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ON STEIN’S IDENTITY FOR POSTERIOR NORMALITY
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National Chengchi University

Abstract: We propose a new method to derive posterior normality of stochastic

processes. For a suitable parameter transformation Zt, the likelihood function is

converted to a form close to a standard normal density. Then we apply a version

of Stein’s Identity to obtain an expression for the posterior expectation. From

this, posterior normality of Zt can be established. Applications of this method are

illustrated by the conditional exponential family and a nonhomogeneous Poisson

process.
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1. Introduction

Asymptotic posterior normality has been studied since the time of Laplace
and has attracted the attention of many authors. See, for example, Le Cam
(1953), Dawid (1970) and Johnson (1970) for independent and identically dis-
tributed (i.i.d.) observations; Heyde and Johnstone (1979), Basawa and Rao
(1980), Chen (1985), and Sweeting and Adekola (1987) for stochastic processes.
Walker (1969) presented a straightforward approach to posterior normality.
Heyde and Johnstone (1979) simplified Walker’s (1969) conditions and showed
that asymptotic posterior normality holds under weaker conditions than those
required for asymptotic normality of maximum likelihood estimator; Chen (1985)
provided conditions with more operational flexibility for the asymptotic normal-
ity of limiting density functions, which can be applied to the problem of asymp-
totic posterior normality. Both Heyde and Johnstone (1979) and Chen (1985)
used a fixed neighborhood on the condition for asymptotic continuity of informa-
tion function. To be more precise, denoting �

′′
t (θ) as the second derivative of the

log-likelihood function with respect to θ, they required that given ε > 0, there
exists δ(ε) > 0 such that

Pθ0

(
sup

{|θ−θ0|<δ(ε)}

∣∣∣∣ �
′′
t (θ)

�
′′
t (θ0)

− 1
∣∣∣∣< ε

)
≥ 1− ε.
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However, this condition excludes certain processes of practical interest; for ex-
ample, it fails for some nonhomogeneous Poisson processes which are of interest
in reliability, see Sweeting and Adekola (1987). To attack this problem, Sweeting
and Adekola adapted Dawid’s (1970) method to a more flexible continuity condi-
tion on the information function when a shrinking neighborhood is used. But to
generalize Dawid’s approach, they needed a sequence to measure the order of the
information function, and a condition such as their A3 seemed essential for the
proof. It then appeared that the weakening of the continuity condition, in order
to cover a broader range of applications, necessitated the introduction of other
conditions to guarantee the asymptotic normality of the maximum likelihood
estimator.

In this paper, we present a novel approach to posterior normality of stochastic
processes. Let Zt be a suitable parameter transformation and h be a measurable
function. We modify the form of Stein’s Identity (Woodroofe (1989, 1992)) and
use the new version to write the posterior expectations of h(Zt) in a form from
which posterior normality can be easily established. Our main finding shows
that a condition such as A3 of Sweeting and Adekola (1987) can be avoided. In
addition, our choice of shrinking rate is more flexible. The advantage of using our
shrinkage is remarked on at the end of Section 4 and illustrated by an example in
Section 5.2. The cost we pay for using Stein’s Identity is to impose a smoothness
condition of ξ on its compact support.

The approach in this paper is related to Woodroofe (1989, 1992), Woodroofe
and Coad (1997), and Weng and Woodroofe (2000), who applied Stein’s Identity
to obtain posterior expectations and employed a martingale structure to derive
integrable posterior expansions. Their parameter transformations are based on
the maximum likelihood estimator. The models they considered include linear
models with i.i.d. normal errors and exponential families for the i.i.d. case. Al-
though they came from a frequentist perspective, their results implied posterior
normality, P t

ξ (Zt ≤ z) → Φ(z) as t → ∞, in Pθ0-probability, for a.e. θ0, where Φ
denotes the standard normal distribution function. From this point of view, the
present paper can be viewed as an extension along this line to a general stochastic
process.

