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Abstract: The proportional hazards model of Koziol-Green is often considered in

survival analysis. If the lifetime and censoring random variables are independent,

the Koziol-Green model implies that the variable indicating whether the observa-

tion is censored or not does not contain Fisher information about the parameters

of the underlying lifetime distribution. The Koziol-Green model, however, is not

uniquely characterized by this result on the lack of Fisher information in the censor-

ing indicator. Given the ordered randomly censored lifetimes with corresponding

indicators, we obtain a necessary and sufficient condition, weaker than the Koziol-

Green model, which ensures that a set of any number of censoring indicators does

not contain Fisher information about the parameters of the lifetime distribution.

Under this weaker condition, the results are applied to characterize the Weibull

distribution within the class of scale parameter families of lifetime distributions

and the factorization of the hazard function in terms of the Fisher information in

randomly censored data.
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1. Introduction

Let X and Y be independent absolutely continuous random variables on
the sample space E with distribution functions Fθ and Gθ and density func-
tions fθ(x) and gθ(y), respectively, where E = (a, b) ⊂ R1 (a and b can be
infinite), and θ = (θ1 · · · θm) ∈ Θ ⊂ Rm. Denote Z = min(X,Y ) and δ =
I(X ≤ Y ), where I(A) is the indicator function of A. In survival or lifetime
analysis, X and Y are lifetime and censoring random variables, respectively.
In the random censorship setting, one only observes the pair (Z, δ). The dis-
tribution and density functions of Z are given by Hθ(z) = 1 − F̄θ(z)Ḡθ(z)
and hθ(z) = fθ(z)Ḡθ(z) + gθ(z)F̄θ(z), respectively, where F̄θ = 1 − Fθ and
Ḡθ = 1 − Gθ. The full likelihood function for a single pair (Z, δ) is given by
L(z, δ) = {fθ(z)Ḡθ(z)}δ{gθ(z)F̄θ(z)}1−δ . Under regularity conditions, the Fisher
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information matrix about θ contained in a single pair (Z, δ), based on the full like-
lihood function, is IZ,δ(θ) = Eθ[{∂/∂θ logL(Z, δ)}{∂/∂θT logL(Z, δ)}]. Notice
that the censoring distribution Gθ may not depend on the parameter θ and, when
this is so, the likelihood function can be simplified for the calculation of Fisher
information. Different expressions for IZ,δ(θ) have been obtained by Prakasa Rao
(1995) and Zheng and Gastwirth (2001).

One important model of random censorship is the Koziol-Green model
(KGM) of random censoring (e.g., Koziol and Green (1976); Csörgő and Horváth
(1981); Chen, Hollander and Langberg (1982); Stute (1992); and Pawlitschko
(1999)), in which the lifetime and censoring distributions satisfy

gθ(x)F̄θ(x) = βfθ(x)Ḡθ(x), (1)

for some positive constant β. Denote the hazard functions of X and Y by λX =
f/F̄ and λY = g/Ḡ, respectively. Then (1) is equivalent to λY = βλX . It is
well known that Z and δ are independent under the KGM when X and Y are
independent (Chen et al. (1982)). This implies that (Z, δ) and Z contain the same
Fisher information about θ, since the distribution of δ is independent of θ under
the KGM when the lifetime and censoring random variables are independent.
However, the reverse is not necessarily true. For a single pair (Z, δ), when the
lifetime and censoring random variables are independent (assumed throughout),
Zheng and Gastwirth (2001) showed that (Z, δ) and Z contain the same Fisher
information about θ if and only if

gθ(x)F̄θ(x) = β(x)fθ(x)Ḡθ(x), (2)

for some positive function β(x), independent of θ ∈ Θ. Note that (2) is equivalent
to λY = β(x)λX , a weaker assumption than (1). It may be called the time-
dependent Koziol-Green model of random censoring. When (2) holds, the hazard
function of Z can be expressed as

