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Abstract: Bagging an estimator approximately doubles its bias through the impact

of bagging on quadratic terms in expansions of the estimator. This difficulty can

be alleviated by bagging a suitably bias-corrected estimator, however. In these

and other circumstances, what is the overall impact of bagging and/or bias cor-

rection, and how can it be characterised? We answer these questions in the case

of general estimators defined by estimating equations, including for example max-

imum likelihood and method of moments estimators. It is shown that, despite the

considerable variety of estimators that can be constructed by bagging and bias cor-

rection, the number of modes of behaviour is very small. In particular, bagging a

bias-corrected estimator produces a new estimator that is second-order equivalent

to the original, unadjusted estimator. Furthermore, the conventional bagged es-

timator, and the standard bias-corrected estimator, represent virtually equal but

opposite adjustments of the conventional estimator. In particular, bagging adds

back the adjustment provided by bias correction. If we bag a doubly bias corrected

estimator, constructed so as to counteract the tendency of bagging to exacerbate

bias, then the result is an estimator that is second-order equivalent to the standard

bias-corrected estimator. These results do not depend on the manner of bias cor-

rection; that procedure may be implemented using the jackknife, the parametric

bootstrap or the nonparametric bootstrap. They show that, when bagging is ap-

plied to relatively conventional statistical problems, it cannot reliably be expected

to improve performance. Its domain is, in effect, restricted to problems such as

regression trees, where variability is so high that it cannot be plausibly modelled

using the approach taken here.

Key words and phrases: Bootstrap, estimating function, jackknife, maximum like-

lihood, mean square error, parametric bootstrap.

1. Introduction

Bagging was introduced by Breiman (1996, 1999) as a means of improving
performance of statistical methods. In relatively conventional problems where

an estimator can be represented as a smooth function of the data, for example
as a smooth function of sums of independent random variables, it is known that

bagging a conventional estimator generally tends to increase bias. In such cases,

any improvements in performance will arise principally through the impact that
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bagging has on variability. However, one does not need to bag the “raw” esti-
mator θ̂; the deleterious effects of bagging on bias can be reduced by bagging
bias-reduced forms of θ̂, constructed using either jackknife or bootstrap methods
to effect bias corrections. In these general circumstances, what will be the overall
impact of bagging, for example on mean squared error? If bagging is applied in
familiar statistical problems, in particular those where estimators are defined by
estimating equations, can its impact be characterised in a simple manner?

In the present paper we answer these questions, detailing the effects of bag-
ging applied to either conventional or bias-reduced estimators. Despite the con-
siderable variety of estimators that can be constructed in this way, the number
of different modes of behaviour is surprisingly small. To summarise them, let us
take the basic estimator θ̂ to be determined by an estimating equation as a func-
tion of a random dataset X = {X1, . . . , Xn}, and its bagged form θ̃ = E(θ̂∗|X )
to be the conditional mean of the value θ̂∗ of θ̂ computed from a resample
X ∗ = {X∗

1 , . . . , X
∗

n} drawn by sampling randomly, with replacement, from X .
We show that bagging a jackknife or bootstrap bias-corrected version θ̂bc of θ̂
produces a new estimator that is second-order equivalent to the original θ̂. If, on
the other hand, we bag an estimator that is computed by subtracting twice the
conventional bias correction from θ̂, then the result is second-order equivalent to
the standard bias-corrected, unbagged estimator θ̂bc.

These results, and those discussed below, continue to hold if either the para-
metric or non-parametric bootstrap is used to construct bias corrections. Thus
in a parametric setting we may estimate bias by E(θ̂?|X ) − θ̂, where θ̂? denotes
the value the estimator θ̂ would take if it were computed instead from a random
sample drawn from the distribution with density f(·|θ̂).

Any one of the three estimators θ̂, θ̂bc and θ̃ may have asymptotically least
mean squared error to second order. Particular interest centres on θ̂bc and θ̃,
which represent “corrections” of θ̂ by approximately equal amounts in opposite
directions. In fact, to second order, θ̃ equals θ̂ + (θ̂ − θ̂bc), and so bagging adds
back rather than subtracts away the bias estimate.

