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Abstract: Sliced Inverse Regression (SIR) is a nonparametric method for achieving

dimension reduction in regression problems. It is widely applicable, very easy to

implement on a computer and requires no nonparametric smoothing devices such

as kernel regression or smoothing splines regression. The first moment-based SIR

has been extensively studied. However, one major restriction is its vulnerability to

symmetric dependencies. Methods based on second moments have been suggested

as a remedy, one is called SIRα. In this paper, we establish the asymptotic normality

of the SIRα estimates.
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1. Introduction

Sliced Inverse Regression (SIR) methods, introduced by Li (1991), examine
the relationship between a univariate response variable y and a p-multidimen-
sional regressor variable x with expectation µ and covariance matrix Σ. In con-
trast to regression analysis, the aim is not the estimation of an unknown regres-
sion function, but that of the influence of the regressor space on the response
variable. The corresponding model assumes that the dependency between the
regressors and the response variable is described by linear combinations of the
regressors. If only a few linear combinations are needed in comparison to the
dimensionality of the explanatory variable, the aim of reducing dimension is
reached. Note that the regression function need not be estimated. The underly-
ing semiparametric regression model is rather general:

y = g(β′1x, . . . , β
′
Kx, ε). (1)

Here g is an unknown function and ε is an unknown random error independent of
x. The goal is to estimate the space spanned by the K linearly independent β’s,
called the effective dimension reduction (e.d.r.) space. When K is small (K <<

p), the data can be effectively reduced by projecting x along the e.d.r. directions
for futher study of their relationship with y.
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While there are several possible variations, the basic principle of SIR methods
is to reverse the role of y and x. Instead of regressing the univariate y on the
multivariate x, the multivariate x is regressed on the univariate y. Estimates
based on the first moment E(x|y) have been studied extensively (see for instance
Duan and Li (1991), Li (1991), Carrol and Li (1992), Hsing and Carrol (1992),
Zhu and Ng (1995), Kötter (1996), Saracco (1997), Aragon and Saracco (1997)).
Estimates based on the second moment have also been suggested (see for instance
Li (1991), Cook and Weisberg (1991) or Kötter (2000)).

One crucial condition for the success of SIR methods is:

E(b′x|β′1x, . . . , β′Kx) is linear for any b. (2)

Note that (2) is satisfied when x has an elliptically symmetric distribution. It
does not seem possible to verify (2), this involves the unknown directions of
main interest as a start. As Li (1991) pointed out, this linearity condition is not
a severe restriction. Using a Bayesian argument of Hall and Li (1993), we can
infer that (2) holds approximatively for many high dimensional data sets. Thus,
a blind application of SIR methods without checking (2) can still be helpful in
finding the e.d.r. directions. A diagnostic check is then recommended after using
SIR methods.

Standard work with SIR concentrates on the use of the inverse regression
curve E(x|y) to find the e.d.r. space, constituting the SIR-I approach. A natural
extension is to consider the conditional covariance, Cov (x|y), as y varies. Like
the inverse regression curve, the orientation of this second-moment curve in the
space of p× p symmetric matrices can be used to determine the e.d.r. directions.
This leads to the SIR-II approach. Conjugate information can be used for in-
creasing the chance of discovering the e.d.r. directions. If an e.d.r. direction can
only be marginally detected by SIR-I or SIR-II, a suitable combination of these
two methods may sharpen the result. This is the idea of the SIRα method. The
following is a short summary of the underlying theoretical results for these ap-
proaches. Let T denote a monotonic transformation of y. Under (2), Li (1991)
established the following geometric properties of the model (1).

