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Abstract: The maximum likelihood estimator (MLE) for the proportional hazards

model with left-truncated and “Case 1” interval-censored data is studied. Under

appropriate regularity conditions, the MLE of the regression parameter is shown to

be asymptotically normal with a root-n convergence rate and achieves the informa-

tion bound, even though the difference between left-truncation time and censoring

time of the MLE of the baseline cumulative hazard function converges only at rate

n1/3. Two methods to estimate the variance-covariance matrix of the MLE of the

regression parameter are considered. One is based on a generalized missing in-

formation principle and the other is based on the profile information procedure.

Simulation studies show that both methods work well in terms of bias and variance

for samples of moderate sizes. An example is provided to illustrate the methods.
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1. Introduction

In many medical studies, we are interested in the relationship between a
failure time and a covariate. However, failure times are subject to either trun-
cation or censoring. According to Klein and Moeschberger (1997, Section 3.4),
truncation is defined to be a condition which screens certain subjects so that
the investigator will not be aware of their existence. For truncated data, only
individuals who experience some event are observed by the investigator. The
event may be some condition which must occur prior to the event of interest,
such as exposure to a disease, entry into a retirement center, occurrence of an
intermediate event prior to death (e.g., recurrence of leukemia prior to death),
etc. In this case, the main event of interest is said to be left-truncated. The
most common type of left-truncation occurs when subjects enter a study at ran-
dom ages (not necessarily the origin for the event of interest) and are followed
from this delayed entry time until the event of interest occurs or until the sub-
ject is right-censored. Andersen, Borgan, Gill and Keiding (1993) contains many
examples of left-truncated data and statistical models based on them.
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On the other hand, censoring occurs when we have some information about
an individual lifetime, but we do not know the lifetime exactly. In particular,
interval censoring occurs when the lifetime is known to occur only within an
interval. Such interval censoring occurs when each patient in a clinical trial
or longitudinal study has a periodic follow-up and the patient’s event time is
only known to lie in an interval (Li, Ri] (L for left endpoint and R for right
endpoint of the censoring interval). Examples of interval-censored data can be
found in animal carcinogenicity (Hoel and Walburg (1972)) and epidemiology
studies (Finkelstein (1986)) among others. Huang and Wellner (1997) reviews
recent progress in models based on interval-censored data.

In this paper, we suppose each failure time is only known to lie in an interval
determined by an intermediate event time prior to the event of interest and an
examination time. At the examination time, we only know if the event of interest
has happened since the intermediate event time. We call this left-truncated and
“Case 1” interval-censored (LTIC 1) data. Turnbull (1976) described a general
scheme of incomplete failure time data, which includes LTIC 1 data as a special
case.

The proportional hazards model (Cox (1972)) has been widely used for as-
sessing the effects of covariates on survival time. For right-censored failure time
data, inference can be made based on the partial likelihood of the combined ranks
of the exact and the right-censored failure times. However, for LTIC 1 data, the
observed intervals of failure overlap and vary in length. As a result, it may not
be easy to identify the precise ranking of the failure times for study subjects.

We consider the maximum likelihood estimation approach for the propor-
tional hazards model based on LTIC 1 data. A generalized Gauss-Seidel al-
gorithm will compute the MLE. We show the consistency and the asymptotic
normality of the MLE of the regression parameter. The asymptotic properties
of the MLE with LTIC 1 data are different from those with “Case 1” interval-
censored data alone. Notice the difference between LTIC 1 data and “Case 1”
interval-censored data. In LTIC 1 data, we have a left-truncation time which
is away from the start of a study. So we do not have any information near
the start of the study. However, in “Case 1” interval-censored data, we have
some information near the start of a study in case of a left-censored failure time
because we know the failure time lies between the start of the study and the
observed time. It is therefore expected that statistical inference with LTIC 1
data is more difficult. In particular, the consistency of the MLE of the baseline
cumulative hazard function may not be an easy matter to prove. We were only
able to prove the consistency of the difference between left-truncation time and
censoring time of the MLE of the baseline cumulative hazard function because
we do not have information near the start of the study. Nevertheless, we prove
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that it is a sufficient condition for the asymptotic normality of the MLE of the
regression parameter.

In order to make a statistical inference it is essential to estimate the variance-
covariance matrix of the estimator of the parameters of main interest. In the
present model the number of parameters increases as the sample size does. In
this case computation of the inverse of the high-dimensional observed information
matrix may be numerically unstable. Therefore, we considered two methods that
do not require inverting the large observed information matrix. One is to take
advantage of sampling from the conditional distribution. Kim (1999) general-
izes to a semiparametric setting the missing information principle for parametric
models described in Louis (1982). The other method is to compute the inverse
of the profile information matrix. Murphy and van der Vaart (1999) proved its
appropriateness for i.i.d. samples. Based on the simulation results, it seems
that the estimate from either method works well as an estimate of the Fisher
information matrix.

The organization of the paper is as follows. In Section 2, we describe the
model and consider estimation of the “true” regression parameter θ0 and the
baseline cumulative hazard function Λ0(·). In Section 3, we compute the infor-
mation matrix for θ0. In Section 4, for the statistical inference for θ0, we suggest
two methods of estimating the variance-covariance matrix of the regression pa-
rameter estimator. In Section 5, we consider simulation studies. The cases with
15% and 36% of truncation proportion are treated. A brief summary of sim-
ulation procedures and results is provided. In Section 6, a data set illustrates
the proposed methods. In addition, the effect of misspecifying the data as either
“Case 1” or “Case 2” interval-censored data is considered. In Section 7, we show
that under appropriate conditions, the MLE of θ0 and the difference between the
left-truncation time and the censoring time of the MLE of Λ0(·) are consistent.
We also show their rate of convergence. In Section 8, we show the MLE of θ0 is
asymptotically normal and efficient. Finally, we include concluding remarks in
Section 9. Proofs are gathered together in the Appendix.

