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Abstract: Residual analysis is a commonly used technique for model checking in

regression. However the problem gets more complicated when the dimension of

covariate is high because it is difficult to see what the residuals should be plotted

against. In this paper, we propose a simple search for a good projection direction

for plotting and for constructing a lack-of-fit test. We also investigate the bootstrap

approximation for computing p-values.
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1. Introduction

Parametric models describe the impact of the covariate X on the response
Y in a concise way. They are easy to use. But since there are usually several
competing models to entertain, model checking becomes an important issue.

Suppose that {(x1, y1), . . . , (xn, yn)} are iid observations satisfying

yi = φ(xi) + εi i = 1, . . . , n, (1.1)

where yi is one-dimensional, xi = (x(1)
i , · · · , x(d)

i )′ is a d-dimensional column
vector and εi is independent of xi. We want to test

H0 : φ(x) = φ0(x, β) for some β, (1.2)

where φ0(x, β) is a specified function.
For this testing problem, there are a number of non-parametric approaches

available in the literature. One approach is to construct a test statistic by a
suitable estimate of φ(·) − φ0(·, β). Local smoothing for estimating φ is often
employed. The success of local smoothing hinges on the presence of sufficiently
many data points to provide adequate local information. For one-dimensional
cases, many smoothing techniques are available and obtained tests have good
performance, the book by Hart (1997) gave an extensive overview and useful ref-
erences. As the dimension of the covariate gets higher, however, the total number
of observations needed for local smoothing escalates exponentially. Another ap-
proach is to resort to the ordinary residuals ε̂i = yi − φ0(xi, βn), where βn is an
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estimate of β. This includes the CUSUM test (Buckley, (1991); Stute, Gonzá
lez Manteiga and Presedo Quindimil (1998)) and the innovation transformation-
based test (Stute, Thies and Zhu (1998)).

For a practical point of view, however, these two testing approaches suffer
from the lack of flexibility in detecting subtle dependence pattern between the
residuals and the covariates. As a remedy, practitioners often rely on residual
plots, i.e., plots of residuals against fitted values or a selected numbers of covari-
ates for model checking. But this poses a problem when the number of covariates
is large especially when one wants to include all possible linear combinations of
covariates.

In this paper, we suggest a simple approach for seeking a good projection
direction for plotting and constructing a test statistic. For any fixed t, consider

In(t) =
1√
n

n∑
j=1

Σ̂−1/2(xj − x̄)I(ε̂j ≤ t), (1.3)

where I(ε̂j ≤ t) is the indicator function and Σ̂ is the sample covariance matrix
of xi’s. For any a ∈ Sd = {a : ||a|| = 1}, define a test statistic Tn by

Tn(a) = aτ
[ 1
n

n∑
i=1

(In(xi)Iτ
n(xi))

]
a, (1.4)

Tn := sup
a∈Sd

Tn(a). (1.5)

In this paper, the estimate βn of β is given by the least squares method, that is,

βn = argmin
β

n∑
j=1

(yj − φ0(xj , β))2.

The maximizer a of Tn(a) over a ∈ Sd will be used as the projection direction
to plot the residuals. Note that Tn and a are simply the largest eigenvalue
and the associated eigenvector of the matrix [ 1n

∑n
i=1(In(xi)Iτ

n(xi))], therefore
implementation is easy.

The motivation is quite simple. If the model is correct, e = y − φ0(x, β)
is independent of x. Under the null hypothesis H0, E(Σ−1/2(X − EX)|e) = 0,
where Σ is the covariance matrix of X. This is equivalent to I(t) = E[Σ−1/2(X−
E(X))I(e ≤ t)] = 0 for all t ∈ R1. Consequently for any a ∈ Sd

T (a) := aτ
[ ∫

(I(t))(I(t))τ dFe(t)
]
a = 0,

where Fe is the distribution of e. Then the test statistic Tn = supa Tn(a) is the
empirical version of supa T (a). The null hypothesis H0 is rejected for the large
values of Tn.
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Note that the test Tn does not involve local smoothing and the determination
of the projection direction is easily done. The dimensionality problem may be
largely avoided. The next section contains the limit behavior of the test statis-
tic. For computing the p-value, the consistency of bootstrap approximations is
discussed in Section 3. A simulation study on the power performance and the
comparison among tests is reported in Section 4. The residual plot is also pre-
sented in this section. Section 5 contains some further remarks. Proofs of the
theorems in Sections 2 and 3 are postponed to Section 6.