λZ = λX + λY = [1 + β(x)]λX = [1 + 1/β(x)]λY , (3)

which shows that Hθ and Fθ (Hθ and Gθ) satisfy the time-dependent KGM.
In this paper, we extend earlier results based on a single pair (Z, δ) (Zheng

and Gastwirth (2001)). Given a randomly censored sample, (Z1, δ1), . . ., (Zn, δn),
of size n, one can rank Zi, i = 1, . . . , n, in ascending order as Z(1) ≤ · · · ≤ Z(n),
the order statistics from the distribution H(z) of Z = min(X,Y ). Let δ[i] be
associated with Z(i) such that if Z(i) = Zj , then δ[i] = δj for i = 1, . . . , n. Denote
any k order statistics {Z(r1), . . . , Z(rk)} by Dr1···rk:n(Z), and these order statis-
tics with their associated censoring indicators {(Z(r1), δ[r1]), . . . , (Z(rk), δ[rk])} by
Dr1···rk:n(Z, δ), 1 ≤ r1 < · · · < rk ≤ n. We show that, for any 1 ≤ r1 < · · · <
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rk ≤ n and any 1 ≤ k < n, Dr1···rk:n(Z, δ) and Dr1···rk:n(Z) contain the same
Fisher information about θ if and only if (2) holds for some β(x) > 0.

The calculation of the Fisher information (FI) contained in one or several
order statistics is more complex than in the case of a single random variable or
random sample because of dependence between the order statistics. The situation
where there is no censoring was considered by Gastwirth (1965), Mehrotra, John-
son and Bhattacharyya (1979), Park (1996), and Zheng and Gastwirth (2000).
Here we apply and extend the results in Zheng and Gastwirth (2000) to obtain
the FI about θ contained in Dr1···rk:n(Z, δ). Furthermore, using this result under
(2), we characterize the Weibull distribution within the class of scale parameter
families of lifetime distributions and the factorization of the hazard function.

2. The Likelihood Function for Ordered Randomly Censored Data

The joint likelihood function for D1···n:n(Z, δ) is

L1···n(z(1), δ[1]; · · · ; z(n), δ[n]) = n!
n∏

i=1

L(z(i), δ[i]), z(1) < · · · < z(n), (4)

where L(Z, δ) is defined in Section 1. The likelihood function of Dr1···rk:n(Z, δ),
1 ≤ r1 < · · · < rk ≤ n, can be obtained by integrating over the other variables
in (4). Thus, the joint likelihood of Dr1···rk:n(Z, δ), denoted as Lr1···rk

(Z, δ), can
be written as

Lr1···rk
(Z, δ) = Lr1···rk

(z(r1), δ[r1]; · · · ; z(rk), δ[rk])

= n!
k+1∏
i=1

[H(z(ri))−H(z(ri−1))]ri−ri−1−1

(ri − ri−1 − 1)!

k∏
i=1

L(z(ri), δ[ri]), (5)

where z(r1) < · · · < z(rk), r0 = 0, rk+1 = n + 1, z(r0) = a, and z(rk+1) = b. The
joint likelihood function of Dr1···rk:n(Z), denoted as Lr1···rk

(Z), can be obtained
directly from (5) if we replace L(z(ri), δ[ri]) by h(z(ri)).

3. Fisher Information in Randomly Censored Data

3.1. Regularity conditions and definition of Fisher information

The regularity conditions for the FI in a single random variable appear in Rao
(1973, p.329). Aboeleneen and Nagaraja (2002) showed they suffice to define the
FI in order statistics. Similarly the regularity conditions of Prakasa Rao (1995)
for the FI in the pair (Z, δ) are also sufficient for the FI in Dr1···rk:n(Z, δ).