2. Model and Estimation

2.1. Model

In the proportional hazards model, the conditional hazard of a failure time T
given a covariate Z ∈ Rd is proportional to the baseline hazard, λ(t|z) = λ0(t)eθ

′z,
where θ is a d-dimensional regression parameter and λ0(·) is the baseline hazard
function.

For each subject, there is a censoring indicator δi, a left-truncation time
Xi, an examination time Ui, and a covariate Zi. Consider an ith subject whose
failure time Ti is left-truncated at Xi. If the ith subject tests positive at the
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examination time Ui, then Ti is left-truncated and left-censored. If the ith subject
still tests negative at the examination time Ui, then Ti is left-truncated and right-
censored. We assume that the true failure time is independent of the truncation
time and the examination time given Z, and that the joint distribution of the
truncation time, the examination time, and Z does not involve θ and Λ0(·), the
baseline cumulative hazard function. Suppose Y1, . . . , Yn is an i.i.d. sample from
Y = (δ,X,U,Z), where Yi = (δi,Xi, Ui, Zi), i = 1, . . . , n, with δi = 1 if left-
truncated and left-censored, and δi = 0 if left-truncated and right-censored. Let
S0(·) be the baseline survival function of failure times. Then the joint likelihood
function (up to a multiplicative constant) is

L =
n∏
i=1

[1− {S0(Ui)/S0(Xi)}e
θ′Zi ]δi [{S0(Ui)/S0(Xi)}eθ′Zi ]1−δi . (1)

Since S0(·) = exp{−Λ0(·)}, the log-likelihood function can be written in terms
of the cumulative hazard function as

ln(θ,Λ0) =
n∑
i=1

δi log[1− exp[−{Λ0(Ui)− Λ0(Xi)}eθ′Zi ]]

−(1− δi){Λ0(Ui)− Λ0(Xi)}eθ′Zi . (2)

2.2. Computation of MLE

Since the values of Λ0 matter only at either left-truncated times or examina-
tion times in the log-likelihood function, we will take the MLE Λ̂n of Λ0 to be a
right-continuous step function with possible jump points at Xi, Ui, i = 1, . . . , n.
Let Θ ⊂ Rd be the finite-dimensional parameter space containing θ0, the “true”
regression parameter. The MLE (θ̂n, Λ̂n) maximizes ln(θ,Λ) subject to θ ∈ Θ and
Λ being a right-continuous step function. We propose a generalized Gauss-Seidel
algorithm to compute (θ̂n, Λ̂n). Let θ(0) be a starting value and set the iteration
counter k = 0. The algorithm then is the following.

(a) Maximize ln(θ(k),Λ) with respect to Λ to obtain Λn(k).

(b) Maximize ln(θ,Λn(k)) with respect to θ. Set k ← k+1, and let θn(k) be the
maximizer.

(c) Repeat (a) and (b) until convergence.

In step (a), we first compute λ̂n atXi, Ui, i = 1, . . . , n, the hazard size maximizing
the log-likelihood as a function of θ and λ with θ being fixed. Λ̂n is then the
cumulative sum of the elements of λ̂n. It is clear that each iteration increases
the likelihood. Hence the algorithm converges to at least a local maximum.
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Step (a) is a constrained maximization problem since Λ(·) is restricted to be a
right-continuous step function. In step (b), let s1(θ) = (∂/∂θ)ln(θ,Λ). By the
strict concavity, the solution to s1(θ) = 0 is the unique maximizer of ln(θ,Λ)
for fixed Λ. In an iterated estimation procedure, it is common that the speed
of convergence becomes slower as the estimates come closer to the limit point.
In step (b), we generalize Louis’ (1982) Newton-Raphson step for a parametric
model to the current semiparametric setting. The following proposition implies
that steps (a) and (b) are well-defined concave maximization problems.

Proposition 2.1. (1) For any fixed θ, ln(θ,Λ) is a strictly concave function of
Λ; (2) for any fixed Λ, ln(θ,Λ) is a strictly concave function of θ.

3. Information Calculation

The following assumptions are needed for the information calculation, and
for the proof of the asymptotic properties in later sections.
(A1) The finite-dimensional parameter space Θ is a bounded subset of Rd.
(A2) (a) There exists z0 such that |Z| ≤ z0 with probability 1; (b) for any
θ1 �= θ2 ∈ Θ, P{θ′1Z �= θ′2Z} > 0.
(A3) There exists a positive number η such that P (U −X ≥ η) = 1.
(A4) There exists 0 < τ0 < τ1 and 0 < m0 < M0 < ∞ such that P (τ0 ≤ X <

U ≤ τ1) = 1 and m0 < Λ0(τ0) < Λ0(τ1) < M0.
(A5) Λ0 is strictly increasing on [τ0, τ1].

Assumptions (A1), (A2a), (A3), (A4) and (A5) are needed for the entropy
calculation in Lemma 7.2, which is crucial for obtaining the rate of convergence
and proving asymptotic normality of θ̂n, the MLE of θ0. Assumption (A2b)
is imposed for the identifiability of θ0. Note that if τ0 = 0 and X = 0 with
probability 1, then (A4) reduces to “Case 1” interval-censored data considered
in Huang (1996). Moreover, if τ0 = 0 and P (X = 0) is between 0 and 1, then this
reduces to a mixture of “Case 1” interval-censored data and LTIC 1 data. We
focus only on those subjects who had an intermediate event prior to the event of
interest, and that requires τ0 should be strictly positive.