2. The Limit Behavior of Test Statistic

Note that under some regularity conditions, βn can be written as

βn − β = 1
n

n∑
j=1

L(xj , β)εj + op(1/
√
n),

where, letting φ′0 be the derivative vector of φ0 at β, L(X,β) = (E[(φ′0)(φ′0)τ ])−1×
φ′0(X,β). Especially, when φ0 is the linear function, βn = S−1

n XnYn with Xn =
{x1 − x̄, . . . , xn − x̄}, Yn = {y1 − ȳ, . . . , yn − ȳ} and Sn = (XnX

τ
n).

We now state an asymptotic result for Tn. Let V1(X) = (E[Σ−1/2(X −
E(X))(φ′0(X,β))τ ])L(X,β).

Theorem 2.1. Assume that the density function fε of ε exists, the derivative
φ′0(X,β) of φ0(X,β) at β is continuous and has (2 + δ)-th moment for some
δ > 0, and both the covariance matrix of φ′0(X,β) and Σ are positive definite.
Under H0,

In(t) =
1√
n

n∑
j=1

Σ−1/2(xj −E(X))
(
I(εj ≤ t)− Fε(t)

)

+fε(t)
(
E[Σ−1/2(X − E(X))(φ′0(X,β))

τ ]
) 1√
n

n∑
j=1

L(xj , β)εj + op(1).

Then Tn converges in distribution to a vector Gaussian process

I = B − fε ·N (2.1)

in the Skorohod space Dd[−∞,∞], where B is a vector Gaussian process (B1,
. . . Bd)τ with covariance function cov(Bi(t), Bi(s)) = Fε(min(t, s))− Fε(t)Fε(s),
Fε(t) and fε(t), respectively, the distribution and density functions of ε, N is a
random vector with a normal distribution N(0, σ2V ) with V = E(V1V

τ
1 ). The

covariance function of each component I(i) of I is, for s ≤ t,
K(i)(s, t) = Fε(s)− Fε(s)Fε(t) + fε(s)fε(t)E(V

(i)
1 )2

−fε(s)
∫
εI(ε ≤ t)dFεE(V

(i)
1 (Σ−1/2(X − E(X)))i)

−fε(t)
∫
εI(ε ≤ s)dFεE(V

(i)
1 (Σ−1/2(X − E(X)))i), (2.2)
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where (Σ−1/2(X−E(X)))i) is the i-th component of Σ−1/2(X−E(X)). The pro-
cess convergence implies that Tn converges in distribution to T = supa a

τ (
∫
(I(t)

I(t)τ )dFε(t)) a.

The distribution of T in Theorem 2.1 is intractable so re-sampling techniques
will be used for determining p-values.

3. Bootstrap Approximations

Following the idea of bootstrap technique, the basic procedure for our setup
is as follows: Let (x∗i , y∗i ), i = 1, . . . , n be an artificial sample to be defined
later, and let β∗n be the least squares estimator computed from this sample, a
conditional counterpart of In given {(x1, y1), . . . , (xn, yn)} is defined by

I∗n(t) = n
− 1

2

n∑
j=1

(Σ̂∗)−1/2(x∗j − x̄∗)I(ε̂∗j ≤ t), (3.1)

where ε̂∗j ’s are the residuals based on (x∗i , y
∗
i )’s, that is, ε̂

∗
j = y

∗
j − φ0(x∗j , β

∗
n) (or

ε̂∗j = y∗j − (β∗n)τx∗j when φ0 is linear) and (Σ̂∗)−1/2 is the covariance matrix of
x∗i ’s. The conditional counterpart of Tn is

T ∗
n = sup

a
aτ

[∫
(I∗n(t))(I

∗
n(t))

τdF ∗
n(t)

]
a, (3.2)

where F ∗
n is the empirical distribution based on ε∗i , i = 1, . . . , n. For computing

p-values, we generate m sets of data {(x∗j , y∗j ), j = 1, . . . , n}(i), i = 1, . . . m, then
compute m values of T ∗

n . The p-value is estimated by p̂ = k/m where k is the
number of T ∗

n ’s larger than or equal to Tn. For the nominal level α, when p̂ ≤ α
the null hypothesis is rejected.