Of course, the impact of empirical bias correction on mean squared error
can be substantially greater than just its effect on bias. The bias correction
introduces another term, arising from the correlation between the correction
and the estimator, which in the formula for mean squared error is of the same
order as squared bias. Depending on its sign and size this correlation can more
than compensate for the increased bias suffered by θ̃; that property characterises
occasions where θ̃ outperforms θ̂bc. However, while there exist problems for
which this result holds, they do not seem to arise commonly. In particular, in
the setting of univariate maximum likelihood estimation of location, neither θ̂
nor θ̃ ever bests θ̂bc in terms of second-order properties of mean squared error.
And in that context, whenever second-order bias does not vanish, θ̂bc has strictly
smaller mean squared error than either θ̂ or θ̃ for all sufficiently large n. In this
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important class of problems the potential performance advantages of bagging are
never realised.

If the bootstrap rather than the jackknife is employed to construct θ̂bc then
the operation of bagging involves the double bootstrap. We use tilde notation
to denote bagged estimators, so in either the jackknife or the bootstrap case
the bagged “version” of θ̂bc is represented by θ̃bc. However, we argue that θ̃bc

should not be computed simply by bagging θ̂bc, since that would not adequately
compensate for bias. The main effects of bias arise from quadratic terms, and
bagging virtually doubles their size. This can be seen from the fact that if
(X1, Y1), . . . , (Xn, Yn) are independent and identically distributed data pairs, and
(X∗

i , Y
∗

i ) are the corresponding resampled values, then

1

n2
E

( n∑

i=1

X∗

i

n∑

i=1

Y ∗

i

)
−E(X1)E(Y1)=(2−n−1)

{
1

n2
E

( n∑

i=1

Xi

n∑

i=1

Yi

)
−E(X1)E(Y1)

}
.

That is why, as noted earlier, θ̃bc should be calculated by bagging an unconven-
tional version of θ̂bc in which bias is corrected by subtracting twice the usual
amount.

In Section 2 we establish these properties for any estimator that is defined
in terms of conventional estimating equations and is computed from a sample
of random data. Particular examples are given in Section 3. Results from a
simulation study are reported in Section 4, and technical arguments are outlined
in Section 5. The conclusion of our analysis is that when bagging is applied
to relatively conventional statistical problems, it cannot reliably be expected to
improve performance. Its domain is, in effect, restricted to problems such as
regression trees, where variability is so high that it cannot be plausibly modelled
using the approach taken here.

Recent studies of the performance of bagging include those of Bühlmann
and Yu (2000), who describe properties of a relatively sophisticated mathemati-
cal model for bagging regression trees; Buja and Stuetzle (2000a, b), who address
theoretical features of bagging statistical functionals related to quadratics; and
Friedman and Hall (2000), who discuss variance and mean squared error prop-
erties of bagging under an abstract model for the objective function. The work
of Buja and Stuetzle is most closely related, in that it uses techniques based on
Taylor expansion to explore properties of bias, variance and mean squared error
of the estimator.

2. Main Results

2.1. Estimators and their bias-corrected forms

Let
∑

i ψ0(Xi|θ) = 0 denote an estimating equation defining an estimator θ̂
of the parameter θ. We may take θ to be p-variate, for a general p ≥ 1, in which
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case ψ0(·|θ) is a p-variate function; our main conclusions do not depend on p.
For simplicity, however, we discuss detailed results only for p = 1, leaving until
Section 2.4 an account of the general case. Likewise we confine attention here to
bias-reduction methods based in the nonparametric bootstrap, giving in Section
2.5 a summary of the parametric case. Main conclusions are the same in both
cases, although there are algebraic differences.

Examples of estimators defined by estimating equations include maximum
likelihood estimators, where ψ0(x) = ḟ(x|θ)/f(x|θ) with ḟ(x|θ) = (∂/∂θ)f(x|θ).
More generally, put ψj(x|θ) = (∂/∂θ)jψ0(x|θ) and let θ0 denote the true value
of θ. Taylor expanding the estimating equation we obtain

S0 + (θ − θ0)S1 + · · · +
1

j!
(θ − θ0)

j Sj + · · · = 0 , (2.1)

where Sj = n−1 ∑
i ψj(Xi|θ0). Solving (2.1) for θ̂, and expanding the solution

in successively higher powers of S0/S1, we deduce that

θ̂ − θ0 = −

{
S0

S1
+

1

2

(S0

S1

)2 S2

S1

}
+

(S0

S1

)3
{

1

6

S3

S1
−

1

2

(S2

S1

)2
}

+ · · · . (2.2)

