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Abstract: In its 2001 guidance, the U.S. Food and Drug Administration (FDA)

recommends that population bioequivalence (PBE) and individual bioequivalence

(IBE) be assessed to address respectively the prescribability and switchability be-

tween a brand-name drug product and its new formulation or generic copy. For

IBE, the FDA recommends a 2×4 crossover design and a statistical test procedure

proposed by Hyslop, Hsuan and Holder (2000). The same method is also recom-

mended in FDA (2001) for assessment of PBE under the 2 × 4 crossover design.

However, we note that, asymptotically, FDA’s PBE test has a size smaller than the

nominal level and thus has a low power to detect PBE. In addition, the 2001 FDA

guidance does not provide any statistical procedure for PBE under commonly used

2 × 2 or 2 × 3 crossover designs. In this paper, an asymptotically valid statistical

test is derived for PBE under the 2 × 2, 2× 3 or 2 × 4 crossover design, using the

method of moments and linearization. A method of determining the sample size

required to achieve a desired power of the PBE test is also proposed. Simulation

results are provided to examine the performance of the proposed PBE test and

FDA’s test. Finally, an example is presented for illustration.

Key words and phrases: Crossover design, drug prescribability, linearization, power,

nominal level, sample size.

1. Introduction

When a brand-name drug is going off patent, the innovator drug company
will usually develop a new formulation to extend its exclusivity in the market-
place. At the same time generic drug companies may file new, abbreviated drug
applications for generic drugs approval. In vivo bioequivalence testing is usu-
ally considered as a surrogate for clinical evaluation of drug products based on
the Fundamental Bioequivalence Assumption that when two drug formulations
are equivalent in bioavailability, they will reach the same therapeutic effect or
they are therapeutically equivalent (Chow and Liu (1999)). Pharmacokinetic
(PK) responses such as area under the blood or plasma concentration-time curve
(AUC) and maximum concentration (Cmax) are usually considered the primary
measures for bioavailability. In 1992, the U.S. Food and Drug Administration
(FDA) published its first guidance on statistical procedures for in vivo bioequiva-
lence studies (FDA (1992)), which requires that the evidence of bioequivalence in
average PK responses between the reference formulation (e.g., the brand-name)
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and the test formulation (e.g., a new formulation or a generic copy) be provided.
Bioequivalence in average PK responses is referred to as average bioequivalence
(ABE), which is also required in the FDA most recent guidance on bioequivalence
studies for orally administered drug products (FDA (2000)). The ABE approach
for bioequivalence, however, has limitations for addressing drug interchangeabil-
ity, since it focuses only on the comparison of population averages between the
test and reference formulations. Drug interchangeability can be classified as ei-
ther drug prescribability or drug switchability. Drug prescribability is referred
to as the physician’s choice for prescribing an appropriate drug for his/her new
patients among the drug products available, while drug switchability is related to
the switch from a drug product to an alternative drug product within the same
patient. To assess drug prescribability and switchability, population bioequiva-
lence (PBE) and individual bioequivalence (IBE) are proposed (see, for example,
Anderson and Hauck (1990), Esinhart and Chinchilli (1994), Sheiner (1992),
Schall and Luus (1993), Chow and Liu (1995), and Chen (1997)).

In its 2001 guidance (FDA (2001)), the FDA recommends a statistical test
procedure for IBE, which is based on a 2 × 4 crossover design and a method
proposed by Hyslop, Hsuan, and Holder (2000). The same method is also recom-
mended in FDA (2001) for assessment of PBE under the 2 × 4 crossover design.
However, the method proposed by Hyslop, Hsuan, and Holder (2000) is not di-
rectly applicable to PBE testing due to the violation of the primary assumption
of independence among the estimated components of the PBE criterion. In this
paper we focus on assessing PBE, which is recommended by FDA (2001) for new
drug application during the investigational phase of drug development. After an
introduction of the PBE criterion, in Section 2 we show that the size of the PBE
test recommended in FDA (2001) is asymptotically smaller than the nominal
level.

Although FDA (2001) indicates that a standard 2 × 2 crossover design may
be used for assessment of PBE, little information regarding the statistical test
procedure is provided. Using the method of moments and linearization, we derive
in Section 3 asymptotically valid statistical tests for PBE under commonly used
2× 2, 2× 3 or 2× 4 crossover designs. Also included in Section 3 is a method of
sample size determination for the use of the proposed PBE test. Some simulation
results are given in Section 4 to examine the finite sample performance of the
proposed methods and FDA’s PBE test. Finally, Section 5 contains an example
for illustration.

2. FDA’s PBE Test

2.1. Design, model, and criterion

Let yT be the PK response (or its log-transform) from the test formulation,
yR and y′R be two identically distributed PK responses (or their log-transforms)
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from the reference formulation, where yT , yR and y′R are independent observations
from different subjects. Then the drug prescribability can be measured by

θ =




E(yR − yT )2 − E(yR − y′R)2

E(yR − y′R)2/2
if E(yR − y′R)2/2 ≥ σ2

0

E(yR − yT )2 − E(yR − y′R)2

σ2
0

if E(yR − y′R)2/2 < σ2
0

(1)

(FDA (2001)), where σ2
0 is a constant specified by the FDA. According to FDA

(2001), PBE can be claimed if the following null hypothesis H0 is rejected at the
5% level of significance:

H0 : θ ≥ θU versus H1 : θ < θU , (2)

where θU is an upper limit specified by the FDA. According to FDA (2001), spon-
sors or applicants wishing to use the PBE approach should contact the Agency
(FDA) for further information on σ0 and θU .