The organization of the paper is as follows. In Section 2 we introduce the
model. A key observation is that Zt converts the likelihood function into a
form close to a standard normal density. In Section 3 we derive a modified
version of Stein’s Identity and present its application to posterior distributions.
The difference between the modified version and the original one is remarked on
following Lemma 3.2. The conditions and the main results are given in Section
4. We use the conditional exponential family and a nonhomogeneous Poisson
process in Section 5 to illustrate applications of this approach.
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2. The Model

Let Xt be a random vector distributed according to a family of probability
densities pt(xt|θ), where t is a discrete or continuous parameter and θ ∈ Θ, an
open subset in R1. Assume that the log-likelihood function, denoted by �t(θ), is
twice continuously differentiable with respect to θ. Throughout let θ̂t be a root
of the likelihood equation satisfying �′t(θ̂t) = 0, differentiation is with respect to
θ. Whenever such a root exists and �

′′
t (θ̂t) < 0, we define

σt = [−�
′′
t (θ̂t)]−1/2, (1)

Zt = (θ − θ̂t)/σt; (2)

otherwise, define σt and Zt arbitrarily (in a measurable way).
Consider a Bayesian model in which θ has a prior density ξ. Then the

posterior density of θ given data xt is ξt(θ) ∝ e�t(θ)ξ(θ), and the posterior density
of Zt is

ζt(z) ∝ ξt(θ(z)) ∝ e�t(θ)−�t(θ̂t)ξ(θ), (3)

where the relation of θ and z is given in (2). Now a Taylor’s expansion gives

�t(θ) = �t(θ̂t) +
1
2
(θ − θ̂t)2�

′′
t (θ

∗
t ), (4)

where θ∗t lies between θ and θ̂t. Letting

Rt(θ) = σ2
t [�

′′
t (θ̂t)− �

′′
t (θ

∗
t )], (5)

it follows that �t(θ) = �t(θ̂t)− z2
t /2− z2

t Rt(θ)/2. So (3) can be rewritten as

ζt(z) ∝ φ(z)ft(z), (6)

where ft(z) = ξ(θ(z))exp[−z2Rt(θ)/2] and φ(z) = (1/
√
2π)exp[−z2/2].

Throughout this paper we denote the derivative of ξ with respect to θ by
ξ′, the probability measure and expectation under θ ∈ Θ by Pθ and Eθ, and the
conditional probability and expectation given data xt by P t

ξ and Et
ξ.

3. Modified Stein’s Identity

In this section we derive a new version of Stein’s Identity and apply it to pos-
terior distributions. This forms the mathematical basis of our approach. Write
Φh =

∫
hdΦ for functions h for which the integral is finite. Next let Γ denote a

finite signed measure of the form dΓ = fdΦ, where f is a real-valued function
defined on R satisfying Φ|f | = ∫ |f |dΦ < ∞. For p ≥ 0, denote by Hp the col-
lection of all measurable functions h : R → R for which |h(z)| ≤ 1 + |z|p, and
define H = ∪p≥0Hp. Let

Uh(z) = e
1
2
z2

∫ ∞

z
[h(y)− Φh]e−

1
2
y2
dy, (7)
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for −∞ < z < ∞.

Lemma 3.1. There are (finite) positive constants c0, c1, c2, . . . for which UH0 ⊆
c0H0 and UHp ⊆ cpHp−1 for all p = 1, 2, . . ..

Proof. See Woodroofe (1992, Lemma 1).

Lemma 3.2. (Modified Stein’s Identity) Let r be a nonnegative integer. Suppose
dΓ = fdΦ, where f is continuous on [l, u], continuously differentiable on (l, u),
and zero outside [l, u] for some −∞ < l < u < ∞. If

∫ u
l |f ′(z)|dz < ∞,

Γh = Γ1 · Φh+ f(l)φ(l)Uh(l) − f(u)φ(u)Uh(u) +
∫ u

l
Uh(z)f ′(z)Φ(dz), (8)

for all h ∈ Hr.