How to generate artificial data in regression settings is a crucial question.
As some authors have pointed out, the classical bootstrap is sometimes not con-
sistent in the regression setup while the wild bootstrap is applicable. The wild
bootstrap was first studied by Wu (1986) in the context of variance estimation
in heteroscedastic linear models, and developed by Mammen (1992). See also
Härdle and Mammen (1993) and Stute, Manteiga and Quindimil (1998). It is
interesting that in our case the situation is reversed, that is, the classical boot-
strap is consistent while the wild bootstrap is inconsistent. We propose a variant
of the wild bootstrap which is consistent. We first present the idea of the wild
bootstrap so that its variant can be described.

The wild bootstrap does as follows. Define x∗i = xi and y∗i = φ0(xi, βn)+ ε∗i ,
where ε∗i are defined as ε∗i = w∗

i ε̂i and w
∗
i are iid artificial bounded variables with

E(w∗
i ) = 0, Var (w∗

i ) = 1 and E|w∗|3 <∞. (3.3)
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The bootstrap residuals ε̂∗i = y∗i − φ0(xi, β
∗
n) are used to construct the bootstrap

process I∗n1 and then the test statistic T ∗
n1, as in (3.1) and (3.2).

Option 1. This is a variant of the wild bootstrap. The new algorithm
resamples the data as follows. Let

x∗i = w
∗
i (xi − x̄) and ε̂∗i = ε̂i −

( 1
n

n∑
j=1

w∗
jL(xj , βn)ε̂j

)
w∗

i φ
′
0(xi, βn), (3.4)

where the weight variables w∗
i are the same as those in the wild bootstrap and

L(·, ·) is defined in the estimate βn. When the model is linear, (3.4) reduces to
x∗i = w∗

j (xj − x̄) and

ε̂∗i = ε̂i − S−1
n

( 1
n

n∑
j=1

x∗j ε̂j
)
x∗i =: ε̂i − (θ∗n)

τx∗i . (3.5)

The bootstrap process and the resulting statistic can then be created, say
I∗n2 and T

∗
n2.

Option 2. Classical bootstrap. Draw the independent bootstrap data from
the residuals ε̂i, say e∗1, . . . , e∗n. Define x∗i = xi and y∗i = φ0(xj, βn) + e∗i . The
bootstrap residuals ε∗i = y∗i − φ0(xj , β

∗
n) are used to define the bootstrap process

and the test statistic as in (3.1) and (3.2), say I∗n3 and T
∗
n3.

Theorem 3.1. Under H0 and the assumptions in Theorem 2.1 we have, with
probability one, both I∗n2 and I∗n3 converge weakly to I∗ in the Skorohod space
Dd[−∞,∞], where I∗ has the distribution of I in Theorem 2.1.

Theorem 3.2. In addition to the assumptions in Theorem 2.1, assume that w∗

is equally likely ±1 and the density of ε is symmetric about the origin. Under
H0, the distribution of I∗n1 does not converge to that of B − fε ·N .

4. Simulation Study

4.1. Power study

In order to demonstrate the performance of the proposed test procedures,
small-sample simulation experiments were performed. We made a comparison
among Stute, Manteiga and Quindimil’s (1998) test (T ∗

S), the modified wide
bootstrap test (T ∗

n2) (Option 1) and the classical bootstrap test (T ∗
n3) (Option

2). The model was
y = aτx+ b(cτx)2 + ε, (4.1)

where x is d-dimensional covariate, d = 3, 6. When d = 3, a = [1, 1, 2]τ and
c = [2, 1, 1]τ and when d = 6, a = [1, 2, 3, 4, 5, 6]τ and c = [6, 5, 4, 3, 2, 1]τ .
Furthermore, let b = 0.00, 0.3, 0.7, 1.00, 1.50 and 2.00 for providing evidence on
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the power performance of the test under local alternatives (b = 0.00 corresponds
to the null hypothesis H0). Sample size is 25 or 50 and the nominal level was
0.05. In each of 1000 replicates, 1000 bootstrap samples were drawn.
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Figure 1. Plots (1) and (2) are with a 3-dimensional covariate and plots (3)
and (4) are for 6-dimensional case. The solid, dot dashed and dashed lines
are, respectively, for the power of T ∗

S , T
∗
n2 and T ∗

n3.