For in vivo bioequivalence testing, crossover designs (see, for example, Jones
and Kenward (1989), Chow and Liu (1999)) are usually considered. Let yijk

be the original or the log-transform of the PK response of interest from the ith
subject in the kth sequence at the jth period of the experiment, where i =
1, . . . , nk, k = 1, 2, j = 1, . . . , p, and p is the number of periods of the crossover
design. A sufficient length of washout between dosing periods is usually applied
to wear off the possible residual effect that may be carried over from one period
to the next. The following statistical model is commonly considered:

yijk = µ+ Fl +Wljk + Sikl + eijk, (3)

where µ is the overall mean; Fl is the fixed effect of the lth formulation (l = T or
R according to the design and FT + FR = 0); Wljk’s are fixed period, sequence,
and interaction effects (

∑
k W̄lk = 0, where W̄lk is the average of Wljk’s with fixed

(l, k), l = T , R); Sikl is the random effect of the ith subject in the kth sequence
under formulation l and (SikT , SikR), i = 1, . . . , nk, k = 1, 2, are independent
and identically distributed bivariate normal random vectors with mean 0 and an
unknown covariance matrix(

σ2
BT ρσBTσBR

ρσBTσBR σ2
BR

)
;

eijk’s are independent random errors distributed as N(0, σ2
Wl), and Sikl’s and

eijk’s are mutually independent. Note that σ2
BT and σ2

BR are between-subject
variances and σ2

WT and σ2
WR are within-subject variances. Under (3), θ in (1) is
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θ = (δ2 + σ2
TT − σ2

TR)/max{σ2
0 , σ

2
TR}, where δ = FT − FR, σ2

TT = σ2
BT + σ2

WT

and σ2
TR = σ2

BR + σ2
WR. Let λ = δ2 + σ2

TT − σ2
TR − θU max{σ2

0 , σ
2
TR}. Then the

hypothesis in (2) is equivalent to

H0 : λ ≥ 0 versus H1 : λ < 0. (4)

If λ̂U is a 95% upper confidence bound for λ, then a level 5% test rejects H0 (i.e.,
concludes PBE) if and only if λ̂U < 0 (Lehmann (1986), pp.90-91).

Note that θ or λ is an aggregated measure, i.e., different combinations of the
values for δ, σ2

TT and σ2
TR can result in the same value of λ. In some cases, it

may not be a suitable measure for assessing PBE (see, e.g., Chow (1999)). As a
partial remedy, FDA (2001) recommends that PBE be claimed if and only if H0

in (4) be rejected at level 5% and the observed difference of means (for the test
and reference formulations) is within ±0.223. In this paper, we focus on testing
hypothesis (4), i.e., on the construction of an approximate 95% upper confidence
bound λ̂U .

2.2. FDA’s PBE test under the 2 × 4 design

The 2001 FDA guidance adopts the method by Hyslop, Hsuan, and Holder
(2000) in the construction of the upper confidence bound for PBE under the 2×4
crossover design. This method, based on results in Howe (1974), Graybill and
Wang (1980) and Ting, Burdick, Graybill, Jeyaratnam, and Lu (1990), can be
described as follows. Suppose

λ = λ1 + · · · + λr − λr+1 − · · · − λm, (5)

where the λj ’s are positive parameters. Suppose λ̂j is a point estimator of λj

and λ̃j is a 95% upper confidence bound for λj when j = 1, . . . , r, and λ̃j is a
95% lower confidence bound for λj when j = r + 1, . . . ,m. If λ̂1, . . . , λ̂m are
independent, then an approximate 95% upper confidence bound for λ is

λ̂U = λ̂1 + · · · + λ̂r − λ̂r+1 − · · · − λ̂m +
√

(λ̃1 − λ̂1)2 + · · · + (λ̃m − λ̂m)2. (6)

Note that (5) is a decomposition of λ into a linear function with components λj,
and λ̂U in (6) is an aggregated confidence bound in terms of individual exact
confidence bounds for the λj’s. The independence of λ̂j ’s is a key condition in
applying this method. Hyslop, Hsuan, and Holder (2000) successfully applied it
to IBE testing.