• SIR-I approach. The centered inverse regression curve, E(x|T (y)) − E(x)
as y varies, is contained in the linear subspace of IRp spanned by the vectors
Σβ1, . . . , ΣβK . A straightforward consequence is that the covariance matrix,
MI = Cov (E(x|T (y))), is degenerate in any direction Σ-orthogonal to the βk’s.
Therefore, the eigenvectors associated with the nonnull K eigenvalues of Σ−1MI

are e.d.r. directions.
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• SIR-II approach. Using the conditional covariance Cov (x|T (y)), the eigen-
vectors with the largest eigenvalues of the matrix Σ−1MII are the e.d.r. directions,
where

MII =E{(Cov (x|T (y))−E(Cov (x|T (y))))Σ−1(Cov (x|T (y))−E(Cov (x|T (y))))′}.

• SIRα approach. One convenient choice is to conjugate information from
SIR-I and SIR-II. Then we consider, for α ∈ [0, 1], the matrix Σ−1Mα where
Mα = (1 − α)MIΣ−1MI + αMII . Straightforwardly, the eigenvectors associated
with the largest K eigenvalues of Σ−1Mα are the e.d.r. directions.

In the following, we assume that these K e.d.r. directions, denoted by b1, . . .,
bK , span the e.d.r. space. Let us remark that, when α = 0 (resp. α = 1), SIRα is
equivalent to SIR-I (resp. SIR-II).

The above properties involve only first and second order moments of x and
y. Li (1991) proposed a transformation T , called a slicing, which categorizes the
response y into a new response with H > K levels. We assume the support of y
is partitioned into H slices s1, . . . , sh, . . . , sH . With such transformation T , the
matrices of interest are now written as

MI =
H∑

h=1

ph(mh−µ)(mh−µ)′ and MII =
H∑

h=1

ph(Vh−V )Σ−1(Vh−V )=
H∑

h=1

KhΣ−1Kh,

where ph = P (y ∈ sh), mh = E(x|y ∈ sh), Vh = Cov (x|y ∈ sh), V =
∑H

h=1 phVh

and Kh =
√
ph(Vh − V ).

Let 1I[.] be the indicator function and let 1Ih = 1I[y ∈ sh]. Then ph = E(1Ih),
mh = E(x1Ih)/ph and Vh = E(xx′1Ih)/ph − (E(x1Ih)/ph)(E(x1Ih)/ph)′. So, it is
straightforward to estimate these matrices and therefore the e.d.r. directions.

Let {(yi, x
′
i), i = 1, . . . , n} be a sample of observations from model (1). The

empirical mean and covariance matrix of the xi’s are given by x = n−1
∑n

i=1 xi

and Σ̂ = xx′ − x x′ where xx′ = n−1
∑n

i=1 xix
′
i. Moreover, let us write 1Ihi =

1I[yi ∈ sh], 1Ih = n−1
∑n

i=11Ihi, x1Ih = n−1
∑n

i=1 xi1Ihi, xx′1Ih = n−1
∑n

i=1 xix
′
i1Ihi,

V̂h = (xx′1Ih/1Ih)− (x1Ih/1Ih)(x1Ih/1Ih)′ and V̂ =
∑H

h=11IhV̂h.
By substituting empirical versions of these moments for their theoretical

counterparts, MI and MII are then estimated by

M̂I =
H∑

h=1

1Ih((x1Ih/1Ih)−x)((x1Ih/1Ih)−x)′ and M̂II =
H∑

h=1

K̂hΣ̂−1K̂h, (3)

where K̂h = (1Ih)−1/2(V̂h − V̂ ).
Finally, Mα is estimated by M̂α = (1 − α)M̂I Σ̂−1M̂I + αM̂II . Then the

eigenvectors b̂1, . . . , b̂K , associated with the K largest eigenvalues of Σ̂−1M̂α, are
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the K estimated e.d.r. directions. The e.d.r. space E is estimated by Ê, the
linear subspace generated by the b̂k’s.

Li (1991) and Saracco (2001) have shown that each estimated e.d.r. direction
converges to an e.d.r. direction at rate root n for SIR-I, SIR-II or the SIRα

method. Determining the number K (of indices) in model (1) is considered by
Li (1991), Schott (1994) and Ferré (1998). We do not examine this topic here,
and assume that K is known.