Figure 1 presents the power of the tests. First, looking at Figures 1(1)
and 1(2), we find that with increased sample size, T ∗

n2 and T ∗
n3 improve their

performance more quickly than does T ∗
S . Figures 1(3) and 1(4) give the same

indication. Second, in the 6-dimensional cases, T ∗
S has much higher power but

cannot maintain the size of the test (the sizes are 0.09 for d = 6, n = 25, and
0.083 for d = 6, n = 50). Both T ∗

n2 and T
∗
n3 are a bit conservative. Third, T

∗
n2 and

T ∗
n3 have are comparable performance. One might recommend T ∗

n2 on grounds of
computational efficiency.

4.2. Residual plots

In addition to the formal test, we also consider the plots of ε̂i against the
projected covariate ατxi along the direction α selected by (1.5). We use model
(4.1) with b = 0 and b = 1 to generate n = 50 data points. Here b = 0 and
b = 1 correspond, respectively, to linear and nonlinear models. Figure 2 presents
the plots of the residuals versus the projected covariates for linear and nonlinear
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models when the models are fitted linearly. Plots (1) and (3) show that there is
no clear relationship while plots (2) and (4) are more suggestive.
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Figure 2. The residual plots against ατx where α is determined by (1.5).
Plots (1) and (2) are for the 3-dimensional cases with b = 0 and b = 1 and
plots (3) and (4) are for 6-dimensional cases with b = 0 and b = 1.

4.3. A real example

We consider the 1984 Olympic records data on various track events as re-
ported by Dawkins (1989). Principal component analysis has been applied to
study the athletic excellence of a given nation and the relative strength of the
nation at the various running distances. For 55 countries, winning times for
men’s running events at 100, 200, 400, 800, 1,500, 5,000 and 10,000 meters and
the Marathon distance are reported in Dawkins. It is of interest to study whether
a nation whose performance is better in running long distances may also have
greater strength at short running distances. It may be more reasonable to use
speed rather than the winning time for the study, see Naik and Khattree (1996).
Let these speeds be x1, . . . , x8. We regard 100, 200 and 400 meters as short
running distances, 1,500 meters and longer as long running distances. A linear
model was fitted by considering the speed of the 100 meters running event (x1) as
the response and the speed of the 1,500, 5000 and 10,000 meters and Marathon
running events (x5, . . . , x8) as covariates. The p-values of T ∗

S , T
∗
n2 and T ∗

n3 are
0.02, 0.08 and 0.01. We may have to reject the null hypothesis that a linear
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relationship exists between the speed of the 100 meters running event and the
long distance running events. Looking at Figure 3, which presents the plots of
the residuals versus ατx, we find that Figure 3(1) shows some relationship. But
after removing the Cook Islands, no clear indication of relationship is visible.
Using T ∗

S , T
∗
n2 and T

∗
n3 again for the data without the Cook Islands, the p-values

are 0.57, 0.64 and 0.06, respectively, so the linear model may be tenable.
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Figure 3. (1) and (2) are the residual plots against ατx where α is deter-
mined by (1.5). Plots are for the countries with and without Cook Islands,
respectively.

5. Concluding Remarks

In the present paper, we recommend a dimension-reduction approach to
model checking for regression models. The formal test and the residual plots
can be constructed in terms of the projected covariate. The implementation is
easy. A negative aspect of our approach is that the test may rely too highly on
the assumption of independence between the covariate X and the error ε. This
suggests that our test may be difficult to apply when only E(ε|x) = 0 is assumed.
This deserves further study.

6. Proofs

To simplify the proofs, we assume with no loss of generality that X is
scalar and φ0(X,β) is a linear function, βτX, since asymptotically φ0(X,βn) −
φ0(X,β) = (βn − β)τφ′0(X,β) and βn − β has an asymptotically linear represen-
tation like that in the linear model case. Hence the proof for the general φ0 is
almost the same as that for φ0 linear. We also assume that Σ is the identity and
Σ̂ is as well. This replacement does not affect the asymptotic results.

We first present a lemma. Its proof serves as a guide to the proofs of the
theorems to follow.

Lemma 6.1. Assume that for any sequence θn = O(n−c), c > 1/4, the density
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function fε is bounded and E||x||2+δ <∞ for some δ > 0. Then

sup
θn,t
Rn(θn, t) = sup

θn,t

∣∣∣∣∣
1√
n

n∑
j=1

(xj − Ex){I(εj − θτ
n(xj − Ex) ≤ t)− I(εj ≤ t)

−Fε(t+ θτ
n(xj − Ex)) + Fε(t)}

∣∣∣∣∣

=: sup
θn,t

∣∣∣∣∣∣
1√
n

n∑
j=1

gn(xj , εj , θn, t)

∣∣∣∣∣∣ −→ 0, a.s. (6.1)

as n→ ∞.