For PBE testing, FDA (2001) decomposed the λ in (4) into λ1 = δ2, λ2 = σ2
TT

and λ3 = σ2
TR + θU max{σ2

0 , σ
2
TR}. Then applied (6) with λ̂1 = δ̂2, λ̂2 = σ̂2

TT ,
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and λ̂3 = σ̂2
TR + θU max{σ2

0 , σ̂
2
TR}, where

δ̂ =
x̄T1 + x̄T2

2
− x̄R1 + x̄R2

2
;

σ̂2
TT =

1
n1 + n2 − 2

2∑
k=1

nk∑
i=1

[(xTki − x̄Tk)2 + (zTki − z̄Tk)2/4];

σ̂2
TR =

1
n1 + n2 − 2

2∑
k=1

nk∑
i=1

[(xRki − x̄Rk)2 + (zRki − z̄Rk)2/4];

xlki and zlki are the average and difference, respectively, of the two observations
from the ith subject in the kth sequence under drug treatment l in a 2 × 4
crossover design, i = 1, . . . , nk, k = 1, 2, l = T,R; x̄lk is the sample mean of xlki,
i = 1, . . . , nk; z̄lk is the sample mean of zlki, i = 1, . . . , nk; and nk is the sample
size in the kth sequence. It follows from (6) that FDA’s PBE test rejects H0 in
(4) if and only if λ̂U < 0, where

λ̂U = λ̂1 + λ̂2 − λ̂3 +
√
U1 + U2 + U3;

U1 =

[(
|δ̂| + t0.95;n1+n2−2

σ̂0.5,0.5

2

√
n−1

1 + n−1
2

)2

− δ̂2
]2

;

U2 = σ̂4
TT

(
n1 + n2 − 2
χ2

0.05;n1+n2−2

− 1

)2

;

U3 = ĉ2σ̂4
TR

(
n1 + n2 − 2
χ2

0.95;n1+n2−2

− 1

)2

;

σ̂2
0.5,0.5 =

1
n1 + n2 − 2

2∑
k=1

nk∑
i=1

(xiTk − xiRk − x̄Tk + x̄Rk)2 ; (7)

ĉ = 1 + θU if σ̂2
TR ≥ σ2

0 , ĉ = 1 if σ̂2
TR < σ2

0 ; and ta;n1+n2−2 and χ2
a;n1+n2−2 are

the 100ath percentile of the central t-distribution and chi-square distribution,
respectively, with n1 + n2 − 2 degrees of freedom.

Although δ̂ is independent of (σ̂2
TT , σ̂

2
TR) (see the Appendix), the two variance

estimators σ̂2
TT and σ̂2

TR are not independent. This was first noticed by Quiroz,
Ting, Wei, and Burdick (2000). In fact, it is shown in the Appendix that

Cov (σ̂2
TT , σ̂

2
TR) = 2ρ2σ2

BTσ
2
BR/(n1 + n2 − 2). (8)

Thus, the test recommended in FDA (2001) is statistically inappropriate in the
sense that its size may be very different from the nominal level 5%. In Section 4
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we study the type I error and power of FDA’s test empirically. Here, we present
an asymptotic result assuming that n1 = n2 = n and n is large. It can be shown
that, as n→ ∞,

the asymptotic size of FDA’s PBE test = Φ


 z0.05√

1 − 2cρ2σ2
BTσ

2
BR/σ

2
λ


 ,

where Φ is the standard normal distribution function, z0.05 is the 5th percentile
of the standard normal distribution,

σ2
λ = 2δ2σ2

0.5,0.5 +0.25σ4
WT +0.25c2σ4

WR +(σ2
BT +0.5σ2

WT )2 +c2(σ2
BR +0.5σ2

WR)2,

c = 1 + θU if σ2
TR ≥ σ2

0, c = 1 if σ2
TR < σ2

0 , and σ2
0.5,0.5 is given by

σ2
a,b = σ2

BT + σ2
BR − 2ρσBTσBR + aσ2

WT + bσ2
WR (9)

with a = 0.5 and b = 0.5.
This indicates that the asymptotic size of FDA’s test for PBE is always less

than the nominal level 5% unless ρ = 0 (which is impractical). Note that if the
size of a PBE test is less than the nominal level 5%, it means that this test is
too conservative and has unnecessarily low power.

Although the 2001 FDA guidance indicates that a 2×2 crossover design may
be used for assessment of PBE, no detailed test procedure is provided.

3. PBE Tests Based on Moment Estimators and Linearization

In this section, we propose PBE tests of asymptotic size 5%, using the
method of moments and linearization under model (3) in Section 2.1.

3.1. The 2 × 2 crossover design

For any of the 2 × 2, 2 × 3, or 2 × 4 crossover designs, let xlki and zlki be as
defined in Section 2, except that when there is a single observation under a given
sequence-formulation combination, xilk is the same as the original observation
and zilk is defined to be 0. Let δ̂, σ̂2

TT , and σ̂2
TR be as defined in Section 2. We

now derive an asymptotic (as nk → ∞) 95% upper confidence bound for λ by
applying linearization to the moment estimator

λ̂ = δ̂2 + σ̂2
TT − σ̂2

TR − θU max{σ2
0 , σ̂

2
TR}. (10)

The resulting PBE test is asymptotically of size 5%. Its performance is studied
by simulation in Section 4.