Proof. The proof is a modification of Woodroofe (1989, Proposition 1). Without
loss of generality, take Γ1 = 1. Then

Γh− Φh=
∫ u

l
[h(z)− Φh]φ(z)f(z)dz

=
∫ u

l
[h(z)− Φh]φ(z){

∫ z

l
f ′(x)dx+ f(l)}dz

= f(l)
∫ u

l
[h(z)− Φh]φ(z)dz +

∫ u

l

∫ u

x
[h(z) −Φh]φ(z)f ′(x)dzdx

= f(u)
∫ u

−∞
[h(z) − Φh]φ(z)dz − f(l)

∫ l

−∞
[h(z) − Φh]φ(z)dz

−
∫ u

l

∫ x

−∞
[h(z) − Φh]φ(z)f ′(x)dzdx,

where the third equality follows by interchanging the orders of integration (jus-
tified by the assumed integrability of |f ′|), the last equality by simple algebra.
Then (8) follows by (7).

The major difference between the original version of Stein’s Identity
(Woodroofe (1989, 1992)) and the modified one is that the former requires f

to be continuously differentiable on R, but the latter allows f to have jump
discontinuities at both l and u. There are two additional terms in the modi-
fied version, f(l)φ(l)Uh(l) and f(u)φ(u)Uh(u), which vanish when l = −∞ and
u = ∞. The reason for considering a restricted f is to keep ξ−1 bounded below
by zero, needed for the proof of Theorem 4.1 below.

From (6), the posterior distribution of Zt is of a form suitable for Stein’s
Identity. In the proposition below, we suppose that there is a measurable θ̂t =
θ̂t(Xt) and let

Dt = {�′t(θ̂t) = 0, �
′′
t (θ̂t) < 0}. (9)
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Proposition 3.1. Let r be a nonnegative integer. Suppose that ξ has a compact
support Θ1 = [a, b] ⊆ Θ, ξ is continuous on [a, b] and is continuously differentiable
on (a, b). Then for all h ∈ Hr a.e. on Dt,

Et
ξ[h(Zt)]− Φh = At(at)−At(bt) + Et

ξ[Uh(Zt)
f ′

t(Zt)
ft(Zt)

], (10)

where at = (a− θ̂t)/σt, bt = (b− θ̂t)/σt, and

At(x) =
ft(x)φ(x)Uh(x)∫ bt

at
ft(s)φ(s)ds

.

Proof. By Lemma 3.2, it suffices to prove that

Et
ξ

[∣∣∣f
′
t(Zt)

ft(Zt)

∣∣∣
]
< ∞. (11)

A straightforward calculation shows that

f ′
t(Zt)

ft(Zt)
=

dθ

dz

[dξ/dθ
ξ

(θ) +
d[exp(−z2Rt(θ)/2)]/dθ

exp(−z2Rt(θ)/2)

]

= σt

[ξ′(θ)
ξ(θ)

+ �′t(θ)− (θ − θ̂t)�
′′
t (θ̂t)

]

= σt

[ξ′(θ)
ξ(θ)

]
− Zt

[�′t(θ)− (θ − θ̂t)�
′′
t (θ̂t)

(θ − θ̂t)�
′′
t (θ̂t)

]
. (12)

For fixed xt, the second term of (12) is a continuous function of θ and hence
bounded on Θ1. For the first term, write ξt(θ) = Ctξ(θ)e�t(θ). Then Ct and e�t(θ)

are bounded on Θ1 for fixed xt. Similarly, σt is bounded for fixed xt. Since ξ′ is
continuous, it follows that |ξ′(θ)| < M on Θ1 for some M > 0. So

σtE
t
ξ

[∣∣∣ξ
′(θ)
ξ(θ)

∣∣∣
]
= σt

∫
Θ1

Ct|ξ′(θ)|e�t(θ)dθ < ∞,

establishing (11).

The following Lemma is needed in the proof of Theorem 4.1 below.