Proof. For any η > 0, application of Pollard’s Symmetrization Inequality (Pol-
lard (1984, p.14)) yields, for large n,

P
{
sup
θn,t

|Rn(θn, t)| ≥ η
}
≤ 4P

{
sup
θn,t

| 1√
n

n∑
j=1

σjg(xj , εj , θn, t)| ≥ η

4

}
, (6.2)

provided that for each t and θn, P{|Rn(θn, t)| ≥ η
2} ≤ 1

2 . By the Chebychev
Inequality and the conditions imposed, the LHS of (6.2) is less than or equal
to 4θn Cov (x)/η. Hence, (6.2) holds for all large n. To further bound the RHS
of (6.2) we recall that the class of all functions g(·, ·, θn, t) discriminates finitely
many points at a polynomial rate, see Gaenssler (1983). An application of the
Hoeffding Inequality (e.g., see Pollard (1984, p.16)) yields for some w > 0,

P
{
sup
θn,t

| 1√
n

n∑
j=1

σjg(xj , εj , θn, t)| ≥ η

4
|x1 · · · xn, ε1 · · · εn

}

≤
(
cnw sup

θn,t
exp

[
− η2

32 supt
1
n

∑n
j=1 g

2(xj , εj , θn, t)

])
∧ 1. (6.3)

To bound the denominator in the power, similar to Lemma II. 33 in Pollard
(1984, p.31), we see that for any c1 > 0 there exists a c2 > 0 with

sup
θn,t

1
n

n∑
j=1

|I(εj − θτ
n(xj −Ex) ≤ t)− I(εj ≤ t)|c1 = op(n−c2). (6.4)

By the Hölder Inequality, the sample mean of g2(·, ·, θn, t) is less than or equal
to a power of n−1 ∑n

j=1(xj − Ex)2+δ times n−c2 for some c2 > 0. This shows
that the RHS of (6.3) goes to zero. Integrate out to get the result. Lemma 6.1
is proved.

Proof of Theorem 2.1. Slightly modifying the argument of Koul’s (1992)
Theorem 2.3.3, or by applying Lemma 6.1, we can prove the theorem. Details
are omitted.
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Proof of Theorem 3.1. We deal with I∗n2 first. Recall I∗n2 has the form,
together with (3.5),

I∗n2(t) =
1√
n

n∑
j=1

x∗j{I(ε̂j − (θ∗n)
τx∗j ≤ t)− F ∗

n(t)},

F ∗
n(t) =

1
n

n∑
j=1

I(ε̂j − (θ∗n)
τx∗j ≤ t).

First of all, we can obtain that for any θn satisfying ||θn|| ≤ c log n/n 1
2 and for

almost all sequences {(x1, y1), . . . , (xn, yn), . . .},

R∗
n(t) =

1√
n

n∑
j=1

{[x∗j (I(ε̂j − θτ
nx

∗
j ≤ t)− I(ε̂j ≤ t))

−Ew[x∗j [I(ε̂j − θτ
nx

∗
j ≤ t)− I(ε̂j ≤ t))]}

−→ 0 a.s. (6.5)

uniformly on t, where Ew stands for the integration over the variable w∗. The ar-
gument is similar to that used to prove Lemma 6.1, noticing that θ∗n = Op(1/

√
n)

and letting θn = θ∗n. Decompose I∗n2 as I
∗
n2(t) = R

∗
n(t)+R∗

n1(t)+R
∗
n2(t)−R∗

n3(t),
where

R∗
n1(t) =

1√
n

n∑
j=1

x∗j{I(ε̂j ≤ t)− Fn(t)},

R∗
n2(t) =

1√
n

n∑
j=1

Ewx
∗
j [I(ε̂j − (θ∗n)

τx∗j ≤ t)− I(ε̂j ≤ t)]}, (6.6)

R∗
n3(t) =

1√
n

n∑
j=1

Ew{x∗j [F ∗
n(t)− Fn(t)]}.