This paper focuses on the asymptotic normality of the SIRα estimator of the
e.d.r. space when the support of y is partitioned into H fixed slices. In Section 2,
we state the main results. First, the asymptotic distribution of

√
nvec(Σ̂−1M̂α −

Σ−1Mα) is obtained in Theorem 1. Then the asymptotic distribution of the
eigenprojector on the estimated e.d.r. space is derived in Theorem 2, as well as the
asymptotic distributions of each estimated e.d.r. direction and its corresponding
eigenvalue, respectively, in Theorems 3 and 4. The proofs are in the Appendix.

2. Main Results

From now on, for each s×smatrixD =
(
d(jk)

)
, let vec(D) = (d(11), . . . , d(s1),

d(21), d(22), . . . , d(ss))′ be the s2-dimensional column vector of all elements of D.
Let D1⊗D2 denote the Kronecker product of the matrices D1 and D2 (see Tyler
(1981) for some useful properties of the Kronecker product). In the sequel, the
notation Xn −→d X means that Xn converges in distribution to X as n→ ∞.

The assumptions which are necessary to state our results are gathered to-
gether below for easy reference.

(A1) {(yi, x
′
i), i = 1, . . . , n} is a sample of independent observations from model

(1).

(A2) The support of y is partitioned into H fixed slices s1, . . . , sh, . . . , sH such
that ph �= 0.

(A3) The covariance matrix Σ is positive definite.

(A4) The K + 1 largest eigenvalues of Σ−1Mα are non-null and satisfy: λ1 >
· · · > λK > λK+1, where K + 1 ≤ p.

2.1. Asymptotic distribution of Σ̂−1M̂α

Theorem 1. Under assumptions (A1), (A2) and (A3),
√
n(Σ̂−1M̂α − Σ−1Mα) −→d Φ, (4)

where Φ is such that vec(Φ) is normally distributed with mean zero and covariance
matrix C defined at (6).
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2.2. Asymptotic normality of the eigenelements of the estimated e.d.r.
space

Let us denote by w = {λ1, . . . , λK} the set of the K eigenvalues associated
with the e.d.r. space. Let P =

∑
λk∈w Pλk

be the Σ-orthogonal eigenprojector on
the e.d.r. space, where Pλk

= bkb
′
kΣ.

Recall that the sample version of SIRα uses the estimated matrix Σ̂−1M̂α.
Then take ŵ = {λ̂1, . . . , λ̂K} as the set of the K largest eigenvalues of this
matrix. The Σ̂-orthogonal eigenprojector onto the estimated e.d.r. space Ê is
P̂ =

∑
λ̂k∈ŵ

P̂
λ̂k

where P̂
λ̂k

= b̂k b̂
′
kΣ̂.

Starting from the limit distribution obtained in (4), we can derive the asymp-
totic distribution of the eigenelements describing the estimated e.d.r. space,
namely the eigenprojector onto the estimated e.d.r. space (in Theorem 2), the
estimated e.d.r. directions (in Theorem 3) and their corresponding eigenvalues
(in Theorem 4).

Theorem 2. Under the assumptions (A1), (A2), (A3) and (A4), we have
√
n(P̂−

P ) −→d ΦP , where ΦP is such that vec(ΦP ) is normally distributed with mean
zero and covariance matrix CP defined at (9).

Theorem 3. Under the assumptions (A1), (A2), (A3) and (A4), we get
√
n(b̂k −

bk) −→d Φbk
, where Φbk

has the normal distribution with mean zero and covari-
ance matrix Cbk

defined at (13).

Theorem 4. Under the assumptions (A1), (A2), (A3) and (A4), we get
√
n(λ̂k−

λk) −→d Φλk
, where Φλk

has a normal distribution with mean zero and variance
Cλk

= [b′k ⊗ b′kΣ]C[bk ⊗ Σbk].