Without loss of generality, θ0 = 0. Then the expected value of θ̂ may be
expressed as

E(θ̂) = n−1 (α1 −
1
2 ρ2 σ

2
0) +O(n−2) , (2.3)

where αj = µ−2
1 E{ψ0(X)ψj(X)}, µj = E{ψj(X|θ0)}, ρj = µj/µ1 and σ2

j =

µ−2
1 var{ψj(X|θ0)}. It is assumed throughout that µ1 6= 0, which implies that θ̂

is root-n consistent for θ0.
The standard jackknife and bootstrap estimators of the bias of θ̂ are, respec-

tively,

b̂iasjack =
n∑

i=1

θ̂i − n θ̂ , b̂iasboot = E(θ̂∗|X ) − θ̂ , (2.4)

where θ̂i denotes the version of θ̂ computed from the sample X\{Xi}. The
standard jackknife bias-corrected and bootstrap bias-corrected estimators are
θ̂jack = θ̂− b̂iasjack and θ̂boot = θ̂− b̂iasboot, respectively. They completely correct

for all bias of order n−1, and hence satisfy E(θ̂jack) = O(n−2) and E(θ̂boot) =
O(n−2); compare (2.3).

As argued in Section 1, in order to counteract the effect of bias on the
bagged form of θ̂ we should bag an estimator that has twice the bias estimate
subtracted, i.e., θ̂bjack ≡ θ̂−2 b̂iasjack or θ̂bboot ≡ θ̂−2 b̂iasboot instead of θ̂jack
and θ̂boot. The subscript notation “bjack” here denotes “jackknife bias-corrected
estimator suitable for bagging”, with a similar interpretation for “bboot”. The
respective bagged forms are

θ̃jack≡E(θ̂∗bjack|X )=3θ̃−2E(θ̂∗1|X ), θ̃boot≡E(θ̂∗bboot|X )=3θ̃−2E(θ̂∗∗|X ), (2.5)
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where θ̃ = E(θ̂∗|X ) is the standard bagged estimator, θ̂∗bjack, θ̂
∗

bboot and θ̂∗i de-

note the values θ̂bjack, θ̂bboot and θ̂i would assume if they were calculated from a

bootstrap resample X ∗ instead of the original sample X , and θ̂∗∗ is the value θ̂
would have if it were computed from a double-bootstrap resample, i.e., a boot-
strap resample derived from a bootstrap resample derived from X . We denote
θ̃jack and θ̃boot generically by θ̃bc.

Of course, we can nevertheless bag the conventional bias-corrected estimators
θ̂jack and θ̂boot, obtaining respectively

θ̃pjack ≡ E(θ̂∗jack|X ) , θ̃pboot ≡ E(θ̂∗boot|X ) , (2.6)

where θ̂∗jack and θ̂∗boot denote the versions of θ̂jack and θ̂boot computed from X ∗.
The subscripts “pjack” and “pboot” denote “partial jackknife” and “partial boot-
strap”, respectively. We denote θ̃pjack and θ̃pboot generically by θ̃pbc. The sub-
script “pbc” denotes “partial bias-correction”.

2.2. Approximations to bias-corrected and bagged estimators

First we discuss the unbagged, bias-corrected estimators θ̂jack and θ̂boot,

which we denote generically by θ̂bc where the subscript stands for “bias cor-
rected”. It is shown in Section 5 that, assuming θ0 = 0, we have for either choice
of θ̂bc,

θ̂bc = θ̂ (1 − n−1 γ̂1) − n−1 γ̂2 +Op(n
−2) , (2.7)

where γ̂1 = γ̂3 − 3 ρ̂2 γ̂2, γ̂2 = α̂1 −
1
2 ρ̂2 σ̂

2
0 , γ̂3 = σ̂2

1 + α̂2 −
1
2 ρ̂3 σ̂

2
0, and α̂j , ρ̂j and

σ̂2
j are empirical versions of αj, ρj and σ2

j : ρ̂j = Sj/S1,

α̂j =
1

nS2
1

n∑

i=1

{ψ0(Xi) − S0} {ψj(Xi) − Sj} , σ̂2
j =

1

nS2
1

n∑

i=1

{ψj(Xi) − Sj}
2 .