For the proportional hazards model with “Case 1” interval-censored data,
Huang (1996) shows that the MLE of the regression parameter converges at
root-n rate and is asymptotically efficient. A necessary condition is that we must
have positive information. With LTIC 1 data, it is not clear that the information
is, in fact, positive. Therefore, we first calculate the information for the regression
parameter in the proportional hazards model with LTIC 1 data, and show that
it is, indeed, positive under reasonable assumptions.

Define

Q(δ, x, u, z) = δ
exp[−{Λ(u|z) − Λ(x|z)}]
1− exp[−{Λ(u|z) − Λ(x|z)}] − (1− δ), (3)
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O(x, u|z) = E[Q2(δ,X,U,Z)|X=x,U=u,Z=z] = exp[−{Λ(u|z) − Λ(x|z)}]
1−exp[−{Λ(u|z)−Λ(x|z)}] ,

(4)
where Λ(·|z) = Λ0(·) exp(θ′z) is the conditional cumulative hazard function given
z. The following theorem closely follows Huang (1996).

Theorem 3.1. Suppose that assumptions (A2)–(A5) are satisfied. Then

(a) The efficient score function for θ is

l̇∗θ(y) = r(θ
′z)Q(δ, x, u, z){Λ0(u)− Λ0(x)}

×
[
z − E{Zr(2θ

′Z)O(X,U |Z)|X = x,U = u}
E{r(2θ′Z)O(X,U |Z)|X = x,U = u}

]
,

where y = (δ, x, u, z) and r(θ′z) = exp(θ′z).

(b) The information for θ is

I(θ) = E[l̇∗θ(Y )]
⊗2 = E

[
R(X,U,Z)

[
Z − E{ZR(X,U,Z)|X,U}

E{R(X,U,Z)|X,U}
]⊗2

]
,

where a⊗2 = aa′ for a ∈ Rd, and R(X,U,Z) = {Λ(U |Z) − Λ(X|Z)}2
O(X,U |Z).

4. Variance Estimation

Even though we have an explicit expression for the information matrix in
Theorem 3.1, it is not an easy matter to directly estimate the information matrix.
Having computed the MLE, (θ̂n, Λ̂n), one can potentially evaluate the observed
information matrix

I = − ∂
2

∂ψ2
ln(ψ)|ψ̂n

,

where ψ = (θ,Λ). However, computation of the inverse of the high-dimensional
observed information matrix may be numerically unstable. Therefore, we con-
sidered two different approaches to estimating the variance-covariance matrix of
θ̂n.

4.1. Missing information principle and partial likelihood

Let (X < U) be a two-dimensional vector with first component being a left-
truncation time and the second being an examination time, and for i = 1, . . . , n,
let

δi =

{
1 if Xi < Ti ≤ Ui
0 if Ui < Ti.
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Define Y = {(δi,Xi, Ui, Zi)}ni=1 to be the observed data. Note that the observed
data have two parts, YLLC and YLRC , where LLC stands for the left-truncated
and left-censored part and LRC stands for the left-truncated and right-censored
part. Let nL be the number of left-truncated and left-censored observations.
Define W = {(Xj , Tj , Zj)}nL

j=1 to be the left-truncated data in the literature,
where Tj , j = 1, . . . , nL, is the unknown failure time in our problem. We refer
to W as the missing (incomplete) data because the T ′

js are not known but will
be estimated in the variance estimation procedure. Define (W,YLRC) to be the
complete data. Note that the complete data in this definition are left-truncated
and right-censored data in the literature (Turnbull (1976), Tsai, Jewell and Wang
(1987)). We call it so because it is an augmented version of the observed data
(YLLC ,YLRC) and requires only the partial likelihood function of the regression
parameter in the variance estimation procedure. Therefore, none of the missing
data and the complete data in our definition involves inverting a high-dimensional
observed information matrix. In order to take advantage of the partial likelihood
function (Cox (1975)) and risk sets for the proportional hazards model with left-
truncated and right-censored data (Tsai, Jewell and Wang (1987)), we impute
for left-truncated and left-censored failure times from the conditional distribution
and then compute the information for θ0.

For partly interval-censored data, Kim (1999) developed a generalized miss-
ing information principle, which is similar to the one for a parametric setting
explained by Louis (1982). Unlike the case with partly interval-censored data,
for LTIC 1 data, we do not have the consistency of the MLE of the baseline
cumulative hazard function (see Theorem 7.1). In the imputation step, we take
advantage of the MLE of the regression parameter and the baseline cumulative
hazard function. Therefore, we need to take the inconsistency of the MLE of the
baseline cumulative hazard function into account when we develop a generalized
missing information principle. Applying the same expression as in Kim (1999),
we have experienced a severe underestimation of the standard error. Therefore,
we propose for LTIC 1 data that the observed information matrix should be
approximated based on two partial likelihoods with risk sets adjusted for the
left-truncation times as functions of only the regression parameter.

The information for θ0 from the observed data can be approximated by

I = Icmp − Imis
= −

∫
W
(∂2/∂θ2) log PLC(θ)p(w|ψ̂n,Y)dw−VarW|Y{(∂/∂θ) log PLM(θ)|θ̂n

},
(5)

where PLC stands for partial likelihood of complete data and PLM stands
for partial likelihood of missing data. So the first term, Icmp, is the complete
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information, and the second term, Imis, is the missing information. The second
term in (5) takes into account an extra variability caused by the inconsistent
MLE of the baseline cumulative hazard function when compared with “Case
1” interval-censored data for which the MLE of the baseline cumulative hazard
function is consistent.