2.3. Concluding remark

The asymptotic covariance matrices C, C∗, CP , Cbk
and Cλk

depend (directly
or via eigenelements) on the theoretical moments, which can be easily estimated
by their empirical counterparts. Therefore, it is straighforward to derive consis-
tent estimates of the asymptotic covariance matrices. Note that the theoretical
results of this paper are given for a fixed α in [0,1]. Clearly, if α = 0, asymptotic
results concern the SIR-I method. Similarly, if α = 1, the theory works for the
SIR-II approach. In practice, we should choose a value for α using the available
data, and adaptively. Some optimal choices have been studied by Saracco (2001)
and Gannoun and Saracco (2001).
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Appendix

A.1. Proof of theorem 1

Throughout the proof, Is denotes the s× s identity matrix, and 0s1,s2 stands
for the s1 × s2 null matrix. The proof is divided into five steps and relies on the
Central Limit Theorem and the Delta method (see for example Serfling (1980),
Theorem A, p.122).

Step 1: Application of the Central Limit Theorem.
For i = 1, . . . , n, define the (H + pH + p+ p2+ p2H)-dimensional column vector

Ui=(1I1i, . . . ,1IHi, x
′
i1I1i, . . . , x

′
i1IHi, x

′
i, vec(xix

′
i)
′, vec(xix

′
i1I1i)

′, . . . , vec(xix
′
i1IHi)′)′.

Under (A1), the vectors Ui, i = 1, . . . , n are independent and identically dis-
tributed. For h = 1, . . . ,H, write m̃h = E(x1Ih) and Ṽh = E(xx′1Ih), then the
mean µU of U is

µU = (p1, . . . , pH , m̃
′
1, . . . , m̃

′
H , µ

′, vec(Σ + µµ′)′, vec(Ṽ1)′, . . . , vec(ṼH)′)′.

To give the expression to the covariance matrix of U , we need additional
notation. For h = 1, . . . ,H, M̃h = E(x(x′ ⊗ x′)1I[y ∈ sh]), and Ñh = E((xx′) ⊗
(xx′)1Ih). Moreover, set M = E(x(x′ ⊗ x′)) and N = E((xx′) ⊗ (xx′)). The
covariance matrix ΣU is then

ΣU =


B11 B12 B13 B14 B15
B′
12 B22 B23 B24 B25

B′
13 B

′
23 B33 B34 B35

B′
14 B

′
24 B

′
34 B44 B45

B′
15 B

′
25 B

′
35 B

′
45 B55

 ,

where for i, j = 1, . . . , 5, the blocks Bij are the following:

B11 =


p1(1− p1) −p2p1 · · · −pHp1

−p1p2 p2(1− p2) · · · −pHp2
...

...
. . .

...
−p1pH · · · · · · pH(1− pH)

 ,

B12 =


(1− p1)m̃′

1 −p1m̃′
2 · · · −p1m̃′

H

−p2m̃′
1 (1− p2)m̃′

2 · · · −p2m̃′
H

...
...

. . .
...

−pHm̃
′
1 · · · · · · (1− pH)m̃′

H

 ,
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B13 =


m̃′
1 − p1µ

′
...

m̃′
H − pHµ

′

 , B14 =


vec(Ṽ1)′ − p1vec(Σ + µµ′)′

...
vec(ṼH)′ − pHvec(Σ + µµ′)′

 ,

B15 =


(1− p1)vec(Ṽ1)′ −p1vec(Ṽ1)′ . . . −p1vec(ṼH)′

−p2vec(Ṽ1)′ (1− p2)vec(Ṽ2)′ . . . −p2vec(ṼH)′
...

...
. . .

...
−pHvec(Ṽ1)′ . . . . . . (1− pH)vec(ṼH)′

 ,

B22 =


Ṽ1 − m̃1m̃

′
1 −m̃1m̃′

2 . . . −m̃1m̃′
H

−m̃2m̃′
1 Ṽ2 − m̃2m̃

′
2 . . . −m̃2m̃′

H
...

...
. . .

...
−m̃Hm̃

′
1 . . . . . . ṼH − m̃Hm̃

′
H

 ,

B23 =


Ṽ1 − m̃1µ

′
...