When it is known that σ2
TR ≥ σ2

0 , the proposed upper confidence bound is

λ̂U = δ̂2 + σ̂2
TT − (1 + θU )σ̂2

TR + t0.95;n1+n2−2

√
V , (11)
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where V is an estimated variance of δ̂2 + σ̂2
TT − (1 + θU )σ̂2

TR of the form V =
(2δ̂, 1,−(1 + θU ))C(2δ̂, 1,−(1 + θU ))′ and C is an estimated variance-covariance
matrix of (δ̂, σ̂2

TT , σ̂
2
TR). Since δ̂ and (σ̂2

TT , σ̂
2
TR) are independent,

C =



σ̂2

1,1

4

(
1
n1

+
1
n2

)
(0, 0)

(0, 0)′
(n1 − 1)C1

(n1 + n2 − 2)2
+

(n2 − 1)C2

(n1 + n2 − 2)2


 , (12)

where σ̂2
1,1 = 1

n1+n2−2

∑2
k=1

∑nk
i=1(xiTk − xiRk − x̄Tk + x̄Rk)2 (an estimator of

σ2
1,1 given by (9) with a = 1 and b = 1), C1 is the sample covariance matrix

of ((xiT1 − x̄T1)2, (xiR1 − x̄R1)2), i = 1, . . . , n1, and C2 is the sample covariance
matrix of ((xiR2 − x̄R2)2, (xiT2 − x̄T2)2), i = 1, . . . , n2.

When σ2
TR < σ2

0 , the upper confidence bound for λ should be modified to

λ̂U = δ̂2 + σ̂2
TT − σ̂2

TR − θUσ
2
0 + t0.95;n1+n2−2

√
V0, (13)

where V0 = (2δ̂, 1,−1)C(2δ̂, 1,−1)′.
The confidence bound in (11) is referred to as the confidence bound under

the reference-scaled criterion, whereas the confidence bound in (13) is referred
to as the confidence bound under the constant-scaled criterion. In practice,
whether σ2

TR ≥ σ2
0 or not is unknown. There are two methods of determining

whether the reference-scaled criterion or the constant-scaled criterion should be
used. The first method, which is used by Hyslop, Hsuan and Holder (2000)
and FDA (2001), applies the reference-scaled criterion or the constant-scaled
criterion according as σ̂2

TR ≥ σ2
0 or σ̂2

TR < σ2
0 . This method is referred to as the

estimation method and, intuitively, it works well if the true value of σ2
TR is not

close to σ2
0. The second method is based on a test of σ2

TR ≥ σ2
0 versus σ2

TR < σ2
0:

if σ̂2
TR(n1 +n2−2)/χ2

0.05;n1+n2−2 ≥ σ2
0 , then the reference-scaled criterion should

be used; otherwise the constant-scaled criterion should be used. This method is
referred to as the test method. The test method is more conservative than the
estimation method. A comparison of the two is given in Section 4.

An important practical issue is the determination of sample sizes n1 and
n2 for achieving a desired power (e.g., 80%) of the PBE test, for a given set of
parameter values. It follows from the calculation in the Appendix that when
n1 = n2 = n, an approximate formula to determine n is given by

n ≥ 2δ2σ2
1,1 + σ4

TT + c2σ4
TR − 2cρ2σ2

BTσ
2
BR

λ2
(z0.95 + zβ)2 (14)

for a set of given values of δ, σ2
1,1, σ2

TT , σ2
TR, σ2

BT , σ2
BR and ρ, where zt is the tth

quantile of the standard normal distribution, and β is the desired power.
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3.2. The 2 × 4 crossover design

When the study also considers IBE, the design has to be a higher order
crossover design. If a higher order crossover design is used, a test procedure for
PBE can be obtained by using the same idea as described in Section 3.1, but
with more data to increase accuracy.

Consider the 2 × 4 crossover design as recommended by FDA (2001) for
IBE testing: each subject receives two formulations exactly twice, and subjects
in different sequences receive different formulations at any given period. Let δ̂,
σ̂2

TT , and σ̂2
TR be as defined in Section 2. A test for PBE can be obtained by

using λ̂U in (11) or (13) with

C =



σ̂2

0.5,0.5

4

(
1
n1

+
1
n2

)
(0, 0)

(0, 0)′
(n1 − 1)C1

(n1+n2−2)2
+

(n2 − 1)C2

(n1+n2−2)2
+

C0

2(n1+n2−2)


 ,

where σ̂2
0.5,0.5 is defined by (7) (an estimator of σ2

0.5,0.5 given by (9) with a = b =
0.5), C1 and C2 are the same as those in Section 3.1,

C0 =

(
σ̂4

WT 0

0 σ̂4
WR

)
,

σ̂2
Wl =

1
2(n1 + n2 − 2)

2∑
k=1

nk∑
i=1

(zilk − z̄lk)2.

3.3. The 2 × 3 crossover design

As indicated in FDA (2001), a 2 × 3 crossover design may be used as an
alternative to the 2 × 4 crossover design for assessment of IBE. The standard
2 × 3 crossover design is the same as the 2 × 4 crossover design with the last
period removed. Assume that sequence 1 has two test formulations and sequence
2 has two reference formulations. Let δ̂, σ̂2

T l, and σ̂2
Wl be the same as those in

Section 3.2. A test for PBE can be obtained by using λ̂U in (11) or (13) with

C =



σ̂2

0.5,1

4n1
+
σ̂2

1,0.5

4n2
(0, 0)

(0, 0)′
(n1 − 1)C1

(n1 + n2 − 2)2
+

(n2 − 1)C2

(n1 + n2 − 2)2
+

C0

2(n1 + n2 − 2)