It will be proved too that the standard bagged estimator θ̃ admits the expansion

θ̃ = θ̂ (1 + n−1 γ̂1) + n−1 γ̂2 +Op(n
−2) . (2.8)

Comparing (2.7) and (2.8) we see that, while θ̂bc and θ̃ both equal θ̂ to
first order, to second order they represent adjustments in completely different
directions:

θ̂bc − θ̂ = −(θ̃ − θ̂) +Op(n
−2) . (2.9)

In particular to second order, θ̃ equals θ̂ + (θ̂ − θ̂bc).
Next we address the bagged bias-corrected estimator θ̃bc. Again we assume

for convenience that θ0 = 0. It is shown in Section 5 that, for either choice of
θ̃bc,

θ̃bc = θ̃ − 2n−1 (θ̂ γ̂1 + γ̂2) +Op(n
−2) . (2.10)
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Combining (2.7)−(2.10) we deduce that

θ̃bc = θ̂ (1 − n−1 γ̂1) − n−1 γ̂2 +Op(n
−2) = θ̂bc +Op(n

−2) . (2.11)

For the sake of definiteness we interpret θ̃bc as either θ̃jack or θ̃boot in the same

respective order that θ̂bc denotes θ̂jack or θ̂boot, although (2.11) holds even if the
order is switched.

Analogously to (2.11) it may be proved that the bagged and partially bias-
corrected estimators θ̃pbc are second-order equivalent to θ̂:

θ̃pbc = θ̂ +Op(n
−2) . (2.12)

2.3. Bias, variance and mean squared error

We continue to assume θ0 = 0. Since, as noted in Section 2.1, θ̂bc has bias
of order O(n−2), then (2.11) implies that the same is true of θ̃bc:

E(θ̃bc) = O(n−2) . (2.13)

This confirms the wisdom of subtracting twice the bias estimator when computing
jackknife or bootstrap bias-corrected estimators prior to bagging. Combining
(2.11) and (2.13) we deduce that

var(θ̃bc) = var(θ̂bc) +O(n−3) . (2.14)

Together, (2.13) and (2.14) imply there is no first- or second-order advantage,
in terms of bias or variance or mean squared error, in using a bagged bias-
corrected estimator rather than an unbagged bias-corrected estimator. To derive
(2.14) we have used the well-known result that expansions of moments are power
series in n−1, rather than simply n−1/2. This property will be employed below
without further comment.

Analogously we deduce from (2.12) that

E(θ̃pbc) = E(θ̂) +O(n−2) , var(θ̃pbc) = var(θ̂) +O(n−3) . (2.15)

Hence, there are no first- or second-order differences between the bagged partially
bias-corrected estimators θ̃pjack and θ̃pboot, and the original estimator θ̂. Note
that in the context of variance, “second order” means terms of size n−3; in the
case of bias, “second order” terms are of size n−2. Changes of orders n−2 and
n−3 to bias and variance, respectively, both introduce adjustments of order n−3

to mean squared error.
Next we relate the mean squared error of the non-bagged, bias-corrected es-

timator θ̂bc to that of the conventional estimator θ̂. Define βj = µ−3
1 E{ψ0(X)2×

ψj(X)}, γ1 = γ3 − 3 ρ2 γ2, γ2 = α1 − 1
2 ρ2 σ

2
0, γ3 = σ2

1 + α2 − 1
2 ρ3 σ

2
0 , γ4 =
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α1 (3γ2 − α1) + σ2
0 (1 + 1

2 α2) + 1
2 ρ2 β0 − β1 and γ0 = σ2

0 γ1 + γ4. In particular,
γ1, γ2, γ3 are the population counterparts of γ̂1, γ̂2, γ̂3 respectively. We show in
Section 5 that, assuming θ0 = 0,

E(θ̂ γ̂2) = n−1 (γ2
2 + γ4) +O(n−2) . (2.16)

It follows from (2.7), (2.16) and the fact that E(θ̂2) = n−1 σ2
0 +O(n−2), that

E(θ̂2
bc) = E(θ̂2) (1 − 2n−1 γ1) − 2n−1E(θ̂ γ̂2) + n−2γ2

2 +O(n−3)