ṼH − m̃Hµ
′

 , B24 =


M̃1 − m̃1vec(Σ + µµ′)′

...
M̃H − m̃Hvec(Σ + µµ′)′

 ,

B25 =


M̃1 − m̃1vec(Ṽ1)′ −m̃1vec(Ṽ2)′ . . . −m̃1vec(ṼH)′

−m̃2vec(Ṽ1)′ M̃2 − m̃2vec(Ṽ1)′ . . . −m̃2vec(ṼH)′
...

...
. . .

...
−m̃Hvec(Ṽ1)′ . . . . . . M̃H − m̃1vec(ṼH)′

 ,
B33 = Σ, B34 =

[
M − µvec(Σ + µµ′)′

]
,

B35 =
[
M̃1 − µvec(Ṽ1)′ · · · M̃H − µvec(ṼH)′

]
,

B44 =
[
N − vec(Σ + µµ′)vec(Σ + µµ′)′

]
,

B45 =
[
Ñ1 − vec(Σ + µµ′)vec(Ṽ1)′ · · · ÑH − vec(Σ + µµ′)vec(ṼH)′

]
,

B55 =


Ñ1−vec(Ṽ1)vec(Ṽ1)′ −vec(Ṽ1)vec(Ṽ2)′ · · · −vec(Ṽ1)vec(ṼH)

−vec(Ṽ2)vec(Ṽ1)′ Ñ2−vec(Ṽ2)vec(Ṽ2)′ · · · −vec(Ṽ2)vec(ṼH)′
...

...
. . .

...
−vec(ṼH)vec(Ṽ1)′ . . . . . . ÑH−vec(ṼH)vec(ṼH)′

 .

From the Central Limit Theorem,
√
n(U − µU ) −→d N (0,ΣU ).

Step 2: Asymptotic distribution of the random variables comprising M̂I , M̂II and
Σ̂.
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In order to use the Delta method, we stack the variables comprising M̂I , M̂II

and Σ̂ into the vector

U1 = (1I1, . . . ,1IH , (x1I1/1I1)′, . . . , (x1IH/1IH)′, x′, vec(xx′)′, vec(xx′1I1)′/1I1, . . . ,
vec(xx′1I1)′/1IH)′.

We define the function f1 from IRH+pH+p+p2+p2H to IRH+pH+p+p2+p2H by

f1
(
(a′, b′1, . . . , b

′
H , c

′, d′, e′1, . . . , e
′
H)′
)

= (a′, b′1/a1, . . . , b
′
H/aH , c

′, d′, e′1/a1, . . . , e
′
H/aH)′,

where a = (a1, . . . , aH)′ ∈ IRH (assumed nonnull), bh ∈ IRp, c ∈ IRp, d ∈ IRp2

and eh ∈ IRp2H are column vectors. Under (A2), it is clear that U1 = f1(U).
Let us also define µ1 = f1(µU ) = (p1, . . . , pH ,m

′
1, . . . ,m

′
H , µ

′, vec(Σ + µµ′),
vec(Ṽ1)/p1, . . . , vec(ṼH)/pH)′ and Σ1 = F ′

1ΣUF1, where F1 = ∂f ′
1

∂u

∣∣∣
E
. Here and

subsequently the notation g|E is the evaluation of g at the expectation of its
argument. After straightforward calculations, we get

F1 =



IH

− m̃′
1

(p1)2

. . .

− m̃′
H

(pH)2

0H,p 0H,p2

−vec(Ṽ1)′
(p1)2

. . .

−vec(ṼH)
′

(pH)2

0Hp,H

Ip/p1
. . .
Ip/pH

0Hp,p 0Hp,p2 0Hp,p2H

0p,H 0p,pH Ip 0p,p2 0p,p2H

0p2,H 0p2,pH 0p2,p Ip2 0p2,p2H

0p2H,H 0p2H,pH 0p2H,p 0p2H,p

Ip2/p1
. . .
Ip2/pH



.