Lemma 3.3. Let h be any bounded measurable function. Then sup
z
|zUh(z)|<∞.

Proof. See Stein (1987, Chapter 2).

4. Main Results

In this section we establish the main theorem and remark on the verifica-
tion of our conditions. Throughout this section, ξ is assumed to have a compact
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support Θ1 = [a, b] ⊆ Θ, Dt is the event defined as in (9), and p→ denotes con-
vergence in Pθ0-probability as t → ∞, where θ0 ∈ [a, b]. The following conditions
are required.

(B1) ξ is continuous on [a, b], strictly positive on [a, b], and continuously differ-
entiable on (a, b).

(B2) Pθ0(D
c
t ) → 0, σt

p→0, and θ̂t
p→θ0 as t → ∞.

(B3) Let Rt(θ) be as in (5). There exist some constants c > 0 and c′ > 0 such
that sup

|zt|≤c
|Rt(θ)| ≤ c′.

(B4) For any θ1 ∈ [a, b] and θ1 �= θ0, �t(θ̂t)− �t(θ1)
p→∞.

(B5) Et
ξ[|(�′t(θ)− (θ − θ̂t)�

′′
t (θ̂t))/(θ − θ̂t)�

′′
t (θ̂t)|] p→0.

Lemma 4.4. Let ft be as in (6) and at and bt be as in Proposition 3.1. Suppose
that (B1)−(B3) hold. Then for each θ0 ∈ (a, b), there exists some C > 0 such
that

∫ bt
at

φ(z)ft(z)dz > C with Pθ0-probability tending to 1.

Proof. Write
∫ bt

at

φ(z)ft(z)dz =
1√
2π

∫ bt

at

ξ(θ(z))e−(z2/2)[Rt(θ)+1]dz,

where ξ is strictly positive on [a, b] by (B1), and e−(z2/2)[Rt(θ)+1] is bounded below
by some positive constant over the interval {|z| ≤ c} by (B3). Then from (B2),
σt

p→0 and θ̂t
p→θ0, and then for θ0 ∈ (a, b), at

p→ − ∞ and bt
p→∞. The result

follows.

Theorem 4.1. Let h be any bounded measurable function. Suppose that (B1)−
(B5) hold. Then for θ0 ∈ (a, b), Et

ξ[h(Zt)]
p→Φh.

Proof. From (10) and (12),

Et
ξ[h(Zt)]−Φh = At(at)−At(bt) + σtE

t
ξ

[
Uh(Zt)

ξ′(θ)
ξ(θ)

]

+Et
ξ

{
Uh(Zt)Zt

[�′t(θ)− (θ − θ̂t)�
′′
t (θ̂t)

(θ − θ̂t)�
′′
t (θ̂t)

]}
, (13)

a.e. on Dt. Since Pθ0(D
c
t ) → 0 by (B2), it suffices to show that the right side

of (13) approaches zero in Pθ0 -probability. First, note that ξ′/ξ is bounded on
[a, b] under (B1), σt

p→0 under (B2), and |Uh| is bounded by Lemma 3.1. So
σtE

t
ξ[Uh(Zt)

ξ′(θ)
ξ(θ) ]

p→0. Next, (B5) and Lemma 3.3 together imply that the last
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term of (13) approaches zero in Pθ0-robability. For At(at)−At(bt), we show only
that At(at)

p→0. The result for At(bt) can be obtained similarly. Observe from
Proposition 3.1 that

At(at) =
{ ∫ bt

at

φ(x)f(x)dx
}−1

ft(at)φ(at)Uh(at)

=
{√

2π
∫ bt

at

φ(x)f(x)dx
}−1

ξ(a)Uh(at)e−(a2
t /2)[Rt(a)+1].