Now we describe how to compute Icmp and Imis. Let S be the set of or-
dered observed times. Suppose for the ith subject, the ranks of a left-truncated
observation and a left-censored observation, (xi, ui), are m1 and m2. Then the
conditional pdf of the subject’s failure time is

p(Ti = s(j)|ψ̂n, δi=1, xi, ui, zi) =
exp{−ez′iθ̂nΛ̂n(s(j−1))} − exp{−ez′iθ̂nΛ̂n(s(j)}
exp{−ez′iθ̂nΛ̂n(s(m1))}−exp{−ez′iθ̂nΛ̂n(s(m2))}

,

where s(j) is the jth ordered observed time and j = m1 + 1, . . . ,m2.
Since we can sample from p(W|ψ̂n,Y), the first integral in (5) may be ap-

proximated by the sum

1
B

B∑
j=1

{(∂2/∂θ2) logPLC(θ,wj,Y
LRC)|θ̂n

},

where w1, . . . ,wB ∼i.i.d. p(W|ψ̂n,Y) with B being a large enough sample size.
Likewise, the second term in (5) may be approximated by the sum

1
B

B∑
j=1

{(∂/∂θ) logPLM(θ,wj)|θ̂n
}2 −


(1/B) B∑

j=1

{(∂/∂θ) logPLM(θ,wj)|θ̂n
}



2

,

with the same imputed data, w1, . . . ,wB and the same sample size B.
Let {T †

i }nL
i=1 be the set of the imputed times from the above conditional

distribution. Then [{(Xi, T †
i , Zi)}nL

i=1, {(δi = 0,Xi, Ui, Zi)}ni=nL+1] is the set of
the complete data, where the first component is the set of the missing data. The
partial likelihood for the complete data is given by

PLC(θ) =
nL∏
i=1

{
exp(θ′Zi)∑

j∈�(Ti
†∗)exp(θ′Zj)

}
,

where �(Ti†∗) = {j : Xj < Ti† ≤ Tj	} with Tj	 being either an imputed time or
a right-censored time. Then logPLC(θ) =

∑nL
i=1[θ

′Zi− log{∑j∈�(T †∗
i )
exp(θ′Zj)}]

and we find the second derivative

nL∑
i=1

∑
j∈�(T †∗

i )
exp(θ′Zj)Z2

j∑
j∈�(T †∗

i )
exp(θ′Zj)

−
nL∑
i=1




∑
j∈�(T †∗

i )
exp(θ′Zj)Zj∑

j∈�(T †∗
i )
exp(θ′Zj)




2

.
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The partial likelihood for the missing data, {(Xi, Ti†, Zi)}nL
i=1, is given by

PLM(θ) =
nL∏
i=1

{
exp(θ′Zi)∑

j∈�(Ti
†∗∗)exp(θ′Zj)

}
,

where �(Ti†∗∗) = {j : Xj < Ti† ≤ Tj†}. The score function for the missing data
is then given by

(∂/∂θ) logPLM(θ) =
nL∑
i=1


Zi −

∑
j∈�(T †∗∗

i )
exp(θ′Zj)Zj∑

j∈�(T †∗∗
i )
exp(θ′Zj)


 .

Consequently, the two integrals in (5) are approximated by the following ex-
pressions, where we call the first one complete information and the second one
missing information:

Icmp =
1
B

B∑
k=1


 nL∑
i=1

∑
j∈�(T †∗

ik
)
exp(θ′Zjk)Z2

jk∑
j∈�(T †∗

ik
)
exp(θ′Zjk)

−
nL∑
i=1




∑
j∈�(T †∗

ik
)
exp(θ′Zjk)Zjk∑

j∈�(T †∗
ik

)
exp(θ′Zjk)




2

 ,

where for each i and k, �(T †∗
ik ) = {j : Xjk < Tik† ≤ Tjk	};

Imis =
1
B

B∑
k=1


 nL∑
i=1


Zik −

∑
j∈�(T †∗∗

ik
)
exp(θ′Zjk)Zjk∑

j∈�(T †∗∗
ik

)
exp(θ′Zjk)







2

−

 1
B

B∑
k=1

nL∑
i=1


Zik −

∑
j∈�(T †∗∗

ik
)
exp(θ′Zjk)Zjk∑

j∈�(T †∗∗
ik

)
exp(θ′Zjk)







2

,

where for each i and k, �(T †∗∗
ik ) = {j : Xjk < Tik† ≤ Tjk†}.

4.2. Profile information

Murphy and van der Vaart (1999) proved that the profile information ma-
trix is a consistent estimator of the efficient information matrix for i.i.d. samples.
For any fixed θ in a neighborhood of θ̂n, let Λ̂n(·, θ) maximize ln(θ,Λ) over Φ,
where Φ is the collection of all bounded nonnegative nondecreasing functions on
the support of the truncation variable and the censoring variable. The profile
log-likelihood is defined to be ln(θ, Λ̂n(·, θ)). The standard error of θ̂n is esti-
mated based on the second derivative of ln(θ, Λ̂n(·, θ)), treating it as the standard
log-likelihood. Since there is no closed form expression for Λ̂n(·, θ), the second
derivative of ln(θ, Λ̂n(·, θ)) is computed numerically. In particular, the likelihood
is computed for a small grid of θ-values near θ̂n, a quadratic function is fit by
the least squares, and then the inverse of the second derivative matrix is used
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to estimate the variance-covariance matrix of θ̂n. This method was coded with
S-plus functions, “nlminb” and “lm”. In simulation studies, a grid of 21 points
(the middle one being θ̂n) spaced at intervals of 0.01 was used to estimate the
second derivative of the profile log-likelihood.