 ,

where σ̂2
0.5,1 = 1

n1−1

∑n1
i=1(xiT1 − xiR1 − x̄T1 + x̄R1)2, σ̂2

1,0.5 = 1
n2−1

∑n2
i=1(xiT2 −

xiR2 − x̄T2 + x̄R2)2, C1 and C2 are the same as those in Section 3.1, and

C0 =
1

n1 + n2 − 2

(
(n1 − 1)σ̂4

WT 0

0 (n2 − 1)σ̂4
WR

)
.
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3.4. The 2 × 3 extra-reference design

For IBE testing, Schall and Luus (1993) and Chow, Shao and Wang (2002)
considered a 2 × 3 extra-reference design obtained by adding an extra reference
period to the 2× 2 crossover design, i.e., the third periods of both sequences are
under the reference formulation. Let δ̂, σ̂2

WR, and σ̂2
TR, be the same as previously

defined. Then, a test for PBE can be obtained by using λ̂U in (11) or (13) with

C =



σ̂2

1,0.5

4

(
1
n1

+
1
n2

)
(0, 0)

(0, 0)′
(n1 − 1)C1

(n1 + n2 − 2)2
+

(n2 − 1)C2

(n1 + n2 − 2)2
+

C0

2(n1 + n2 − 2)


 ,

where σ̂2
1,0.5 = 1

n1+n2−2

∑2
k=1

∑nk
i=1(xiTk − xiRk − x̄Tk + x̄Rk)2, C1 and C2 are the

same as those in Section 3.1, and C0 =
(0 0

0 σ̂4
WR

)
.

3.5. Discussion

The method derived by Hyslop, Hsuan, and Holder (2000) and FDA’s PBE
test depend on the normality assumption on yijk’s in (3). For non-normal yijk’s,
their tests are not asymptotically valid. Since our proposed PBE tests are based
on moment estimators and linearization, they are still asymptotically valid when
yijk’s are non-normal. It can be seen from the proofs in the Appendix that when
yijk’s are non-normal, the estimated variance-covariance matrix C in (12) is still
a consistent estimator of the variance-covariance matrix of (δ̂, σ̂2

TT , σ̂
2
TR).

4. Simulation Results

4.1. The 2 × 2 Design

A simulation study was carried out to examine the type I error probability
and power of the PBE tests under the 2 × 2 crossover design when the sample
size n1 = n2 = n is 10, 20, 30, 40, 50, or 60. Values of σBT , σBR, σWT ,
and σWR are chosen from 0.1, 0.4, and 0.6, and values of ρ are 0.75 and 1.
For the computation of the type I error probability, we considered the situation
where the value of δ is chosen such that λ = 0. According to the 2001 FDA
guidance, the values of σ0 and θU are chosen to be 0.2 and 1.74, respectively.
For each parameter and sample size combination, 10,000 simulation runs were
used to compute the empirical type I error probability. Normal random variates
were generated according to (3), using the Fortran subroutine Random.f90 in the
Department of Statistics, University of Wisconsin-Madison.

Table 1 reports the empirical type I error probabilities when the test method
is used to decide whether the reference-scaled or the constant-scaled criterion
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should be used (see Section 3.1). In terms of these type I error probabilities, the
PBE test generally performs well. In most cases, the type I error probability is
under the nominal value 5%.

Table 1. Type I Error Probability of the PBE Test Under 2 × 2 Crossover Design.
(λ = 0; Nominal Level 5%; 10,000 Simulations)

ρ = .75 ρ = 1

σWT , σWR σWT , σWR

σBT , σBR n .1,.1 .1,.4 .4,.4 .4,.6 .6,.4 .6,.6 .1,.1 .1,.4 .4,.4 .4,.6 .6,.4 .6,.6