By (4) and (5), the exponent in above expression can be written as −(a2
t /2)[Rt(a)

+1] = �t(a) − �t(θ̂t), which approaches −∞ in Pθ0-probability for θ0 ∈ (a, b) by
(B4); by Lemmas 3.1 and 4.4, there exists some c > 0 such that

{ ∫ bt

at

φ(x)f(x)dx
}−1|Uh(at)| ≤ c

with Pθ0-probability tending to 1. The desired result follows.

Of course if the convergence assumptions in (B2), (B4) and (B5) hold uni-
formly in compact subsets of Θ1, then the convergence result in Theorem 4.1 also
holds uniformly in compact subsets of Θ1. Now applying Theorem 4.1 to 1(a,b],
we obtain the following Corollary.

Corollary 4.1. P t
ξ (θ̂t + aσt ≤ θ ≤ θ̂t + bσt)− [Φ(b)− Φ(a)]

p→0.

Note that it is straightforward to determine whether (B1)-(B4) are satisfied.
For (B5), we consider a Taylor’s expansion of �′t(θ) at θ̂t,

�′t(θ) = �
′′
t (θ

∗∗
t )(θ − θ̂t), (14)

where θ∗∗t lies between θ and θ̂t. So the integrand of (B5) can be rewritten as

∣∣∣�
′
t(θ)− (θ − θ̂t)�

′′
t (θ̂t)

(θ − θ̂t)�
′′
t (θ̂t)

∣∣∣ =
∣∣∣1− �

′′
t (θ∗∗t )
�
′′
t (θ̂t)

∣∣∣. (15)

The following condition and Theorem 4.2 are useful in the verification of
(B5).

(S) There exists a sequence of nonnegative functions Ct(θ), possibly tending to
infinity as t → ∞, such that

∣∣∣�
′
t(θ)− (θ − θ̂t)�

′′
t (θ̂t)

(θ − θ̂t)�
′′
t (θ̂t)

∣∣∣ ≤ Ct(θ)|θ̂t − θ|,

with Pθ0-probability tending to 1.
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Theorem 4.2. Suppose that (B2)−(B4) and (S) hold. If there exists a sequence
δt > 0 such that

sup
{|θ−θ0|≤δt}

Ct(θ)|θ̂t − θ| p→0, (16)

sup
{|θ−θ0|>δt}

{�t(θ)− �t(θ̂t) + logCt(θ)− log σt} p→−∞, (17)

as t → ∞, then (B5) holds.

Proof. Under (S),

Et
ξ

[∣∣∣�
′
t(θ)− (θ − θ̂t)�

′′
t (θ̂t)

(θ − θ̂t)�
′′
t (θ̂t)

∣∣∣
]
≤ Et

ξ[Ct(θ)|θ̂t − θ|1{|θ−θ0|≤δt}]

+(b− a)Et
ξ[Ct(θ)1{|θ−θ0|>δt}]

= I + II, say,

where I
p→0 by (16). So it suffices to show that II

p→0. Write

II

b− a
=

∫
{|θ−θ0|>δt} Ct(θ)ξ(θ)e�t(θ)dθ∫

θ∈Θ1
ξ(θ)e�t(θ)dθ

=

∫
{|θ−θ0|>δt} ξ(θ)exp{�t(θ)− �t(θ̂t) + logCt(θ)− log σt}dθ

σ−1
t

∫
θ∈Θ1

ξ(θ)exp{�t(θ)− �t(θ̂t)}dθ
.

Then the result follows because the numerator approaches zero in Pθ0-probability

by (17), and the denominator can be rewritten as
∫
{z:σtz+θ̂t∈Θ1}ξ(θ)e

− z2

2
[1+Rt(θ)]dz,

which is bounded below by zero by (B2)-(B4) and Lemma 4.4.

The following proposition will be used in Section 5.1.