5. Simulation Studies

In order to illustrate our methods, we performed a simulation study. Un-
der the proportional hazards model λ(t|z) = λ0(t)eθ

′z, we generated true failure
times from two distributions: exponential{λ0(t) = 1} and Weibull{λ0(t) = 2t}.
We considered a covariate, Z ∼ Bernoulli(1/2). The true regression parameter
θ0 is 1. Left-truncation times and examination times were generated to make the
proportions of left-truncated and left-censored observations, and left-truncated
and right-censored observations about equal. We considered samples of size 50,
100 and 150. The implementation was done in S-plus using a non-linear pro-
gramming routine for optimization, “nlminb”. The main programming task is
writing the likelihood function. One may save the computation time substan-
tially provided a hessian matrix is supplied to the routine. Let δ, T , X, U and
Z be a vector of censoring indicators, true failure times, left-truncation times,
examination times, and covariates, respectively. Then an i.i.d. sample of size n
is generated as follows.

(a) Set the counter k = 0.

(b) (Ti,Xi, Ui, Zi) is generated independently from their specified distributions.

(c) If Ti < Xi then we ignore this observation and go back to (b). If Xi <
Ti ≤ Ui then we obtain a left-truncated and left-censored observation, (δi =
1,Xi, Ui, Zi). If Ui < Ti then we obtain a left-truncated and right-censored
observation, (δi = 0,Xi, Ui, Zi). Set k ← k + 1.

(d) Repeat (b) and (c) until k becomes n.

Let B be the number of replications. Repeat (a) through (d) B times to obtain
B replicated data sets. In step (c), the percentage of left-truncation depends
on how we choose distributions of Xi and Ui. A referee suggested different
percentages of left-truncation in the simulation. Here we consider two cases.
On average, 36% and 15% of original observations were discarded due to left-
truncation, respectively. Table 1 summarizes the results of the simulation study
for both cases. For each sample size, bias and mean standard error estimate
are computed from B = 500 replications. The percentage of left-truncation
seems to play an important role in the small sample properties of the MLE of
the regression parameter. In particular, for a given sample size, the smaller the
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percentage of left-truncation the smaller the bias. Another interesting result is
that for a sample of size 50, the asymptotics do not work well. The simulation
study suggests that a sample size for the asymptotics to kick in should be at
least 150. Mean standard error estimates computed by the proposed methods
are close to the sample standard deviation. However, there seems to be a slight
hint of bias in the regression parameter. This is not surprising if we refer to
Alioum and Commenges (1996). Under a similar condition (n = 200, B = 200
and θ0 = 1), their bias in the regression parameter is 16.7%. In summary, the
simulation study supports the generalized missing information principle and the
profile information.

Table 1. Simulation results for MLEs.

36% discard 15% discard
n distribution b̂ a σ̂ b

M σ̂ c
P s d b̂ a σ̂ b

M σ̂ c
P s d

50 exponential 0.301 0.731 0.753 0.777 0.281 0.624 0.650 0.670
50 Weibull 0.307 0.751 0.788 0.810 0.288 0.645 0.672 0.698
100 exponential 0.231 0.398 0.383 0.422 0.208 0.391 0.386 0.426
100 Weibull 0.221 0.388 0.378 0.434 0.196 0.383 0.374 0.432
150 exponential 0.157 0.359 0.330 0.372 0.128 0.355 0.344 0.352
150 Weibull 0.152 0.348 0.343 0.388 0.125 0.344 0.341 0.358
a estimated bias
b mean standard error estimate by missing information principle
c mean standard error estimate by profile information
d sample standard deviation of regression parameter estimates.

6. Example

Consider the AIDS cohort study of hemophiliacs discussed in Kim, DeGrut-
tola and Lagakos (1993). Their time of interest was defined to be the AIDS-
related-symptom induction time, i.e., the difference between the AIDS-related-
symptom diagnosis time and the HIV-1 infection time, but ours is defined to be
the time until AIDS-related-symptom diagnosis since the time of the receipt of
the contaminated blood factor. The study population consisted of 257 individuals
with Type A or B hemophilia who had been treated at Hôpital Kremlin Bicetre
and Hôpital Coeur des Yvelines in France since 1978. These hemophiliacs were
at risk for HIV-1 infection through the contaminated blood factor they received
for their treatment. By the time of analysis, 188 were found to be infected with
the virus, 41 of whom subsequently progressed to AIDS-related symptoms. In
this case, there is 27% left-truncation.

The primary goal of this example is to apply the procedures described in the
previous sections to assess the effects of level of treatment received for hemophilia
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on the risk of developing AIDS-related symptoms. The subjects are classified
into two groups, lightly and heavily treated groups, according to the amount
of blood they received. In the original data set, there are HIV-1 infection time
intervals and AIDS-related-symptom diagnosis time intervals. The time unit is 6-
months. We slightly modify this data set into LTIC 1 format, and then illustrate
the proposed methods for the modified data. For each individual, we replace
one’s HIV-1 infection time interval and AIDS-related-symptom diagnosis time
interval by the midpoint and the right end point of the interval, respectively.
Define Zi = 0 if the ith individual belongs to the lightly treated group and
Zi = 1 otherwise. Figure 1 shows the estimated survival functions. The solid
graph is the estimator of the baseline survival function for lightly treated subjects
(Z = 0) and the dotted graph is the estimator of the survival function for heavily
treated subjects (Z = 1). Applying the procedures described in Sections 2.1,
2.2, 4.1 and 4.2, we obtain θ̂ = 0.765 with σ̂M and σ̂P being 0.367 and 0.353,
respectively. The test of θ0 = 0 results in a p-value of 0.038. The results here
suggest that the subjects in the heavily treated group had significantly greater
risk of developing AIDS-related symptoms. This result is similar to that obtained
by Kim, DeGruttola and Lagakos (1993), who had θ̂ = 0.69 with the estimated
standard error of 0.34, using a discrete analogue of the proportional hazards
model.
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Figure 1. Estimated survival functions for heavily treated and lightly treated group.