.1,.1 10 .0406 .0325 .0406 .0360 .0527 .0465 .0351 .0304 .0478 .0370 .0538 .0453

20 .0508 .0322 .0434 .0365 .0477 .0426 .0527 .0335 .0408 .0380 .0544 .0453

30 .0583 .0346 .0427 .0426 .0454 .0464 .0534 .0375 .0427 .0388 .0493 .0456

40 .0576 .0368 .0410 .0389 .0463 .0443 .0554 .0374 .0449 .0382 .0492 .0431

50 .0601 .0390 .0464 .0404 .0489 .0401 .0550 .0387 .0426 .0376 .0453 .0430

60 .0556 .0412 .0458 .0430 .0508 .0453 .0549 .0366 .0430 .0398 .0463 .0471

.1,.4 10 .0301 .0306 .0393 .0319 .0419 .0403 .0276 .0296 .0340 .0366 .0528 .0406

20 .0304 .0331 .0367 .0376 .0416 .0391 .0307 .0309 .0329 .0376 .0442 .0399

30 .0335 .0357 .0374 .0355 .0445 .0395 .0306 .0333 .0408 .0358 .0402 .0404

40 .0355 .0324 .0405 .0360 .0400 .0442 .0317 .0312 .0371 .0328 .0477 .0406

50 .0352 .0367 .0362 .0434 .0415 .0398 .0348 .0358 .0411 .0373 .0413 .0436

60 .0346 .0364 .0391 .0369 .0431 .0439 .0352 .0385 .0408 .0397 .0425 .0421

.4,.4 10 .0343 .0361 .0408 .0372 .0507 .0401 .0288 .0327 .0367 .0346 .0459 .0395

20 .0353 .0361 .0355 .0368 .0465 .0413 .0297 .0305 .0372 .0351 .0475 .0383

30 .0350 .0345 .0339 .0382 .0442 .0449 .0282 .0317 .0374 .0366 .0474 .0400

40 .0360 .0367 .0389 .0388 .0441 .0429 .0331 .0331 .0393 .0385 .0458 .0400

50 .0387 .0371 .0408 .0359 .0447 .0409 .0328 .0334 .0394 .0376 .0432 .0436

60 .0393 .0390 .0425 .0376 .0444 .0431 .0338 .0378 .0393 .0365 .0494 .0437

.4,.6 10 .0312 .0337 .0367 .0313 .0420 .0420 .0273 .0295 .0344 .0346 .0415 .0373

20 .0320 .0320 .0353 .0347 .0401 .0383 .0252 .0290 .0331 .0362 .0374 .0359

30 .0306 .0335 .0358 .0386 .0402 .0372 .0272 .0300 .0371 .0367 .0381 .0390

40 .0335 .0341 .0358 .0344 .0440 .0404 .0274 .0333 .0344 .0354 .0351 .0408

50 .0317 .0366 .0385 .0399 .0384 .0379 .0316 .0352 .0388 .0348 .0455 .0387

60 .0366 .0389 .0355 .0364 .0445 .0425 .0298 .0358 .0383 .0367 .0366 .0430

.6,.4 10 .0524 .0406 .0499 .0413 .0584 .0434 .0422 .0402 .0476 .0400 .0556 .0454

20 .0507 .0427 .0418 .0386 .0502 .0447 .0414 .0347 .0413 .0385 .0486 .0413

30 .0507 .0353 .0473 .0399 .0493 .0454 .0446 .0360 .0433 .0389 .0503 .0423

40 .0462 .0419 .0433 .0407 .0475 .0452 .0378 .0377 .0431 .0365 .0511 .0394

50 .0470 .0405 .0441 .0413 .0436 .0416 .0388 .0361 .0433 .0385 .0482 .0445

60 .0443 .0445 .0468 .0419 .0452 .0427 .0417 .0391 .0414 .0398 .0457 .0438

.6,.6 10 .0313 .0366 .0408 .0382 .0472 .0412 .0315 .0309 .0367 .0333 .0421 .0401

20 .0345 .0369 .0388 .0334 .0410 .0419 .0301 .0291 .0354 .0362 .0421 .0357

30 .0382 .0350 .0396 .0362 .0447 .0381 .0298 .0325 .0363 .0384 .0414 .0396

40 .0357 .0334 .0335 .0380 .0424 .0419 .0314 .0354 .0387 .0399 .0431 .0402

50 .0404 .0347 .0414 .0388 .0414 .0415 .0330 .0353 .0351 .0379 .0440 .0409

60 .0402 .0372 .0418 .0372 .0440 .0430 .0324 .0359 .0382 .0375 .0451 .0397
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Results of using the estimation method to decide which criterion should be
used were also obtained, but the results are the same as those in Table 1 except
for two cases. When σBT = σBR = σWT = σWR = 0.1 and ρ = 0.75, the type I
error probabilities are 0.0723, 0.0620, 0.0607, 0.0582, 0.0601, 0.0556 for n = 10,
20, 30, 40, 50, 60, respectively. When σBT = σBR = σWT = σWR = 0.1 and
ρ = 1, the type I error probabilities are 0.0680, 0.0630, 0.0564, 0.0555, 0.0551,
0.0549 for n = 10, 20, 30, 40, 50, 60, respectively. Thus, the test method for
deciding whether the reference-scaled or the constant-scaled criterion should be
used performs better than the estimation method, although the two methods
produce identical results when σTR > σ0 = 0.2.

For all n = 10, . . . , 60 and some selected combinations of parameter values
(for which λ < 0), the empirical power of the PBE test is also obtained but not
reported here. The general finding is that when σTT ≤ σTR, a reasonably large
power (e.g., 80%) can usually be reached with reasonable values of n and λ; when
σTT > σTR, it is difficult to claim PBE (i.e., the power is low) even when the
two formulations are actually PBE.

Simulation results are also obtained for the performance of the proposed
formula (14) for sample size determination. For some combinations of the pa-
rameter values used in Table 1 and β = 80%, we first compute the sample size n
determined by (14) and then compute (with 10,000 simulations) the actual power
Pn of the PBE test using n as the sample size for both sequences. The results
are not reported here. The general findings are

1. The proposed formula (14) works well, i.e., the power Pn corresponding to
each selected n is larger than the target value 80%, although the sample
size produced by formula (14) is conservative since Pn is much larger than
80% in some cases.

2. When the variation of the test formulation is larger than that of the refer-
ence formulation, it is difficult to claim PBE even when the two formula-
tions are both PBE and ABE. When δ = 0 and (σBT , σBR, σWT , σWR) =
(0.4, 0.4, 0.6, 0.4) or (0.6, 0.4, 0.4, 0.4), for example, the required sample size
n to claim PBE ranges from 35 to 46.

