xi) =
∑

(xk,dh):dh+(β−b)′xh=dj+(β−b)′xi

fo(dh)fX(xk)

=
∑

(xk,dh):dh−dj=(β−b)′(xh−xi)

fo(dh)fX(xk).
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In view of the last expression of fb(dj + (β − b)′xi),

sup
j

|fo(dj)−fb(dj+(β−b)′xi)| ≥ fo(d1)−
∑

(xk,dh):dh−d1=(β−b)′(xh−xi)

fo(dh)fX(xk)

≥ fo(d1)− fo(d2) > 0, as f(d1) > f(d2) ≥ · · ·.

Thus (5.6.2) holds.
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