Since LTIC 1 data are somewhat similar to “Case 1” and “Case 2” interval-
censored data, methods to deal with them are not sufficiently known and practi-
tioners would treat them as either “Case 1” or “Case 2” interval-censored data.
Therefore we considered the effect of misspecifying the data as either “Case 1”
interval-censored data by ignoring the left-truncation time, or a special case of
“Case 2” interval-censored data (Huang and Wellner (1997)) by treating the left-
truncation time as one of the examination times for the event of interest. As



EFFICIENT ESTIMATION FOR THE PROPORTIONAL HAZARDS MODEL 531

we notice in Table 2 both of the cases resulted in severe overestimation of the
standard error. This confirms that left-truncation time is not only nonnegligible
but also should not be considered as one of the examination times for the event
of interest.

Table 2. MLEs from three types.

Data type θ̂ standard error
LTIC 1 0.765 0.367

“Case 1” interval-censored 0.692 1.031
“Case 2” interval-censored 0.732 0.556

7. Consistency and Rate of Convergence

This section closely follows Huang (1996).

7.1. Consistency of θ̂n and Γ̂n

For simplicity, define V = (X,U) and Γ(v) = Λ(u)−Λ(x). Likewise, define Γ̂n(v) =
Λ̂n(u)− Λ̂n(x). Let G(v) be the joint distribution function of V . Define

Ψ = {Γ : [τ0, τ1]2 → [m1,M1], for some 0 < m1 < M1}. (6)

Define a distance d on Θ× Ψ by

d((θ1,Γ1), (θ2,Γ2)) = |θ1 − θ2|+
[∫
(Γ1(v)− Γ2(v))2dG(v)

]1/2

. (7)

Theorem 7.1. (Consistency) Suppose that conditions (A1)–(A5) of Section 3 hold.
Then d((θ̂n, Γ̂n), (θ0,Γ0))

a.s.→ 0.

The proof of Theorem 7.1 is given in the Appendix.

7.2. Rate of convergence

We now consider the convergence rate for (θ̂n, Γ̂n) under the norm defined in (7).
Convergence rates of nonparametric maximum likelihood estimators have been consid-
ered by Wong and Severini (1991), Birgé and Massart (1993), van de Geer (1993), and
van der Vaart andWellner (1996). These authors demonstrated that the convergence rate
is closely related to the entropy numbers of the parameter space. In particular, Theorem
3.4.1 of van der Vaart and Wellner (1996) shows that, once consistency is established,
the convergence rate is determined by the smoothness of the model and the continuity
modulus of the objective function (which is the log-likelihood function in the case of
maximum likelihood estimation) over the parameter space. In the following, we apply
the approach developed in van der Vaart and Wellner (1996) to study the convergence
rate of (θ̂n, Γ̂n).

After consistency of θ̂n is established, we can focus our attention to a neighborhood
of θ0. For any η > 0, let B(θ0, η) be a ball centered at θ0 with radius η. If θ0 is on
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the boundary of Θ, then take B(θ0, η) to be B(θ0, η) ∩ Θ. In this way, we always have
B(θ0, η) ⊂ Θ. Restrict the class of log-likelihood functions l(θ,Λ) defined by (2) to

H = {l(θ,Γ) : θ ∈ B(θ0, η),Γ ∈ Ψ}. (8)

For any probability measure Q, let L2(Q) = {f :
∫
f2dQ < ∞} with norm ‖ · ‖2. For

any subclass F of L2(Q), define the bracketing number

N[ ](ε,F , L2(Q)) = min{m : there exist fL
1 , f

U
1 , . . . , f

L
m, f

U
m such that for each f ∈F ,

fL
i ≤ f ≤ fU

i for some i, and ‖fU
i − fL

i ‖2 ≤ ε}.

Following van der Vaart and Wellner (1996), let

J[ ](η,F , ‖.‖2) =
∫ η

o

[1 + logN{ε,F , L2(Q)}]1/2dε (9)

be the bracketing integral of the class of functions F .
Lemma 7.2. Let H be defined by (8) and suppose that Z has bounded support. Then
there exists a constant C > 0 such that supQN[ ]{ε,H, L2(Q)} ≤ C(1/εd)e1/ε, for all
ε > 0, where d is the dimension of θ0. Hence, for ε small enough and for some C0 > 0,
we have supQ logN[ ]{ε,H, L2(Q)} ≤ C0(1/ε). Here Q runs through the class of all
probability measures.

Remark 7.1. From this lemma, the bracketing integral for the class H is

J[ ]{η,H, L2(Q)} = O(1)
∫ η

0

√
1/εdε = O(η1/2) for η close to zero.

Applying Lemma 7.2 above, and Theorem 3.4.1 and Lemma 3.4.2 in van der Vaart
and Wellner (1996), we can prove the following result.