Let S = (S1 · · ·Sm)T , where Si = ∂ logLr1···rk
(Z, δ)/∂θi. Under regular-

ity conditions, the FI matrix about θ contained in Dr1···rk:n(Z, δ) is IZ,δ
r1···rk:n(θ)=

Eθ(SST ). Similarly, we have the FI matrix forDr1···rk:n(Z), denoted by IZ
r1···rk:n(θ).
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3.2. Calculation of Fisher information

We are interested in calculating IZ,δ
r1···rk:n(θ). The techniques employed to

show Theorem 2.1 in Zheng and Gastwirth (2000) for IZ
r1···rk:n(θ) can be used to

obtain IZ,δ
r1···rk:n(θ).

Lemma 3.1. Assume regularity conditions hold. Denote

∆1,s−1 = IZ,δ
1···n:n(θ)− IZ,δ

s···n:n(θ),

∆s+1,t−1 = IZ,δ
1···n:n(θ)− IZ,δ

1···s t···n:n(θ),

∆t+1,n = IZ,δ
1···n:n(θ)− IZ,δ

1···t:n(θ), (6)

where 1 ≤ s ≤ n, s ≤ t− 1 and 1 ≤ t ≤ n, respectively. Then
(a) for s < j1 < j2 < · · · < jk ≤ n, ∆1,s−1 = IZ,δ

1···s j1 j2···jk:n(θ)− IZ,δ
s j1 j2···jk:n(θ);

(b) for 1 ≤ i1 < i2 < · · · < il < s < t < j1 < j2 < · · · < jk ≤ n,

∆s+1,t−1 = IZ,δ
i1 i2···il s···t j1 j2···jk:n(θ)− IZ,δ

i1 i2···il s t j1 j2···jk:n(θ);

(c) for 1 ≤ i1 < i2 < · · · < il < t, ∆t+1,n = IZ,δ
i1 i2···il t···n:n(θ)− IZ,δ

i1 i2···il t:n(θ).

To illustrate how Lemma 3.1 can be used to obtain IZ,δ
r···s u···v:n(θ), 1 ≤ r ≤

s < u ≤ v ≤ n, first from (b), we have IZ,δ
r···s u···v:n(θ) = IZ,δ

r···v:n(θ)−∆s+1,u−1. Then
from (a), IZ,δ

r···v:n(θ) = IZ,δ
1···v:n(θ)−∆1,r−1. Finally from (c), IZ,δ

1···v:n(θ) = IZ,δ
1···n:n(θ)−

∆v+1,n. Hence we obtain IZ,δ
r···s u···v:n(θ) = IZ,δ

1···n:n(θ)−∆1,r−1−∆s+1,u−1−∆v+1,n.
This leads to the following result.

Lemma 3.2. Under regularity conditions, for 1 ≤ r1 < · · · < rk ≤ n,

IZ,δ
r1···rk:n(θ) = IZ,δ

1···n:n(θ)−
k∑

i=0

∆ri+1,ri+1−1,

where ∆1,0 = ∆n+1,n = 0, r0 = 0 and rk+1 = n + 1, and ∆1,r1−1, ∆ri+1,ri+1−1

and ∆rk+1,n are given by (6).

Remark 3.1. In the uncensored case, i.e., G(x) = 0 for all x, Lemmas 3.1
and 3.2 reduce to known results for FI in order statistics (Zheng and Gastwirth
(2000)).

Lemmas 3.1 and 3.2 show that the FI in multiply randomly censored data is a
linear combination of the FI in (i) complete randomly censored data (IZ,δ

1···n:n(θ)),
(ii) the left portion (IZ,δ

1···u:n(θ)), (iii) the right portion (IZ,δ
v···n:n(θ)), and (iv) the

two-tail portion (IZ,δ
1···u v···n:n(θ)) of the randomly censored data (u < v). The FI

in each of the last three cases is given in the following result, proved in Appendix.
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Theorem 3.1. Under regularity conditions, let Uz be a binomial random variable
with parameters N = n−1 and p = H(z) = 1−F̄ (z)Ḡ(z), and λX (λY ) be hazard
functions for X (Y ). For 1 ≤ u ≤ v ≤ n we have

IZ,δ
u···v:n(θ) = IZ

u···v:n(θ) + Iu···v:n(θ), (7)

