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Abstract: This paper is concerned with inference for the population quantile dif-

ference (e.g., the interquartile range). Although normal approximations could be

used for this purpose, they usually give poor performances unless the sample size

is sufficiently large. In this paper, we investigate the use of the nonparametric

likelihood method. Numerical results will be presented to compare its performance

with other methods.
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1. Introduction

Let X1, . . . , Xn be a random sample from some unknown distribution func-

tion F (x). For any distribution function G, we define its tth quantile by G−1(t) =

inf{x : G(x) ≥ t}, where 0 < t < 1. In this paper, we are concerned with the

inference for the quantile difference θ0 = F−1(q)−F−1(p), where 0 < p < q < 1.

For instance, if we take p = 1/4 and q = 3/4, we obtain the interquartile range.

An obvious estimator for θ0 is the sample quantile difference θ̂0 = F−1
n (q) −

F−1
n (p), where Fn is the empirical distribution function given by Fn(x) = n−1

×∑n
i=1 I{Xi ≤ x}, with I{·} being the indicator function. Therefore, one could

use the sample quantile difference θ̂0 (properly studentized) to construct a con-

fidence interval for the population quantile difference θ0. Under mild conditions,

it can be shown that the (studentized) sample quantile difference θ̂0 is approxi-

mately normally distributed. However, as our simulation results show (see Sec-

tion 3), the performance of the normal approximation can be rather poor for

small sample sizes.

We investigate some alternative nonparametric methods in the hope of im-

proving the normal approximation method. The empirical likelihood method,

introduced by Owen (1988, 1990), amounts to computing the profile likelihood

of a general multinomial distribution supported on the data. The empirical like-

lihood enjoys some very nice properties. First, it avoids explicit studentization

as this is done internally, and so is useful in cases where variance estimates are
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rather complicated or unstable. Second, the shape of the confidence region (in

two or more dimensions) is determined automatically by the data configuration.

Third, it is range preserving. For these reasons, the empirical likelihood has found

application in smooth functions of means (DiCiccio, Hall and Romano (1991)),

in nonparametric density and regression function estimation (Owen (1991), Chen

(1996), Chen and Qin (2000)), in generalized linear models (Kolaczyk (1994)), in

quantile estimation (Chen and Hall (1993)), in general estimating equation (Qin

and Lawless (1994)), in dependent processes (Kitamura (1997)), and so on. For

a more thorough review of the empirical likelihood method and its applications,

the reader is referred to the recent monograph by Owen (2001).

Despite extensive studies of the empirical likelihood method, there has been

little work on inference for population quantiles. Chen and Hall (1993) first

applied the method of empirical likelihood to sample quantiles and obtained very

accurate results. Smoothing has proved very useful in reducing the coverage

errors for the empirical likelihood method in estimation of quantiles. In this

paper, we investigate how to extend the empirical likelihood to the difference

of quantiles of a certain distribution function, and compare it with the normal

approximation method.

The paper is arranged as follows. In Section 2, we introduce the empirical

likelihood method to the quantile difference problem. Some simulation results

are given in Section 3 to compare the performances of the empirical likelihood

and the normal approximation method. Proofs are deferred to Section 4.

2. Methodology and Main Results

2.1. Methodology

Let us first give some motivations for our definition of the empirical likelihood

for θ(F ). First notice that θ0 = F−1(q) − F−1(p) = θ(F ). Let (p1, . . . , pn) be

a probability vector, i.e.,
∑n

i=1 pi = 1 and pi ≥ 0 for 1 ≤ i ≤ n. Let F̃ be

the distribution function which assigns probability pi at the ith observation Xi.

Hence, θ(F̃ ) = F̃−1(q) − F̃−1(p). Then, the empirical likelihood, evaluated at

true parameter value θ0, can be defined by

L̃(θ0) = max
θ(F̃ )=θ0,

∑
pi=1

n∏

i=1

pi. (2.1)

Similarly to Chen and Hall (1993), we replace F̃ by a smoothed version. Since

F̃ assigns probability pi at Xi, its formal density estimate can be given by

f̃s(t) =
n∑

i=1

pi h−1K

(
t − Xi

h

)
,
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where K(·) is a kernel function and h is the bandwidth. (Note that when pi = 1/n

for all i, this reduces to the usual kernel density estimate.) Therefore, the kernel

distribution estimate is

F̃s(x) =

∫ x

−∞

f̃s(t)dt =
n∑

i=1

pi

∫ x

−∞

1

h
K

(
t − Xi

h

)
dt.

Replacing F̃ in (2.1) by F̃s, our smoothed empirical likelihood, evaluated at true

parameter value θ0, can now be defined by

L(θ0) = max
θ(F̃s)=θ0,

∑
pi=1

n∏

i=1

pi.

Note that
∏n

i=1 pi, subject to
∑n

i=1 pi = 1, attains its maximum n−n at pi = n−1.