Theorem 7.3. (Rate of Convergence) Assume that (A1)–(A5) in Section 3 are satisfied.
Then d((θ̂n, Γ̂n), (θ0,Γ0)) = Op(n−1/3).

We remark here that the overall rate of convergence is dominated by Γ̂n. This rate
agrees with the convergence rate of the NPMLE of a distribution function studied by
Groeneboom and Wellner (1992). In the next section we show that the convergence rate
of θ̂n can be refined to achieve root-n convergence.

8. Asymptotic normality

This section closely follows Huang (1996, 1998) as well. We give sufficient condi-
tions for the MLE of the finite dimensional parameter in a semiparametric model to be
asymptotically normal and efficient. The results are applied to prove Theorem 8.1.

Let Y1, . . . , Yn be independent random variables with a common probability measure
Pθ,φ, where (θ, φ) ∈ Θ× Φ. Here Θ is a subset of Rd and Φ is a general space. Assume
that Pθ,φ has a density p(·, θ, φ) with respect to a σ-finite measure. Let (θ0, φ0) ∈ Θ×Φ
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be the true parameter value under which the observations are generated. The MLE of
(θ0, φ0) is the value (θ̂n, φ̂n) that maximizes the log-likelihood function

ln(Y, θ, φ) =
n∑

i=1

log p(Yi, θ, φ)

over the parameter space Θ× Φ. Let l(·, θ, φ) = log p(·, θ, φ), and define

l̇1(Y, θ, φ) =
∂

∂θ
l(Y, θ, φ), l̇2(Y, θ, φ)[h] =

∂

∂ε
l(Y, θ, φ+ εh)|ε=0,

l̇∗θ(Y, θ, φ) = l̇1(Y, θ, φ)− l̇2(Y, θ, φ)[h∗],

where h is an element of H, a class of bounded functions on the support of φ, and h∗ is an
element ofH that minimizes ρ(h) ≡ E‖l̇1(Y, θ, φ)−l̇2(Y, θ, φ)[h]‖2 overH. The minimizer
h∗ is called the least favorable direction. Then l̇1n(Y, θ, φ) and l̇2n(Y, θ, φ)[h] are similarly
defined. Proposition 8.1 shows that the following conditions are sufficient for the MLE of
the finite dimensional parameter in a semiparametric model to be asymptotically normal
and efficient:

l̇1n(Y, θ̂n, φ̂n) = 0, and l̇2n(Y, θ̂n, φ̂n)[h∗] = op(n−1/2); (10)

(Pn − P ){l̇∗θ(Y, θ̂n, φ̂n)− l̇∗θ(Y, θ0, φ0)} = op(n−1/2); (11)

P{l̇∗θ(Y, θ̂n, φ̂n)− l̇∗θ(Y, θ0, φ0)} = I(θ0)(θ̂n − θ0) + op(‖θ̂n − θ0‖) + op(n−1/2), (12)

where I(θ0) = E[l̇∗θ(Y, θ0, φ0)]⊗2 is the information matrix.

Proposition 8.1. Suppose conditions (10)−(12) are satisfied, and I(θ0) is nonsingular.
Then

√
n(θ̂n − θ0) = −I(θ0)−1

√
nPn l̇

∗
θ(Y, θ0, φ0) + op(1)

d→ N(0, I(θ0)−1).

Proof. Combining (11) and (12), we have

Pn{l̇∗θ(Y, θ̂n, φ̂n)− l̇∗θ(Y, θ0, φ0)} = I(θ0)(θ̂n − θ0) + op(‖θ̂n − θ0‖) + op(n−1/2).

By (10), it follows that

Pn l̇
∗
θ(Y, θ0, φ0) = −I(θ0)(θ̂n − θ0) + op(‖θ̂n − θ0‖) + op(n−1/2).

Since I(θ0) is nonsingular, and Pn l̇
∗
θ(Y, θ0, φ0) = Op(n−1/2), this implies ‖θ̂n − θ0‖ =

Op(n−1/2). Thus, op(‖θ̂n − θ0‖) = op(n−1/2). Therefore, Pn l̇
∗
θ(Y, θ0, φ0) = −I(θ0)(θ̂n −

θ0) + op(n−1/2) and the result follows.
We now state the main theorem that under appropriate regularity conditions, the

MLE θ̂n satisfies a central limit theorem and is asymptotically efficient.

Theorem 8.1. (Asymptotic normality and efficiency) Suppose that θ0 is an interior
point of Θ and that assumptions (A1)–(A5) in section 3 are satisfied. Then

√
n(θ̂n − θ0) = −I(θ0)−1√nPn l̇

∗
θ0
(Y ) + op(1)

d→ N(0, I(θ0)−1),
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where Pn is the empirical measure of Yi = (δi, Xi, Ui, Zi), i = 1, . . . , n, l̇∗θ0
(Y ) is the

efficient score defined in Theorem 3.1, and I(θ0) is the information matrix.

9. Concluding Remarks

We considered the maximum likelihood estimation approach for the proportional
hazards model with LTIC 1 data. Treating the difference between left-truncation time
and censoring time of the baseline cumulative hazard function as a nuisance parameter,
we were able to prove the asymptotic properties of the MLE of the regression parameter.
They are similar to those for “Case 1” interval-censored data (Huang (1996)). It is clear
that left-truncation is responsible for the inconsistency of the MLE of the cumulative
hazard function, and without additional properties of the baseline cumulative hazard
functions, the consistency of the MLE of the cumulative hazard function will not be easy
to prove.