= E(θ̂2) − 2n−2 (γ0 + 1
2γ

2
2) +O(n−3) . (2.17)

Similarly, using (2.8) in place of (2.7) in this argument,

E(θ̃2) = E(θ̂2) + 2n−2 (γ0 + 3
2 γ

2
2) +O(n−3) . (2.18)

We know from (2.3) that E(θ̂) = n−1γ2 + O(n−2), and of course E(θ̂bc) =
O(n−2). Therefore by (2.17), writing MSE(Z) to denote the mean squared error
of a random variable Z, we have

MSE(θ̂bc) = MSE(θ̂) − n−2 (2 γ0 + γ2
2) +O(n−3) , (2.19)

MSE(θ̃) = MSE(θ̂) + n−2 (2 γ0 + 3γ2
2) +O(n−3) . (2.20)

This result makes it clear that θ̂bc in a sense “overcorrects” θ̂ for the effects of bias
on mean squared error; it reduces mean squared error by subtracting off twice the
squared bias contribution to mean squared error, rather than one lot of squared
bias. The origin of the extra component is clear from (2.16): it arises from the
correlation between the empirical bias correction and the estimator θ̂, and to
this extent at least that correlation works in favour of improved performance.
By way of comparison, (2.20) shows that the empirical adjustment offered by
bagging works in the wrong direction.

Of course it is the total correlation, proportional to γ2
2 + γ4, between the

empirical bias correction and θ̂ that is important, not just the term γ2
2 . However,

we show in Section 5 that when θ̂ is a maximum likelihood location estimator,
γ0 vanishes. In that case the performance advantages of θ̂bc over θ̃ are starkly
clear from (2.19) and (2.20).

More generally the relationships among mean squared errors of θ̂, θ̂bc and θ̃
are demonstrated by (2.19) and (2.20). In particular, in terms of second-order
properties of mean squared error, θ̂ outperforms θ̂bc, θ̂bc outperforms θ̃, and
θ̃ outperforms θ̂ if and only if γ0 + γ2

2 < 0, γ0 + 5
4 γ

2
2 > 0 and γ0 + 3

2 γ
2
2 <

0, respectively. This triangle of inequalities allows any one of θ̂, θ̂bc and θ̃ to
outperform the other two, to second order. To appreciate why, note that if
γ0+

3
2 γ

2
2 is strictly negative then so too will be γ0+γ2

2 , and so the best-performing

among θ̂, θ̂bc and θ̃ will be θ̃. On the other hand, if γ0 + 3
2 γ

2
2 is strictly positive
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then the best-performing estimator will be either θ̂ or θ̂bc; it will be θ̂ if and only
if γ0 + γ2

2 is strictly negative.

2.4. Multivariate case

When θ is p-variate and p ≥ 1, ψ0(·|θ) is a p-variate function. For brevity
we confine our treatment of this setting to a brief account of the bootstrap-based
biased corrected estimator. Other cases are similar.

Formula (2.4) for the bias estimators b̂iasjack and b̂iasboot is applicable as it

stands in multivariate settings, and leads directly to multivariate versions of θ̃bc

and θ̃pbc, defined by (2.5) and (2.6) respectively. The principal result in Section

2 relating θ̂, θ̂bc, θ̃, θ̃bc and θ̃pbc is (2.9), and it holds in multivariate settings.
This leads in turn to the following analogues of (2.11) and (2.12) in multivariate
problems: θ̃bc = θ̂bc + Op(n

−2) and θ̃pbc = θ̂ + Op(n
−2). As a result, formulae

(2.13)−(2.15) connecting the biases and variances of estimators θ̃bc and θ̂bc, and
θ̃pbc and θ̂, hold almost without change; the only alteration required is that “var”
should be replaced by “cov”, denoting the covariance matrix, in (2.14) and (2.15).

2.5. Parametric bootstrap

For brevity we consider only the univariate case, the multivariate setting is
virtually identical. Let X?

1 , . . . , X
?
n be a resample drawn by sampling randomly,

conditional on X , from the distribution with density f(·|θ̂), let θ = θ̂? denote the
solution of

∑
i ψ(X?

i |θ)=0, and write θ= θ̂1 for the solution of E{ψ(X?
1 |θ)|X}=0.