Proposition 4.2. Let θ∗∗t be as in (14) and define Āt(x) =
ft(x)φ(x)x∫ bt

at
ft(s)φ(s)ds

. Then

Et
ξ[(θ − θ̂t)2�

′′
t (θ

∗∗
t )] = −

{
1 + Āt(at)− Āt(bt) + Et

ξ

[
(θ − θ̂t)

ξ′

ξ
(θ)

]}
. (18)

Proof. Let h(x) = x2. Then Uh(x) = x and Φh = 1. Applying (13) to this h

yields

Et
ξ(Z

2
t ) = 1 + Āt(at)− Āt(bt) + σtE

t
ξ

[
Zt

ξ′(θ)
ξ(θ)

]
+ Et

ξ

{
Z2

t

[
1− �

′′
t (θ

∗∗
t )

�
′′
t (θ̂t)

]}
.

Then (18) follows easily from (1) and (2).
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It is desirable to compare our conditions with those of Sweeting and Adekola
(1987). First of all, a condition such as their information growth and stability
A3 is avoided here. Note that their A3 corresponds to C1 of Sweeting (1980),
and their continuity condition A4 is slightly stronger than C2 there. These two
conditions together with twice differentiability of �(θ) imply the asymptotic nor-
mality of the maximum likelihood estimator. See Sweeting (1980). Secondly, our
δt is quite flexible: satisfy (16) and (17). Sweeting and Adekola (1987) used the
shrinking rate αt(θ) = K{[log Jt(θ)]/Jt(θ)}1/2, where K is any positive constant
and Jt(θ) measures the order of the information function−�

′′
t (θ). Obviously, if

the shrinking rate is faster, then it is easier to satisfy (16) but more difficult for
(17). Our approach allows us to choose a proper shrinking rate, according to the
complexity of (16) and (17).

In Section 5.2 below, we revisit the nonhomogeneous Poisson process dis-
cussed by Sweeting and Adekola (1987). The shrinking rate they used is αt(θ) =
Kt−1(2 log t+ θt)1/2e−θt/2. Here we show that (16) and (17) hold with δt = 1/t2.

5. Examples

We use both homogeneous and nonhomogeneous examples as applications of
our results.

5.1. Conditional exponential family

Let Xn = {Y1, . . . , Yn} be a sample from the time-homogeneous Markov pro-
cess whose conditional density function of Yn given Yn−1, f(Yn|Yn−1, θ), satisfies

d

dθ
log f(x|y, θ) = ψ(θ)H(y)[m(x, y) − θ] (19)

for some functions ψ, m and H, where ψ does not involve the Yi, and m and H do
not involve θ. Equation (19) defines the class of conditional exponential family.
Examples include various branching processes and the first order autoregression
model. See Heyde and Feigin (1975) and Hall and Heyde (1980).

From (19), �′n(θ) =
∑n

i=1 ui(θ), where ui(θ) = ψ(θ)H(Yi−1)[m(Yi, Yi−1)− θ].
It can be verified that

�′n(θ) = ψ(θ)
n∑

i=1

H(Yi−1)(θ̂n − θ)

=
n∑

i=1

Eθ(u2
i (θ)|Fi−1)(θ̂n − θ), (20)

where Fi−1 is the σ-field generated by Xn−1 and

θ̂n = [
n∑

i=1

H(Yi−1)]−1
n∑

i=1

H(Yi−1)m(Yi, Yi−1).
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From (20),

�
′′
n(θ) = [ψ′(θ)(θ̂n − θ)− ψ(θ)]

n∑
i=1

H(Yi−1). (21)

Suppose that ψ(θ) > 0 on the parameter space. Then �
′′
n(θ̂n) < 0 and θ̂n is clearly

the maximum likelihood estimator. Note also that θ̂n is strongly consistent for θ

provided
∑∞

i=1 H(Yi−1) diverges a.e. See Heyde and Feigin (1975). Hence (B2) is
satisfied. Next, (B3) can be verified by (5) and (21), (B4) by (4) and (21). Then
from (14) and (20),

�
′′
n(θ

∗∗
n ) = −ψ(θ)

n∑
i=1

H(Yi−1). (22)

Together with Proposition 4.2 we have Et
ξ[(θ− θ̂t)2]

p→0. From this, (15), (21) and
(22), we can verify (B5).