Left-truncation also plays an important role in the small sample properties of the
MLE of the regression parameter. First, misspecifying the data as either “Case 1”
interval-censored data or a special case of “Case 2” interval-censored data can result in
a severe overestimation of the standard error. Second, for the same sample size, the
smaller the percentage of truncation the smaller the bias. Lastly, for our asymptotics to
apply, the sample size should be at least 150.

Regarding variance estimation, the profile information procedure is very simple to
apply for one or two dimensional covariates because we can compute the profile likelihood
surface. However, it becomes very difficult for higher dimensional covariates because we
may not be able to compute the profile likelihood surface unless we develop better com-
putational methods. On the other hand, the generalized missing information principle
can be applied for any finite dimensional covariates because it takes advantage of imputed
data and the partial likelihood function. It seems that the approach in this paper can
be extended to analyze left-truncated and general interval-censored data. As a further
study, it would be interesting to consider LTIC 1 data with time-dependent covariates
as well.
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Appendix. Proofs

Proof of Proposition 2.1. We prove only (1). For any function φ,

∂2

∂s2
ln(θ,Λ + sφ)|s=0 = −

n∑
i=1

δi
exp(−ai){2− exp(−ai)}bi2

{1− exp(−ai)}2 < 0,

where ai = {Λ(Ui)− Λ(Xi)}eθ′Zi and bi = {φ(Ui)− φ(Xi)}eθ′Zi , for i = 1, . . . , n.
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Proof of Theorem 3.1. See Kim (1999).

Proof of Theorem 7.1. Let p̂n(y) = p(y; θ̂n, Λ̂n) and p0(Y ) = p(Y ; θ0,Λ0), where
p is defined by (2). Since (θ̂n, Λ̂n) maximizes the likelihood function over Θ × Φ, and
(θ0,Λ0) ∈ Θ× Φ,

n∑
i=1

log pn(Yi) ≥
n∑

i=1

log p0(Yi),

n∑
i=1

log
pn(Yi)
p0(Yi)

≥ 0.

By concavity of the function y → log y, for any 0 < α < 1,

1
n

n∑
i=1

log
{
1− α+ αpn(Yi)

p0(Yi)

}
≥ 0. (13)

The left hand side can be written as∫
log

{
1− α+ αpn(y)

p0(y)

}
d(Pn − P )(y) +

∫
log

{
1− α+ αpn(y)

p0(y)

}
dP (y), (14)

where Pn is the empirical measure of (δi, Xi, Ui, Zi), i = 1, . . . , n; here P is the joint
probability measure of (δ,X, U, Z).

Let the sample space Ω be the space of all infinite sequences (δ1, X1, U1, Z1), (δ2, X2,
U2, Z2), . . ., endowed with the usual σ-algebra generated by the product topology on∏n

i=1{0, 1} ×Rd+2 and the product measure P.
The class of functions of the first term of (14), H = {log(1 − α + αp/p0) : p ∈ P},

where p0(y) = p(y; θ0,Λ0), is uniformly bounded and uniformly Lipschitz of order 1 and
hence is Donsker. The generalized Glivenko-Cantelli theorem together with Donsker
guarantees that there exists a set Ω0 ∈ Ω with P(Ω0) = 1 such that for every ω ∈ Ω0,
the first term of (14) converges to zero.

Now fix ω ∈ Ω0. For this ω, write θ̂n = θ̂n(ω) and Λ̂n(·) = Λ̂n(·, ω). Since Θ is
bounded, for any subsequence of θ̂n we can find a further subsequence converging to
θ∗ ∈ Θ̄, the closure of Θ. Moreover, by Helly’s Selection Theorem, for any subsequence
of Λ̂n we can find a further subsequence converging to some increasing function Λ∗.
Choose the convergent subsequence of θ̂n and the convergent subsequence of Λ̂n so that
they have the same indices and, without loss of generality, assume that θ̂n converges to
θ∗ and that Λ̂n converges to Λ∗. Let p∗(y) = p(y; θ∗,Λ∗). By the Bounded Convergence
Theorem, the second term of (14) converges to∫

log
{
1− α+ αp∗(y)

p0(y)

}
dP (y).

By (13), this is nonnegative. However, by Jensen’s Inequality, it must be nonpositive,
therefore it must be zero. It follows that p∗(y) = p0(y) P – almost surely. This implies
Γ∗(v)eθ∗′Z = Γ0(v)eθ0

′Z P – almost surely. This and condition (b) of (A2) imply that
there exists z1 �= z2 such that for some v∗ ∈ [τ0, τ1]2, Γ∗(v∗)eθ∗′z1 = Γ0(v∗)eθ0

′z1 and
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Γ∗(v∗)eθ∗′z2 = Γ0(v∗)eθ0
′z2 . Since by (A3)–(A5), Γ∗(v∗) > 0 and Γ0(v∗) > 0, this implies

(θ∗ − θ0)′(z1 − z2) = 0. Again, by condition (b) of (A2), the collection of such z1 and z2
has positive probability and there exists at least d such pairs that constitute a full rank
d × d matrix. It follows that θ∗ = θ0. This in turn implies Γ∗(v) = Γ0(v) G – almost
surely. By the Bounded Convergence Theorem,∫

{Γ̂n(v)− Γ0(v)}2dG(v)→ 0. (15)

Since (15) and θ∗ = θ0 hold for any ω ∈ Ω0 with P(Ω0) = 1, the proof is complete.

Proof of Lemma 7.2. See Huang (Lemma 3.1, 1996).

Proof of Theorem 7.3. See Huang (Theorem 3.3, 1996).

Proof of Theorem 8.1. See Huang (Theorem 3.4 and Lemma 7.1, 1996).
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