The quantity γj , defined in Section 2.3, is of course a function of the un-

known θ. Let γj(θ̂) denote the same function evaluated at θ̂. It may be shown

that (2.7) and (2.8) continue to hold if we replace γ̂j by γj(θ̂): θ̂bc = 2 θ̂− θ̂1{1+

n−1 γ1(θ̂)} − n−1 γ2(θ̂) +Op(n
−2), θ̃ = θ̂1 {1 + n−1 γ1(θ̂)}+ n−1 γ2(θ̂) +Op(n

−2).

It follows that (2.9)−(2.11) remain true if we replace θ̂ and γ̂j by θ̂1 and γj(θ̂),
respectively. Results (2.19) and (2.20) also continue to hold, provided we replace
γ0 there by γ0 + 3γ5µ

−2
1 , where

γ5 =
1

2
µ−1

1

(∫
f̈2

f2
−

∫
f̈ ḟ2

f2

)
−

3

4
ρ2

(
ρ2 +

1

3

∫
f̈ ḟ

f

)
.

Therefore, the discussion of (2.19) and (2.20), immediately below those formulae,
applies equally to the parametric case.

3. Examples from Maximum Likelihood Estimation

Let f̈ and f [3] denote the second and third derivatives, respectively, of f with
respect to θ, evaluated at θ0. We prove in Section 5 that

γ2

(∫
ḟ2

f

)2
= −

1

2

∫
ḟ f̈

f
, (3.1)
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γ0

(∫
ḟ2

f

)4
=

1

2

(∫
ḟ2

f

)∫ ( ḟ2f̈

f2
−
ḟf [3]

f
−
f̈2

f

)
+2

(∫
ḟ f̈

f

)2
−

(∫
ḟ f̈

f

)(∫
ḟ3

f2

)
. (3.2)

To appreciate the implications of these formulae, consider the location estimation
problem where f(x|θ) = f(x− θ) and f is a smooth density. Then

∫
f ′f ′′

f
=

1

2

∫
(f ′)3

f2
,

∫
(f ′)2f ′′

f2
=

2

3

∫
(f ′)4

f3
,

∫
f ′f ′′′

f
=

2

3

∫
(f ′)4

f3
−

∫
(f ′′)2

f
.

It follows from the latter formulae and (3.2) that γ0 = 0, and that γ2 vanishes
if and only τ ≡

∫
{(f ′)3/f} = 0. Therefore, by (2.17) and (2.18), θ̂bc strictly

outperforms θ̃, to second order in terms of mean squared error, unless τ = 0; and
θ̂bc is never inferior to either θ̃ or θ̂, to second order.

This result does not extend to other related problems. Consider for example
the problem of location estimation in one component of a generalised mixture,
where f(x|θ) = p g(x−θ)+(1−p)h(x), p 6= 0 is known and satisfies −∞ < p <∞,
and g and h are known densities. There is no difficulty in taking p small and
negative provided the resulting f is nonnegative for values of θ in a neighbourhood
of θ0. Examples are easily found, for example by taking h and g to be rescaled
Student’s t densities with equal degrees of freedom. Assume for simplicity that
g and h are both symmetric about 0, and θ0 = 0, in which case γ2 = 0. Again
for simplicity, suppose h is close to g. Then if we evaluate γ0 for g = h, the error
we commit can be made arbitrarily small by sufficiently reducing the distance
between g and h. Making this approximation we obtain:

γ0 = 2
3 p

−1 (1 − p)
(∫

(f ′)2

f

)
−3

∫
(f ′)4

f3
, (3.3)

which has the same sign as p.
It follows from (2.17), (2.18) and (3.3) that by choosing p > 0 we ensure that

θ̂bc outperforms θ̃, to second order in terms of mean squared error; and that the
position is reversed if p < 0. Therefore either the standard bagged estimator, or
the conventional unbagged bias-corrected estimator, can outperform the other to
second order.