4.2. The 2 × 4 design

In this section we report results from a simulation study that investigates
the type I error probability and the power of FDA’s PBE test, and the proposed
test in Section 3.2, under the 2×4 crossover design with n1 = n2 = 20. Values of
the parameters δ, σBT , σBR, σWT , σWR, and ρ are given in Table 2. The value
of θU is 1.74.
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Table 2. Type I error probability and power of PBE tests under 2 × 4
crossover design with n1 = n2 = 20.

(Nominal Level 5%; 10,000 Simulations)

ρ = 0.75 ρ = 1.00
σBT σBR σWT σWR δ PBET FDA PBET FDA
0.4 0.4 0.1 0.1 0.4373 0.0335* 0.0143* 0.0255* 0.0000*

0.1956 0.7539 0.5747 0.9977 0.7853
0.1383 0.8747 0.7191 1.0000 0.9561

0 0.9461 0.8330 1.0000 0.9998
0.4 0.4 0.2 0.1 0.4016 0.0401* 0.0169* 0.0309* 0.0001*

0.1796 0.5738 0.3819 0.9180 0.3542
0.1270 0.6977 0.4982 0.9751 0.5469

0 0.8110 0.6075 0.9970 0.7411
0.4 0.4 0.3 0.3 0.5303 0.0388* 0.0268* 0.0336* 0.0143*

0.2372 0.7440 0.6568 0.8848 0.7300
0.1677 0.8578 0.7790 0.9623 0.8672

0 0.9443 0.8888 0.9918 0.9468
0.4 0.6 0.2 0.1 0.7657 0.0311* 0.0303* 0.0257* 0.0135*

0.2421 0.9933 0.9909 1.0000 1.0000
0 0.9998 0.9997 1.0000 1.0000

0.4 0.6 0.3 0.3 0.8404 0.0296* 0.0322* 0.0274* 0.0205*
0.2658 0.9941 0.9947 0.9997 0.9997

0 1.0000 0.9998 1.0000 1.0000
0.6 0.4 0.1 0.2 0.2345 0.0509* 0.0116* 0.0530* 0.0000*

0.1049 0.1319 0.0331 0.2701 0.0006
0.0742 0.1482 0.0377 0.3211 0.0007

0 0.1674 0.0402 0.3692 0.0011
0.6 0.4 0.3 0.3 0.2850 0.0524* 0.0170* 0.0518* 0.0031*

0.1275 0.1491 0.0554 0.2072 0.0204
0.0901 0.1661 0.0673 0.2347 0.0249

0 0.1892 0.0755 0.2760 0.0309
0.6 0.6 0.1 0.2 0.6928 0.0321* 0.0168* 0.0263* 0.0000*

0.2191 0.9249 0.8119 1.0000 0.9916
0 0.9753 0.9054 1.0000 0.9997

0.6 0.6 0.2 0.1 0.6215 0.0344* 0.0122* 0.0256* 0.0000*
0.1965 0.7977 0.5979 0.9994 0.8000

0 0.8937 0.7253 1.0000 0.9553
0.6 0.6 0.3 0.3 0.7115 0.0373* 0.0223* 0.0332* 0.0022*

0.2250 0.8747 0.7558 0.9931 0.8892
0 0.9471 0.8646 0.9997 0.9670

FDA: FDA’s PBE test.
PBET: The PBE test proposed in Section 3.2.
*: Type I error probability
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The type I error probability and power for FDA’s test and the proposed test
are listed in Table 2. The results are based on 10,000 simulation runs. Since
5% is the nominal significant level, it is clear that FDA’s test is too conservative
and the proposed test is more powerful. The performance of FDA’s test becomes
worse when ρ becomes larger or the between subject variances are larger than
within subject variances.

5. An Example

A single center, randomized, single-blind, 2×2 crossover study was conducted
to compare the liquid HSA-free formulation (test formulation) and the stan-
dard reconstituted powder formulation (reference formulation) of a drug prod-
uct intended for treating multiple sclerosis patients. Forty healthy volunteers
(n1 = n2 = 20) were randomly assigned to receive one of the two formulations
at Day 1 and Day 14, respectively, after a washout period of 13 days. Blood
samples were taken over a 7-day period following each treatment. That is, blood
samples were drawn between 5 to 15 minutes pre-dose, at 2, 4, 6, 9, 12, 18, and
21 hours post-dose, and at 24, 30, 36, 48, 72, 96, and 168 hours post-dose. Serum
human interferon-beta concentrations were determined by means of a validated
assay.

Two pharmacokinetic responses, area under the curve from 0 to 168 hours
(AUC) and peak concentration (Cmax), are considered. Statistics for the PBE
test are provided in Table 3 for θU = 1.125 (the most conservative PBE bound)
and θU = 1.74, as suggested by FDA (1999). In any case λ̂U < 0 and, hence,
PBE can be claimed in terms of either AUC or Cmax.

Table 3. Statistics for the PBE and ABE Tests (Section 5).