Then we need to show that, combining with (6.5), R∗
n1 converges in distribution

to the Gaussian process B, R∗
n2 converges in distribution to fε ·N and R∗

n3 tends
to zero in probability. Invoking Theorem VII 21 of Pollard (1984, p.157), the con-
vergence of R∗

n1 can be derived for almost all sequences {(x1, y1), . . . , (xn, yn), . . .}.
The basic steps are as follows. First, we show that the covariance function of
R∗

n1 converges almost surely to that of B. This is easy to do via elementary cal-
culation. Second, we check that the conditions in Pollard’s Theorem VII. 21 are
satisfied, mainly condition (22) on page 157 (Pollard (1984)). Similar to Lemma
6.1, the class (depending on n) of all functions x∗(I(ε̂ ≤ ·)−Fn(·)) discriminates
finitely many point at a polynomial rate, see Gaenssler (1983). The condition
(22) is satisfied by applying Lemma VII 15 of Pollard (1984, p.150). We omit
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the full details of the proof. The convergence of R∗
n3 is much easier to obtain as

long as we notice that
√
n(F ∗

n − Fn) and 1/
√
n

∑n
j=1 x

∗
j have finite limits. The

remaining work is to deal with R∗
n2. Let

R∗
n21(t)

= Ew

{ 1√
n

n∑
j=1

x∗j [(I(ε̂j − (θ∗n)
τx∗j ≤ t)− Fε(t+ (βn − β)τ (xj − x̄) + (θ∗n)

τx∗j))

−(I(ε̂j ≤ t)− Fε(t+ (βn − β)τ (xj − x̄)))]
}

=: Ew

{ 1√
n

n∑
j=1

x∗j [. . .]
}
.

Noticing ε̂ = ε− (βn −β)τ (xj − x̄), and following Lemma II. 33 of Pollard (1984,
p.31), we have that supt

1
n

∑n
j=1(x

∗
j )

2[. . .]2 = o(n−c2) a.s., for almost all sequences
{(x1, y1), . . . , (xn, yn), . . .}. We then easily derive that, similar to Lemma 6.1,
R∗

n21 converges in probability to zero uniformly on t. Note that Ew[x∗j (I(ε̂j ≤
t)− Fε(t+ (βn − β)(xj − x̄)))] = 0. Hence

R∗
n2(t)−R∗

n21(t)

=
1√
n

n∑
j=1

Ew[x∗j{Fε(t+(βn−β)τ (xj−x̄)+(θ∗n)
τx∗j)− Fε(t+(βn−β)τ (xj−x̄))}]

=
1√
n

n∑
j=1

Ew[x∗j (θ
∗
n)

τx∗j )]fε(t) + op(1)

= Ew

[ 1√
n

n∑
j=1

(w∗)2(xj − x̄)(xj − x̄)τ (θ∗n)
]
fε(t) + op(1)

=: Ew[. . .]fε(t) + op(1)

converges in distribution to fε ·N as long as we note the fact that the sum [. . .]
is asymptotically equal to 1√

n

∑n
j=1 x

∗
j ε̂j , and then is asymptotically normal by

the CLT for almost all sequences {(x1, y1), . . . , (xn, yn), . . .}. The convergence of
I∗n2 is proved.

We now turn to the proof of the convergence of I∗n3. Note that

I∗n3(t) =
1√
n

n∑
j=1

(xj − Ex){I(ε̂∗j − (β∗n − βn)τ (xj − x̄) ≤ t)− F ∗
n(t)},

F ∗
n(t) =

1
n

n∑
j=1

I(ε̂∗j − (β∗n − βn)(xj − x̄) ≤ t).
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Similar to (6.6), decompose I∗n3 as I
∗
n2(t) = J

∗
n(t)+J∗n1(t)+J

∗
n2(t)−J∗n3(t) where

J∗n(t) =
1√
n

n∑
j=1

{(xj − Ex)(I(ε̂∗j − θτ
n(xj − x̄) ≤ t)− I(ε̂∗j ≤ t)

−E∗[I(ε̂∗j − θτ
n(xj − x̄) ≤ t)− I(ε̂∗j ≤ t)])},

J∗n1(t) =
1√
n

n∑
j=1

(xj − Ex){I(ε̂∗j ≤ t)− Fn(t)},

J∗n2(t) =
1√
n

n∑
j=1

(xj − Ex)E∗[I(ε̂∗j − θτ
n(xj − x̄) ≤ t)− I(ε̂∗j ≤ t)]}, (6.7)

J∗n3(t) =
1√
n

n∑
j=1

(xj − Ex)E∗[F ∗
n(t)− Fn(t)]}.