Since f1 satisfies the required conditions of the Delta method theorem and from
Step 1, we get

√
n(U 1 − µ1) −→d N (0,Σ1).

Step 3: Asymptotic distribution of
√
n





vec(M̂I)
vec(Σ̂)
vec(K̂1)

...
vec(K̂H)

−


vec(MI)
vec(Σ)
vec(K1)

...
vec(KH)



 .
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Let us define f2 on IRH+pH+p+p2+p2H to IRp2+p2+p2H as follows:

f2((a′, b′1, . . . , b
′
H , c

′, d′, e′1, . . . , e
′
H)′)

=



∑H
h=1 ahvec[(bh − c)(bh − c)′]

d− vec(cc′)
√
a1{e1 − vec(b1b′1)−

∑H
j=1 aj [ej − vec(bjb′j)]}

...
√
aH{eH − vec(bHb′H)−∑H

j=1 aj[ej − vec(bjb′j)]}


.

It is clear that f2(U1) = (vec(M̂I)′, vec(Σ̂)′, vec(K̂1)′, . . . , vec(K̂H)′)′ and f2(µ1)
= (vec(MI)′, vec(Σ)′, vec(K1)′, . . . , vec(KH)′)′.

Let us also define Σ2 = F ′
2Σ1F2

where F2=
∂f ′

2
∂u

∣∣∣
E
=


E1 0H,p2 E2
E3 0pH,p2 E4
E5 E6 0p,p2H

0p2,p2 Ip2 0p2,p2H

0p2H,p2 0p2H,p2 E7

, with E1=


(m1−µ)′⊗ (m1−µ)′
...

(mH−µ)′⊗ (mH−µ)′

,

E2 =



1
2
√

p1
[(1−3p1)vec(V1)′−ζ1] −√

p2vec(V1)′ · · · −√
pHvec(V1)′

−√
p1vec(V2)′

. . . . . .
...

... . . .
. . .

...
−√

p1vec(VH)′ . . . . . . 1
2
√

pH
[(1−3pH)vec(VH)′−ζH]

,

E3 =


p1[Ip ⊗ (m1 − µ)′ + (m1 − µ)′ ⊗ Ip]

...
pH [Ip ⊗ (mH − µ)′ + (mH − µ)′ ⊗ Ip]

 ,

E4 =


√
p1(p1 − 1)ξ1

√
p2p1ξ1 · · · √

pHp1ξ1
√
p1p2ξ2

. . . . . .
...

... . . .
. . .

...√
p1pHξH . . . . . .

√
pH(pH − 1)ξH


E5 =

H∑
h=1

ph[Ip ⊗ (µ−mh)′ + (µ−mh)′ ⊗ Ip], E6 = −(Ip ⊗ µ′ + µ′ ⊗ Ip),

E7 =



√
p1(p1 − 1)Ip2

√
p2p1Ip2 . . .

√
pHp1Ip2

√
p1p2Ip2

. . . . . .
...

... . . .
. . .

...√
p1pHIp2 . . . . . .

√
pH(pH − 1)Ip2

 ,
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where ζh =
∑

j �=h pjvec(Vj)′ and ξh = (Ip ⊗m′
h +m′

h ⊗ Ip), for h = 1, . . . ,H.
Since the Delta method applies to f2, from Step 2 we get

√
n(f2(U 1) −

f2(µ1)) −→d N (0,Σ2).

Step 4: Asymptotic distribution of
√
n





vec(M̂I)

vec(Σ̂−1)

vec(K̂1)
...

vec(K̂H)


−


vec(Mα)
vec(Σ−1)
vec(K1)

...
vec(KH)




.