4. Simulation Results

We have found the theoretical properties reported above to be accurately
reflected in numerical work. Specifically, we generated data from two models, one
an exponential distribution with mean θ−1 and the other a Binomial distribution
with mean e−θ. In neither case was θ the mean of the distribution. We computed
θ̂ using maximum likelihood, employed 500 bootstrap simulations to calculate θ̂bc,
and used 500 and 200 simulations at the first and second levels, respectively, to
calculate θ̃bc. Mean squared errors were calculated using 1000 replications, and
sample sizes ranged from 40 to 200.
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The simulations showed that θ̂bc and θ̃bc had almost identical performance,

as implied by (2.11). For each sample size and parameter value, the averages

of the simulated values of θ̂bc and θ̃ were almost equidistant from θ̂ but on

opposite sides of θ̂, as predicted by (2.9). Bagging increased both variance and

mean square error, and the bias-corrected estimator had lowest bias, variance

and mean square error. Figure 1 shows typical results.
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Figure 1. Bias, variance and mean squared error in Binomial case. The

problem illustrated is that of estimating θ using data from a Binomial

(n, e−θ) distribution with θ = 1. The value of sample size, n, is graphed

along the horizontal axis. Results for θ̂, for the bias-corrected estimated θ̂bc,

and for the bagged estimator θ̃, are represented by solid, dotted and dashed

lines, respectively.

5. Technical Arguments

5.1. Derivation of (2.8)

Let ρ̂∗j = S∗

j /S
∗

1 . In this notation, by analogy with (2.2),

θ̂∗ = −{ρ̂∗0 + 1
2 (ρ̂∗0)

2 ρ̂∗2} + (ρ̂∗0)
3 {1

6 ρ̂
∗

3 −
1
2 (ρ̂∗2)

2} + · · · . (5.1)

Put ∆∗

j = (S∗

j − Sj)/S1 and note that

ρ̂∗j = (ρ̂j + ∆∗

j)/(1 + ∆∗

1) = ρ̂j + ∆∗

j − ρ̂j ∆∗

1 + ρ̂j (∆∗

1)
2 − ∆∗

j ∆∗

1 + · · · . (5.2)
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Substituting into (5.1), Taylor expanding, taking conditional expectation, and

noting that E{(∆∗

j )
2|X} = n−1 σ̂2

j and E(∆∗

0∆
∗

j |X ) = n−1 α̂j, we deduce that

E(ρ̂∗0|X ) = ρ̂0 (1 + n−1 σ̂2
1) − n−1 α̂1 +Op(n

−2) ,

E{(ρ̂∗0)
2ρ̂∗2|X} = ρ̂2

0ρ̂2 + n−1 {ρ̂2 σ̂
2
0 + 2 ρ̂0 (α̂2 − 3 ρ̂2 α̂1)} +Op(n

−2) ,

E{(ρ̂∗0)
3ρ̂∗3|X} = ρ̂3

0ρ̂3 + 3n−1 ρ̂0 ρ̂3 σ̂
2
0 +Op(n

−2) ,

E{(ρ̂∗0)
3 (ρ̂∗2)

2|X} = ρ̂3
0ρ̂

2
2 + 3n−1 ρ̂0 ρ̂

2
2 σ̂

2
0 +Op(n

−2) . (5.3)

Therefore,

θ̃ ≡ E(θ̂∗|X ) = θ̂ + n−1
[
α̂1 − ρ̂0 σ̂

2
1 − 1

2 {ρ̂2 σ̂
2
0 + 2 ρ̂0 (α̂2 − 3 ρ̂2 α̂1)}

+1
2 ρ̂0 (ρ̂3 − 3 ρ̂2

2) σ̂
2
0

]
+Op(n

−2) , (5.4)

which is equivalent to (2.8).

5.2. Derivation of (2.7)

Equation (2.8) implies the following result for b̂iasboot, and the analogue for

b̂iasjack will be derived momentarily:

both b̂iasjack and b̂iasboot equal n−1 (θ̂ γ̂1 + γ̂2) +Op(n
−2) . (5.5)

Result (2.7) follows from (5.5) and the definitions of θ̂jack and θ̂boot. Let ρ̂ji

denote the version of ρ̂j that arises if we compute the latter from the (n − 1)-

sample X\{Xi} instead of X , and put δji = (n− 1)−1{ψj(Xi) − Sj}. Then the

analogue of (5.2) is:

ρ̂ji = (ρ̂j − δji)/(1 − δj1) = ρ̂j − δji + ρ̂j δj1 + ρ̂j δ
2
j1 − δji δj1 + · · · .