IZ,δ
1···u v···n:n(θ) = IZ

1···u v···n:n(θ) + I1···u v···n:n(θ), (8)

where Iu···v:n(θ) = n
∫
E K(z)Pr (u−1 ≤ Uz ≤ v−1)dz, I1···u v···n:n(θ) = n

∫
E K(z)

Pr (Uz ≤ u− 1 or Uz ≥ v − 1)dz, and where K(z) is an m×m matrix with the
(i, j)th element given by

Kij(z) =
(fḠ)(gF̄ )
fḠ+ gF̄

[
∂

∂θi
log(

λX

λY
)
] [

∂

∂θj
log(

λX

λY
)

]
. (9)

Remark 3.2. From Theorem 3.1, IZ,δ
u···v:n≥IZ

u···v:nand IZ,δ
1···u v···n:n(θ)≥IZ

1···u v···n:n(θ)
(here and below A ≥ B means A − B is a semi-positive definite matrix), where
equalities hold if and only if (∂/∂θi) log(λX(z)/λY (z)) = 0 for all z and i =
1, . . . ,m, i.e., the distributions ofX and Y satisfy (2). In the uncensored case, ex-
pressions for IZ

u···v:n(θ) and IZ
1···u v···n:n(θ) were derived by Park (1996) and Zheng

and Gastwirth (2000).

Remark 3.3. In Theorem 3.1, let u = 1 and v = n. From (7), we obtain
IZ,δ
1···n:n(θ) = IZ

1···n:n(θ)+n
∫
E K(z)dz, for complete randomly censored data (Zheng

and Gastwirth (2001)).

3.3. Asymptotic Fisher information

In this section, we consider a single parameter θ and D1···r:n(Z, δ), where Z(r)

approaches the pth percentile of H(z) as n → ∞ and r/n → p ∈ (0, 1). Define

IZ,δ
[0,p](θ) = lim

n→∞
1
n
IZ,δ
1···r:n(θ) and IZ

[0,p](θ) = lim
n→∞

1
n
IZ
1···r:n(θ).

Set IZ,δ
[0,0](θ) = 0 and IZ,δ

[0,1](θ) = IZ,δ(θ), where IZ,δ(θ) is defined in Section 1.
Denote by λp the pth percentile of H(z). Then, from Zheng (2001),

IZ
[0,p](θ) =

∫ λp

a

[
∂

∂θ
log λZ(z)

]2

h(z)dz,

where λZ is the hazard function of Z. By the dominated convergence theorem,

lim
n→∞ I1···r:n(θ)/n = lim

n→∞

∫
E
K(z)Pr(Uz ≤ r − 1)dz =

∫ λp

a
K(z)dz.
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Hence, for any p ∈ (0, 1),

IZ,δ
[0,p](θ) = IZ

[0,p](θ) +
∫ λp

a
K(z)dz. (10)

4. Main Result

Theorem 4.1. Assume regularity conditions hold. For any 1 ≤ r1 < · · · < rk ≤
n and 1 ≤ k < n, IZ,δ

r1···rk:n(θ) = IZ
r1···rk:n(θ) holds if and only if gθ(x)F̄θ(x) =

β(x)fθ(x)Ḡθ(x) for some β(x) > 0.

Proof. First, assume no random censoring occurs (G(x) = 0, for all x ∈ E).
From Lemmas 3.1 and 3.2,

IZ
r1···rk:n(θ) = IZ

1···n:n(θ)−
[
IZ
1···n:n(θ)− IZ

r1···n:n(θ)
]

−
k−1∑
i=1

[IZ
1···n:n(θ)− IZ

1···ri ri+1···n:n(θ)]− [IZ
1···n:n(θ)− IZ

1···rk:n(θ)].