Let R be the matrix

R =


Ip2 0p2,p2 0p2,p2H

0p2,p2 −(Σ−1 ⊗ Σ−1) 0p2,p2H

0p2H,p2 0p2H,p2 Ip2H

 . (5)

Under (A3), and using the first order approximation Σ̂−1 .= Σ−1−Σ−1(Σ̂−Σ)Σ−1

and Step 3, we get

√
n





vec(M̂I)
vec(Σ̂−1)
vec(K̂1)

...
vec(K̂H)


−


vec(MI)
vec(Σ−1)
vec(K1)

...
vec(KH)




.= R

√
n





vec(M̂I)
vec(Σ̂)
vec(K̂1)

...
vec(K̂H)


−


vec(MI)
vec(Σ)
vec(K1)

...
vec(KH)




,

which converges in distribution to N (0, CR) where CR = RΣ2R′.

Step 5: Asymptotic distribution of
√
nvec

(
Σ̂−1M̂α − Σ−1Mα

)
.

For the p× p matrices A, B, C1, . . . , CH , let f3 be defined from IRp2+p2+p2H to
IRp2

by

f3(vec(A)′, vec(B)′, vec(C1)′, . . . , vec(CH)′)=vec

(
B

[
(1−α)ABA+α

H∑
h=1

ChBCh

])
.

It is clear that f3
(
vec(M̂I)′, vec(Σ̂−1)′, vec(K̂1)′, . . . , vec(K̂H)′

)
= vec

(
Σ̂−1M̂α

)
and f3

(
vec(MI)′, vec(Σ−1)′, vec(K1)′, . . . , vec(KH)′

)
= vec

(
Σ−1Mα

)
.

Let us also define

C = F ′
3CRF3, (6)



AN ASYMPTOTIC THEORY FOR SIRα METHOD 307

where

F3 =
∂f ′3
∂u

∣∣∣∣
E
=



(1− α)(Ip ⊗ Σ−1Mα +MαΣ−1 ⊗ Ip)(Ip ⊗ Σ−1)
(1− α)(Ip ⊗ Σ−1Mα +MαΣ−1 ⊗ Ip)(Mα ⊗ Ip)

+α
∑H

h=1(Ip ⊗ Σ−1Kh +KhΣ−1 ⊗ Ip)(Kh ⊗ Ip)

α(Ip ⊗ Σ−1K1 +K1Σ−1 ⊗ Ip)(Ip ⊗ Σ−1)
...

α(Ip ⊗ Σ−1KH +KHΣ−1 ⊗ Ip)(Ip ⊗ Σ−1)


. (7)

Since the Delta method applies to f3 and, from Step 4, a final application of the
Delta method leads to

√
nvec(Σ̂−1M̂α − Σ−1Mα) −→d N (0, C).

A.2. Proof of Theorem 2

LetM be a square matrix of order p. As in Tyler (1981), we set ||M || = [max
eigenvalue of (Σ−1M ′ΣM)]1/2. The Moore-Penrose generalized inverse of M is
denoted by M+.

Under the assumptions of the Theorem 2, Σ̂−1M̂α converges in probability
to Σ−1Mα (see for instance Li (1991) or Saracco (2001)). Thus with probability
1, for n sufficiently large, we have∣∣∣∣∣∣Σ̂−1M̂α −Σ−1Mα

∣∣∣∣∣∣ ≤ λK/2. (8)

From Theorem 1 and (8), we are now in position to apply Lemma 4.1 of Tyler
(1981), so

P̂ = P −
∑

λk∈w

[Pλk
(Σ̂−1M̂α − Σ−1Mα)(Σ−1Mα − λkIp)+

+(Σ−1Mα − λkIp)+(Σ̂−1M̂α − Σ−1Mα)Pλk
] + Êo

where ||Êo||≤(1+λ1−λK
λK

)( 2λK
||Σ̂−1M̂α−Σ−1Mα||)2(1− 2

λK
||Σ̂−1M̂α−Σ−1Mα||)−1.