Using this analogy we may show that

E{(ρ̂∗0)
` (ρ̂∗2)

m|X} − ρ̂`
0ρ̂

m
2 =

n∑

i=1

ρ̂`
0iρ̂

m
2i − n ρ̂`

0ρ̂
m
2 +Op(n

−2)

for ` ≥ 1 and m ≥ 0. Therefore results (5.3) continue to hold if on the left-hand

side each term E{(ρ̂∗0)
` (ρ̂∗2)

m|X} is replaced by
∑

i ρ̂
`
0iρ̂

m
2i − (n− 1) ρ̂`

0ρ̂
m
2 . Result

(5.5), in the jackknife case, follows.

5.3. Derivation of (2.10)

The double-bootstrap analogue of (5.4), in which conditioning is on X ∗, can

be obtained by replacing E(θ̂∗|X ) on the left-hand side by E(θ̂∗∗|X ∗), and placing

asterisks on terms on the right-hand side. Taking expectation of this expansion,
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conditional on X , we deduce that E(θ̂∗∗|X ) = E(θ̂∗|X )+n−1 (θ̂ γ̂1+γ̂2)+Op(n
−2).

Therefore,

θ̃boot = 3 θ̃ − 2 {E(θ̂∗∗|X ) −E(θ̂∗|X )} = θ̃ − 2n−1 (θ̂ γ̂1 + γ̂2) +Op(n
−2) .

This is equivalent to (2.10) in the case θ̃bc = θ̃boot. Similarly we derive the version

of (2.10) for θ̃bc = θ̃jack, and likewise we establish (2.12).

5.4. Derivation of (2.16)

Given a random variable Z write (1−E)Z for Z−E(Z), put Aj = µ−2
1 (1−

E)n−1 ∑
i ψ0(Xi)ψj(Xi) and ∆j = (Sj − µj)/µ1, and note that γ̂2 = γ2 + ∆

where ∆ = (α1 − 3 γ2)∆1 +A1 −
1
2 ρ2A0 −

1
2 σ

2
0 ∆2 −∆0 +Op(n

−1). Observe too

that, assuming θ0 = 0, we have θ̂ = −∆0 + ∆0 ∆1 −
1
2 ρ2 ∆2

0 + Op(n
−3/2). Thus

we obtain (2.16):

E(θ̂ γ̂2) = E(θ̂) γ2 +E{(θ̂ −Eθ̂) (γ̂2 −Eγ̂2)} +O(n−2)

= n−1 γ2
2 −E(∆∆0) +O(n−2) = n−1 (γ2

2 + γ4) +O(n−2) .

5.5. Derivation of (3.1) and (3.2)

It may be proved that

µ2
1 γ2 = −

1

2

∫
ḟ f̈

f
, µ2

1 γ3 =

∫ ( ḟ2f̈

f2
−
ḟf [3]

f
− 1

2

f̈2

f

)
−

(∫
ḟ2

f

)2
,

µ1 ρ2 = 2

∫
ḟ3

f2
− 3

∫
ḟ f̈

f
, µ3

1 ρ2 γ2 =
(∫

ḟ f̈

f

) ∫ (3

2

ḟ f̈

f
−
ḟ3

f2

)
.

The first result above implies (3.1). To obtain (3.2) note that since γ1 = γ3 −

3 ρ2 γ2 and |µ1| =
∫
(ḟ2/f), then

|µ1|
3 γ1 =

(∫
ḟ2

f

)∫ ( ḟ2f̈

f2
−
ḟf [3]

f
−

1

2

f̈2

f

)
+3

(∫
ḟ f̈

f

)∫ (3

2

ḟ f̈

f
−
ḟ3

f2

)
−

(∫
ḟ2

f

)3
,

µ3
1 β1 =

∫
ḟ2f̈

f2
−

∫
ḟ4

f3
, µ2

1 α2 =

∫
ḟf [3]

f
− 3

∫
ḟ2f̈

f2
−

∫
ḟ4

f3
.

Formula (3.2) follows from these results and the relation

µ4
1 γ0 = |µ1|

3 {γ1 − σ−2
0 (β1 −

1
2 σ

2
0 α2 − σ2

0)} + µ4
1 {α1 (3 γ2 − α1) + 1

2 ρ2β0} .
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