Similarly, with random censoring,

IZ,δ
r1···rk:n(θ) = IZ,δ

1···n:n(θ)− [IZ,δ
1···n:n(θ)− IZ,δ

r1···n:n(θ)]

−
k−1∑
i=1

[IZ,δ
1···n:n(θ)− IZ,δ

1···ri ri+1···n:n(θ)]− [IZ,δ
1···n:n(θ)− IZ,δ

1···rk:n(θ)].

Then from Theorem 3.1 and the two expressions above, we have

IZ,δ
r1···rk:n(θ) = IZ

r1···rk:n(θ) + I1···n:n(θ)− [I1···n:n(θ)− Ir1···n:n(θ)]

−
k−1∑
i=1

[I1···n:n(θ)− I1···ri ri+1···n:n(θ)]− [I1···n:n(θ)− I1···rk:n(θ)]

= IZ
r1···rk:n(θ) + n

∫
E
K(z)

k∑
i=1

Pr(Uz = ri − 1) dz.

Hence IZ,δ
r1···rk:n(θ) ≥ IZ

r1···rk:n(θ) and equality holds if and only if K(z) = 0, i.e.,
(2) holds.

5. Applications to Characterization

5.1. The Weibull family

Zheng (2001) characterized the Weibull family for type II censored order
statistics. He showed that the hazard function λX(x, θ) = u(x)v(θ) for some
positive functions u and v if and only if, for any 1 ≤ r ≤ n and all n ≥ 1,
(i) IX

1···r:n(θ) = (r/n)IX
1···n:n(θ) = rIX(θ), or (ii) IX

[0,p](θ) = pIX
[0,1](θ) for any
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0 < p < 1, where IX
1···r:n(θ) and IX

[0,p](θ) can be defined analogously to IZ
1···r:n(θ)

and IZ
[0,p](θ), respectively. When θ is a scale parameter, (i) or (ii) holds if and only

if Fθ(x) is the Weibull distribution. Generalizing Type II censoring to random
censoring, we have the following.

Theorem 5.1. Assume regularity conditions and (2) hold for the lifetime distri-
bution Fθ and the censoring distribution Gθ, where θ is a scale parameter. For
every 1 ≤ r ≤ n and all n ≥ 1,

IZ,δ
1···r:n(θ) =

r

n
IZ,δ
1···n:n(θ) = r IZ,δ(θ), (11)

holds if and only if Fθ(x) = 1− exp{−(x/θ)α}, where α is a positive constant.

Proof. Let Fθ(x) be the Weibull distribution. When (2) holds, from Theorem
4.1, IZ,δ

1···r:n(θ) = IZ
1···r:n(θ) for every 1 ≤ r ≤ n and any n ≥ 1. Since X follows

the Weibull distribution, from (3), the hazard function of Z = min(X,Y ) can
be factored as λZ(x, θ) = u(x)v(θ) for some functions u and v. Thus, from
Zheng (2001), IZ

1···r:n(θ) = rIZ(θ) = rIZ,δ(θ). Hence IZ,δ
1···r:n(θ) = rIZ,δ(θ), which

implies (11). On the other hand, if (11) holds for every 1 ≤ r ≤ n and any
n ≥ 1, then IZ,δ

[0,p](θ) = pIZ,δ
[0,1] for any p ∈ (0, 1). Since (2) holds, implying

K(z) = 0, from (10) we have IZ
[0,p](θ) = IZ,δ

[0,p](θ) = pIZ,δ
[0,1](θ) = pIZ

[0,1] for any
p ∈ (0, 1). Hence, from Zheng (2001), the hazard function of Z can be factored
as λZ(x, θ) = u(x)v(θ) for some functions u and v. When (2) holds, from (3) we
have λX = u(x)v(θ)/(β(x) + 1), i.e., the hazard function of X can be factored.
Thus, from Zheng (2001), X follows the Weibull distribution.

Note that in the weaker KGM setting (2), (11) implies that the percentage
of the FI in the first pth portion of ordered randomly censored data is exactly
100p%. This has relevance to life testing when it is cost-effective not to wait
for the last failures to occur (Kimball, Burnett and Doherty (1957); Gastwirth
and Wang (1987); Li, Tiwari and Wells (1996); and Chakraborti and vander
Laan (1997)), as one can increase the number of items on test to increase the
information yielded by the experiment.