Similar to (6.5) we can derive that for any θn satisfying ||θn|| ≤ c log n/n 1
2 and

for almost all sequences {(x1, y1), . . . , (xn, yn), . . .}, J∗n(t) −→ 0 a.s. uniformly
on t, where E∗ stands for the integration on the bootstrap variable ε̂∗i . Along
with the arguments used for proving I∗n2, we can verify that J∗n1 converges in
distribution to B, J∗n2 converges in distribution to fε ·N and J∗n3 tends to zero
in probability. We omit the details of the proof.

Proof of Theorem 3.2. The argument is similar to that for Theorem 3.1, hence
we only present an outline. Let

R∗
n4 =

1√
n

n∑
j=1

(xj − x̄){I(ε∗j − (β∗n − βn)τ (xj − x̄) ≤ t)− I(ε∗j ≤ t)}.

Consider R∗
n4 − Ew∗R∗

n4 first, where

Ew∗R∗
n4 =

1√
n

n∑
j=1

(xj − x̄)Ew∗
j
{I(w∗

j ε̂j − (β∗n −βn)τ (xj − x̄) ≤ t)− I((w∗
j ε̂j ≤ t)},

and Ew∗ is the expectation over w∗. Since β∗n−βn = O(log n/
√
n) a.s., similar to

Lemma 6.1, we can verify that, for almost all sequences {(x1, y1) . . . , (xn, yn), . . .},
R∗

n4(t) − Ew∗R∗
n4(t) −→ 0 a.s. uniformly on t ∈ R1. Decompose I∗n1(t) as

I∗n1(t) = R
∗
n4(t)−Ew∗R∗

n4(t)+R
∗
n5(t)+Ew∗R∗

n4(t) where R
∗
n5(t) =

1√
n

∑n
j=1(xj −

x̄)I(ε∗j ≤ t). We now show that Ew∗R∗
n4 converges to −fε ·N . Let Eε,w∗ denote

the expectation on ε and w∗. Define

Eε,w∗R∗
n41(t)

=
1√
n

n∑
j=1

(xj − x̄)[Eεj ,w∗
j
I(w∗

j ε̂j − (β∗n − βn)(xj − x̄ ≤ t)− Eεjw∗
j
I(w∗

j ε̂j ≤ t)].
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Then Ew∗R∗
n4(t) = {Ew∗R∗

n4(t) − Eε,w∗R∗
n41(t)} + Eε,w∗R∗

n41(t). With the argu-
ment of Lemma 6.1 again, {Ew∗R∗

n4(t) − Eε,w∗R∗
n41(t)} −→ 0 a.s. uniformly on

t ∈ R1. Now consider Eε,w∗R∗
n41(t). Note that for each j, Ew∗

j
I(w∗

j ε̂j ≤ t) =
1/2I(ε̂j ≤ t) + 1/2I(−ε̂j ≤ t) and then

Eεj ,w∗
j
I(w∗

j ε̂j ≤ t)

=
1
2
Fε

( t− (βn − β)τ(j)(xj − x̄)
1− (xj − x̄)τS−1

n (xj − x̄)
)
+
1
2

(
1− Fε

( −t+ (βn − β)τ(j)(xj − x̄)
1− (xj − x̄)τS−1

n (xj − x̄)
))
,

where (βn − β)(j) = S−1
n

∑
i�=j(xj − x̄)εi. Taylor expansion yields that

Eεw∗(R∗
n41(t)) = − 1

2
√
n

n∑
j=1

(xj−x̄)(xj−x̄)τ (βn−β)(fε(t) + (fε(−t)) + op(1) a.s.

= −fε(t) ·N + op(1) a.s.

The last equation is due to the symmetry of fε. Now we are in the position
to show that R∗

n5 does not converge in distribution to the Gaussian process B
so that the conclusion of the theorem is reached. We can see this immediately
by calculating the variance of R∗

n5 at each t. Actually, limn→∞Var (R∗
n5(t)) =

1/4E(I(ε ≤ t)−I(−ε ≤ t))2 which is not equal to Var (B(t)) = (Fε(t)(1−(Fε(t)).
The proof is completed.
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