5.2. NHPP model

We revisit a nonhomogeneous Poisson process discussed by Sweeting and
Adekola (1987). Let Nt, the number of events observed by time t, follow a
nonhomogeneous Poisson process with time-dependent intensity function λ(t)
over the time interval. So, for each fixed t, Nt is a Poisson with mean

∫ t
0 λ(s)ds.

Suppose that λ(t) = θeθt, where θ > 0 is the unknown parameter. Then the
log-likelihood function is �t(θ) = Nt log θ+ θ

∑Nt
i=1 xi − (eθt − 1), with derivatives

�′t(θ) = Nt/θ +
Nt∑
i=1

xi − teθt, (23)

�
′′
t (θ) = −[Nt/θ

2 + t2eθt]. (24)

It is easily seen from (23) and (24) that �′t(θ) → −∞ as θ approaches ∞, �′t(θ) →
∞ as θ approaches zero, and �

′′
t (θ) < 0 for each θ > 0. Then there is a maximum

likelihood estimator, θ̂t > 0, which uniquely solves the likelihood equation.
Next we show that

t|θ0 − θ̂t| p→0. (25)

Note that if we replace θ in (23) by θ̂t, then multiply the factor e−tθ0 on both
sides,

et(θ̂t−θ0) =
∑Nt

i=1 xi

tetθ0
+

Nt

tθ̂tetθ0
.

Since Ntt
−1e−tθ0 → 0 a.e.(Pθ0) and

∑Nt
i=1 xit

−1N−1
t → 1 a.e.(Pθ0), (25) follows.

From (24), the observed Fisher information is

− �
′′
t (θ̂t) = Nt/θ̂

2
t + t2eθ̂tt, (26)
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so that (B2) is satisfied.
From (14) and (15)

∣∣∣�
′′
t (θ̂t)− �

′′
t (θ

∗∗
t )

�
′′
t (θ̂t)

∣∣∣ ≤ sup |�′′′t (ν)|
|�′′t (θ̂t)|

|θ̂t − θ|, (27)

where the supremum is over {ν : ν lies between θ and θ̂t}. Now simple algebra
on (24) shows that the right side of (27) is bounded by γtet|θ̂t−θ||θ̂t − θ|, where
γ > 0 is some constant. Thus (S) is satisfied with Ct(θ) = γtet|θ̂t−θ|.

Recall that Rt(θ) = σ2
t [�

′′
t (θ̂t)− �

′′
t (θ∗t )] as in (5). So, similar to (27), we have

|Rt(θ)| ≤ γtet|θ̂t−θ||θ̂t − θ|. Observe that the right side is bounded by γ|Zt|e|Zt|

because Zt = (θ − θ̂t)/σt with σt = [Nt/θ̂
2
t + t2eθ̂tt]−1/2. It is then easily seen

that (B3) is satisfied with some c > 0 and c′ > 0.
The verification of (B4) is straightforward. For (B5), we need only show that

(16) and (17) hold and then apply Theorem 4.2. Setting δt = 1/t2,

sup
{|θ−θ0|≤δt}

Ct(θ)|θ̂t − θ| ≤ sup
{|θ−θ0|≤δt}

γt(|θ − θ0|+ |θ0 − θ̂t|)et|θ−θ0|+t|θ0−θ̂t|

≤ γ(
1
t
+ t|θ0 − θ̂t|)e1/t+t|θ0−θ̂t|,

which approaches zero by (25). So (16) is satisfied. Next, from (27),

sup
{|θ−θ0|>δt}

{�t(θ)− �t(θ̂t) + logCt(θ)− log σt}

≤ sup
{|θ−θ0|>δt}

{�t(θ)− �t(θ̂t) + log(γt) + t|θ̂t − θ| − log σt}.

Since �(θ) is concave, the supremum occurs at θ = θ0±δt and it is straightforward
to verify (17).
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