Let ΦP = −∑λk∈w[Pλk
Φ(Σ−1Mα −λkIp)++(Σ−1Mα −λkIp)+ΦPλk

]. From
the above, it follows that

√
n(P̂ − P ) −→d ΦP . We remark that vec(ΦP ) =

Cwvec(Φ) where Cw = −∑λk∈w[(MαΣ−1−λkIp)+⊗Pλk
+P ′

λk
⊗(Σ−1Mα−λkIp)+].

Then vec(ΦP ) follows the normal distribution N (0, CP ) where

CP = CwCC ′
w. (9)

Note that (Σ−1Mα − λkIp)+ can be replaced by Sλk
=
∑

λl �=λk

1
λl−λk

Pλl
.

A.3. Proof of Theorem 3

This result is a straightforward application of the Lemma 2 of Saracco (1997).
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We first show that

√
n

vec (Σ̂−1M̂α

)
vec

(
Σ̂
) −

[
vec

(
Σ−1Mα

)
vec(Σ)

] −→d

(
vec(Φ)
vec(ΦΣ)

)
, (10)

where

(
vec(Φ)
vec(ΦΣ)

)
follows the normal distribution N(0, C∗) with C∗ given by

(12). The proof is based on slight modifications of Steps 4 and 5 in the proof of

Theorem 1. Take R∗ =
[

R

0p2,p2 Ip2 0p2,p2H

]
where R is defined in (5). Then, by

the use of Step 3 in the proof of Theorem 1,
√
n([vec(M̂I)′, vec(Σ̂−1)′, vec(K̂1)′, . . . , vec(K̂H)′, vec(Σ̂)′]′

−[vec(MI)′, vec(Σ−1)′, vec(K1)′, . . . , vec(KH)′, vec(Σ)′]′)
.= R∗√n([vec(M̂I)′, vec(Σ̂−1)′, vec(K̂1)′, . . . , vec(K̂H)′)′]′ (11)

−[vec(MI)′, vec(Σ−1)′, vec(K1)′, . . . , vec(KH)′]′)
−→d N (0, CR∗),

where CR∗ = R∗Σ2R∗′.
For the p × p matrices A, B, C1, . . . , CH , D, let f∗3 be defined from

IRp2+p2+p2H+p2
to IRp2+p2

by

f∗3 ([vec(A)
′, vec(B)′, vec(C1)′, . . . , vec(CH)′, vec(D)′]′)

=

vec(B[(1− α)ABA+ α
H∑

h=1

ChBCh])

vec(D)

 .
It is clear that

f∗3 ([vec(M̂I)′, vec(Σ̂−1)′, vec(K̂1)′, . . . , vec(K̂H)′, vec(Σ̂)′]′) =

vec
(
Σ̂−1M̂α

)
vec

(
Σ̂
)  ,

f∗3 ([vec(MI)′, vec(Σ−1)′, vec(K1)′, . . . , vec(KH)′, vec(Σ)′]′) =

(
vec(Σ−1Mα)
vec(Σ)

)
.

Let us also define

C∗ = F ∗′
3 CR∗F ∗

3 , (12)

where F ∗
3 =

∂f∗′3
∂u

∣∣∣
E

=

[
F3 0p2+p2+Hp2,p2

0p2,p2 Ip2

]
with F3 defined in (7). Since the

Delta method applies to f∗3 and, from (11), a final application of the Delta method
leads to (10).
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Therefore, we get
√
n(b̂k −bk) −→d Φbk

where Φbk
= (Σ−1Mα−λkIp)+Φbk−

1
2(b

′
kΦΣbk)bk =M∗

k

(
vec(Φ)
vec(ΦΣ)

)
withM∗

k = [b′k⊗(Σ−1Mα−λkIp)+ − 12bk(b′k⊗b′k)].
Then Φbk

follows the normal distribution N (0, Cbk
) where

Cbk
=M∗

kC∗M∗′
k . (13)

A.4. Proof of Theorem 4

Using Theorem 1, Corollary 4 of Saracco (1997) gives Φλk
= b′kΣΦbk. Then

we use only the fact that Φλk
= (b′k ⊗ b′kΣ)vec(Φ) to complete the proof.
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