The PBE Test The ABE Test
Variable δ̂ σ̂2

1,1 σ̂2
TT σ̂2

TR λ̂∗U λ̂∗∗U (δ̂−, δ̂+)
AUC .1868 .4615 .4528 .8539 -.5788 -.7374 (.0057, .3678)
Cmax .1843 .4101 .2510 .3998 -.2040 -.2820 (.0430, .3255)
λ̂∗U = λ̂U with θU = 1.125
λ̂∗∗U = λ̂U with θU = 1.74

It is interesting to compare the PBE analysis with the ABE analysis. Ac-
cording to the 1992 or the 2000 FDA guidance, ABE can be claimed if and
only if the 95% confidence interval (δ̂−, δ̂+) is within (−0.223, 0.223), where
δ̂± = δ̂ ± t0.95;n1+n2−2σ̂1,1( 1

4n1
+ 1

4n2
)1/2. Statistics for ABE testing are included

in Table 3. It turns out that for both AUC and Cmax, ABE cannot be claimed.
Note that the ABE approach is not suitable for assessment of bioequivalence

for highly variable drug products (i.e., the intrasubject CV is greater than 30%).
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The ABE approach also penalizes the test product that has smaller variability
as compared to the reference product, which is the case for this example (Table
3). As indicated in this example, the PBE analysis provides a more reliable
assessment of bioequivalence.
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Appendix

1. Proof of the independence of δ̂ and (σ̂2
TT , σ̂2

TR)
It suffices to show that ȳ11 and

∑n1
i=1(yi21 − ȳ21)2 are independent, where

ȳjk is the average of yijk, i = 1, . . . , nk. Since y’s are normally distributed, the
result follows from the fact that for each i, Cov (ȳ11, yi21− ȳ21) = Cov (ȳ11, yi21)−
Cov (ȳ11, ȳ21) = 1

n1
Cov (yi11, yi21) − 1

n2
1

∑n1
t=1 Cov (yt11, yt21) = 0.

2. Proof of (8) From the definition of σ̂2
TT and σ̂2

TR, it suffices to show that if
(Xi, Yi), i = 1, . . . , n, are independent and identically distributed (i.i.d.) bivariate
normal random vectors with mean 0 and covariance matrix

Σ =

(
σ2

x ρσxσy

ρσxσy σ2
y

)
, (15)

then Cov (S2
x, S

2
y) = 2ρ2σ2

xσ
2
y/(n− 1), where S2

x and S2
y are the sample variances

of X’s and Y ’s, respectively. Using orthogonal transformations, we can show
that

S2
x =

1
n− 1

n−1∑
i=1

a2
i and S2

y =
1

n− 1

n−1∑
i=1

b2i ,

where (ai, bi), i = 1, . . . , n − 1, are i.i.d. bivariate normal random vectors with
mean 0 and covariance matrix Σ given by (15). Hence, the result follows from
the following lemma.

Lemma. Let (X,Y ) be a bivariate normal random vector with mean 0 and
covariance matrix Σ given by (15). Then Cov (X2, Y 2) = 2ρ2σ2

xσ
2
y .

Proof. Let a = (σ−1
x X+σ−1

y Y )/
√

2 and b = (σ−1
x X−σ−1

y Y )/
√

2. Then Var (a) =

(1 + ρ), Var (b) = (1 − ρ), and Cov (a, b) = 0. Also, X2 Y 2 = 0.25σ2
xσ

2
y(a2 − b2)2.

Hence,

E(X2Y 2) = 0.25σ2
xσ

2
yE(a4 + b4 − 2a2b2)

= 0.25σ2
xσ

2
y [3(1 + ρ)2 + 3(1 − ρ)2 − 2(1 + ρ)(1 − ρ)]

= 0.25σ2
xσ

2
y(6 + 6ρ2 − 2 + 2ρ2) = σ2

xσ
2
y(1 + 2ρ2)
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Therefore, Cov (X2, Y 2) = E(X2Y 2) − E(X2)E(Y 2) = 2ρ2σ2
xσ

2
y .

3. Derivation of formula 14 for sample size determination
Assume that n1 = n2 = n. It follows from the previous proof that

Ck → 2

(
σ4

TT ρ2σ2
BTσ

2
BR

ρ2σ2
BTσ

2
BR σ4

TR

)
in probability.

Hence, nVc → V∞ = 2δ2σ2
1,1 +σ4

TT +c2σ4
TR−2cρ2σ2

BTσ
2
BR in probability, where

Vc = V when c = 1 + θU and Vc = V0 when c = 1. Let λ̂ be given by (10). Then
λ̂U = λ̂+ t0.95;2n−2

√
Vc and

β ≈ P
(
λ̂− tβ;2n−2

√
Vc ≤ λ

)
= P

(√
n(λ̂U − λ) ≤ (t0.95;2n−2 + tβ;2n−2)

√
nVc

)
≈ P

(√
n(λ̂U − λ) ≤ (z0.95 + zβ)

√
V∞
)
,

since tβ;2n−2 → zβ. Since the power of the PBE test is P (λ̂U < 0) = P (
√
n(λ̂−

λ) < −√
nλ), it is asymptotically no smaller than β if −√

nλ ≥ (z0.95 + zβ)
√
V∞,

which is the same as (14) since λ < 0.
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