5.2. The factorization of the hazard function

As the factorization of the hazard function is used in Theorem 5.1, we give a
characterization of the factorization of the hazard function by the FI in a fraction
of randomly censored data in terms of the loss of FI under the condition (2). Let
Fθ be the lifetime distribution. For any positive function of x, β(x), define a
censoring distribution Gθ such that (2) holds for Fθ(x) and Gθ(x) with respect
to β(x). Define a collection of these censoring distributions with respect to Fθ(x)
as

C = {Gθ : (2) holds for Fθ and Gθ with respect to some β(x) > 0}.
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Thus, for any β(x) > 0, there exists Gθ ∈ C such that Fθ and Gθ satisfy (2). Let
C∗ be a subset of C such that, for every Gθ ∈ C∗, the corresponding β(x) = β is
a positive constant.

Theorem 5.2. Assume regularity conditions hold. Let X be a lifetime random
variable from Fθ(x). There exist functions u and v such that the hazard function
of X satisfies λX = u(x)v(θ) if and only if, for any 1 ≤ r ≤ n, all n ≥ 1, and
every Gθ ∈ C, IZ,δ

1···r:n(θ) = IX
1···r:n(θ).

Proof. If λX = u(x)v(θ), from Zheng (2001), IX
1···r:n(θ) = (r/n)IX

1···n:n(θ). Since
λX can be factored, from (2), λZ can also be factored. Thus by Zheng (2001),
IZ
1···r:n(θ) = (r/n)IZ

1···n:n(θ). From Efron and Johnstone (1990), IZ
1···n:n(θ) =

nE[(∂/∂θ) log λZ ]2 = nE[(∂/∂θ) log λX ]2 = IX
1···n:n(θ). Thus from the three ex-

pressions above and Theorem 4.1, IX
1···r:n(θ) = IZ

1···r:n(θ) = IZ,δ
1···r:n(θ).

On the other hand, for any 1 ≤ r ≤ n and any n ≥ 1, and any Gθ ∈ C,
IZ,δ
1···r:n(θ) = IX

1···r:n(θ). Hence, we have IZ,δ
1···r:n(θ) = IX

1···r:n(θ) when we restrict
to any Gθ ∈ C∗, which implies that IZ,δ

[0,p](θ) = IX
[0,p](θ) for any p ∈ (0, 1) and

any Gθ ∈ C∗. Since K(z) in (10) is zero, we have IZ
[0,p](θ) = IX

[0,p](θ) for any
0 < p < 1 and any Gθ ∈ C∗ (thus for any constant β > 0). Taking the derivative
with respect to p on both sides of IZ

[0,p](θ) = IX
[0,p](θ) and using ∂ log λZ/∂θ =

∂ log λX/∂θ, we have
[
∂

∂θ
log λX(x; θ)

]2

x=λZ
p

=
[
∂

∂θ
log λX(x; θ)

]2

x=λX
p

, (12)

for any 0 < p < 1 and any β > 0, where λX
p = F−1(p) and λZ

p = F−1(1 − (1 −
p)1/(1+β)). We need to show that ∂ log λX/∂θ is only a function of θ if it is not
a constant. Notice that λX

p > λZ
p for β > 0. For any two real numbers x1 ∈ E

and x2 ∈ E such that x1 > x2, define p1 = F (x1) and β∗ = log(1 − p1)/ log(1 −
F (x2)) − 1 > 0 such that F−1(1 − (1 − p1)1/(1+β∗)) = x2. Hence from (12), for
any fixed θ, we obtain

[
∂

∂θ
log λX(x; θ)

]2

x=x2

=
[
∂

∂θ
log λX(x; θ)

]2

x=x1

,

i.e., (∂/∂θ) log λX is only a function of θ. Thus, λX can be factored.

Theorem 5.2 shows that, under the time-dependent KGM (2), if the hazard
function can be factorized, then the first pth fraction of randomly censored data
contains the same FI as that of the uncensored data. On the other hand, under
the time-dependent KGM, if the first pth fraction of randomly censored data
contains the same FI as that of the uncensored data, then the hazard function
must factor. For example, assume the lifetime distribution is the Weibull with any
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censoring random variable such that (2) holds. If we are interested in inference
about the scale parameter of the Weibull distribution based on the smallest r < n
randomly censored observations, then there is no loss of FI (efficiency) about the
scale parameter in the first r randomly censored data relative to the inference
based on the smallest r ordered data without random censoring.

Under KGM, there is no loss of FI in any randomly censored data. When
KGM does not hold, randomly censored data may contain less FI. For example,
let the lifetime X and censoring variable Y follow the exponential (with the scale
parameter θ) and Gamma (with the shape parameter β and the scale parameter
equal to 1) distributions, respectively. When θ = 1, numerical results show
that IZ,δ

[0,p] (θ)/I
X
[0,p](θ) = 0.956, 0.841, 0.767 if β = 2.0, and 0.221, 0.331, 0.378 if

β = 0.7, for p = 0.1, 0.5, 0.9, respectively.
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Appendix: Proof of Theorem 3.1

We only prove a special case of (7) where u = 1, 1 ≤ v ≤ n, and θ is
a single parameter. The proof of the general case can be done similarly. Let
hi = h(z(i)) and Hi = H(z(i)) with similar notations for fi, Fi, gi and Gi. Also
denote the cumulative distribution functions of (Z(i), Z(j)) and Z(i) by Hij:n and
Hi:n, respectively. Then

IZ,δ
1···r:n(θ) = E

[
r∑

i=1

∂

∂θ
logL(Z(i), δ[i])

]2

+ (n− r)2E
[
∂

∂θ
log H̄r

]2

+2(n− r)
r∑

i=1

E

[
∂

∂θ
logL(Z(i), δ[i])

∂

∂θ
log H̄r

]
,

and IZ
1···r;n(θ) is the same if we replace L(Z(i), δ[i]) by hi.
For 1 ≤ i ≤ r, it can be shown that

E

[
∂

∂θ
logL(Z(i), δ[i])

∂

∂θ
logH̄r

]
= E

[
∂

∂θ
loghi

∂

∂θ
logH̄r

]
,

E

[
r∑

i=1

∂

∂θ
logL(Z(i), δ[i])

]2

=
r∑

i=1

∫
E

{
(fiḠi)[

∂

∂θ
log(fiḠi)]2 + (giF̄i)[

∂

∂θ
log(giF̄i)]2

}
dHi:n (13)

+
∑
i�=j

E

[
∂

∂θ
logL(Z(i), δ[i])

∂

∂θ
logL(Z(j), δ[j])

]
, (14)



516 GANG ZHENG AND JOSEPH L. GASTWIRTH

E

[
r∑

i=1

∂

∂θ
log hi

]2

=
r∑

i=1

∫
E

1
hi

[
(fiḠi)

∂

∂θ
log(fiḠi)+(giF̄i)

∂

∂θ
log(giF̄i)

]
dHi:n (15)

+
∑
i�=j

E

[
∂

∂θ
log hi

∂

∂θ
log hj

]
. (16)

It can be shown that (14) equals to (16). Thus, with z(i) = z, we have

IZ,δ
1···r:n(θ)− IZ

1···r:n(θ) = (13)− (15) =
r∑

i=1

∫
E

(fiḠi)(giF̄i)
fiḠi + giF̄i

[
∂

∂θ
log(

fiḠi

giF̄i
)

]2

dHi:n

= n
r∑

i=1

∫
E
K(z)

(n− 1)!
(i − 1)!(n − i)!

H i−1(z)H̄n−i(z)dz.

This completes the proof.
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