So we define the empirical likelihood ratio at θ0 by

R(θ0) = L(θ0)/n
−n = max

θ(F̃s)=θ0,
∑

pi=1

n∏

i=1

(npi). (2.2)

In the remainder of this section, we give an explicit expression for R(θ0) in

(2.2). First, let us introduce a new variable η = F̃−1
s (p), i.e., F̃s(η) = p. Then it

follows from θ(F̃s) = θ0 that F̃s(η + θ0) = q. Therefore, we can rewrite R(θ0) in

(2.2) as

R(θ0) = sup
η,p1,...,pn

n∏

i=1

(npi), (2.3)

subject to

n∑

i=1

pi = 1, F̃s(η) = p, F̃s(η + θ0) = q. (2.4)

Write

w1(Xi, η) =

∫ η

−∞

1

h
K

(
t − Xi

h

)
dt − p, (2.5)

w2(Xi, η) =

∫ η+θ0

−∞

1

h
K

(
t − Xi

h

)
dt − q. (2.6)

Using Lagrange multipliers, (2.3) is maximized subject to constraints (2.4) with

pi =
1

n
· 1

1 + λ̃Ew1(Xi, η̃E) + t̃Ew2(Xi, η̃E)
, i = 1, . . . , n, (2.7)
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where (λ̃E, t̃E , η̃E) are solutions of (λ, t, η) to the equations

1

n

n∑

i=1

w1(Xi, η)

1 + λw1(Xi, η) + tw2(Xi, η)
= 0, (2.8)

1

n

n∑

i=1

w2(Xi, η)

1 + λw1(Xi, η) + tw2(Xi, η)
= 0, (2.9)

1

nh

n∑

i=1

λK
(

η−Xi

h

)
+ tK

(
η+θ0−Xi

h

)

1 + λw1(Xi, η) + tw2(Xi, η)
= 0. (2.10)

Equations (2.8)−(2.10) can be solved in two stages. First, fixing η, we can

solve for λ and t from equations (2.8) and (2.9) and denote the solutions by λ(η)

and t(η). Second, substituting these into equation (2.10), we can solve for η.

Define

R(θ0, η) =
n∏

i=1

1

1 + λ(η)w1(Xi, η) + t(η)w2(Xi, η)
.

It is easy to see that R(θ0) = supη R(θ0, η). Hence

log R(θ0) = log R(θ0, η̃E) =−
n∑

i=1

log[1+λ(η̃E)w1(Xi, η̃E)+t(η̃E)w2(Xi, η̃E)],

(2.11)

where λ(η̃E), t(η̃E) and η̃E are solutions to equations (2.8)−(2.10).

2.2. Main results

Before stating our main results, we first give some regularity conditions.

(i) Let f(x) = F ′(x). For some integer r ≥ 2, f (r−1)(x) exists in a neighbor-

hood of ηp = F−1(p) and ηq = F−1(q), and is continuous at ηp and ηq,

respectively. Further assume that f(ηp)f(ηq) > 0.

(ii) The kernel K(·) is bounded and compactly supported; K (2) exists and is

bounded; assume that

∫
ujK(u)du =





1, j = 0,

0, 1 ≤ j ≤ r − 1,

C0, j = r,

where C0 is some finite constant.

(iii) nh4r → 0, n4s−1h4 → ∞, as n → ∞, where for some 1/3 < s < 1/2.

Let us give some remarks about the conditions. Condition (i) requires that

the distribution function F be sufficiently smooth in neighborhoods of ηp and ηq

respectively. From a mathematical point of view, the restriction f(ηp)f(ηq) > 0
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ensures the asymptotic variance of the sample quantile difference is of order

n−1, as can be seen from (3.1) in Section 3. Without that assumption, the

asymptotic theory is quite different. See Feldman and Tucker (1966). Condition

(ii) is a typical requirement for the kernel function K(·) in nonparametric curve

estimation. Finally, Condition (iii) implies that the convergence of the bandwidth

h to zero is neither too fast nor too slow.

Theorem 2.1. Assume that conditions (i)−(iii) hold. Then with probabil-

ity 1, for sufficiently large n, there exists a solution η̃E, λ(η̃E) and t(η̃E) to

(2.8)−(2.10), such that R(θ0, η) attains its maximum value R(θ0) at η = η̃E.

Furthermore, we have −2 log R(θ0, η̃E) →L χ2
1.

The proof of Theorem (2.1) will be given in Section 4.

An approximate (1 − α) level confidence interval for θ0 can be taken as

Ihc = {θ : −2 log R(θ, η̃E) ≤ c}, where c is chosen to satisfy P (χ2
1 ≤ c) = 1 − α.

From Theorem 2.1, we have limn→∞ P{θ0 ∈ Ihc} = P (χ2
1 ≤ c) = 1 − α.

3. Simulation Results

A Monte Carlo study was conducted to investigate the coverage accuracy of

the empirical likelihood confidence interval. We generated 10,000 pseudorandom

samples of various sizes from F = χ2
1. For each sample, we solved the equations

(2.8)−(2.10) by routines in Numerical Recipes in C [Press, Flannery, Teukolsky

and Vetterling (1989)]. After getting λ(η̃E), t(η̃E) and η̃E , we calculated log R(θ0)

using (2.11). The kernel function was K(u) = 15
16(1 − 2u2 + u4)I{|u| ≤ 1}, which

satisfies Condition (ii) with r = 2. The bandwidths were h = n−3/20, n−1/10, and

n−1/2. Note that the first choice of bandwidths h = n−3/20 satisfies Condition

(iii), while the last two choices do not, being either too large or too small in

comparison with Condition (iii).

Confidence intervals by the normal approximation method can be obtained

as follows. From Reiss (1989), we know n1/2
(
θ̂0 − θ0

)
→L N

(
0, σ2

)
, where

σ2 =
p(1 − p)

f2(ηp)
− 2p(1 − q)

f(ηp)f(ηq)
+

q(1 − q)

f2(ηq)
. (3.1)

A consistent estimator of σ2, σ̂2, can be obtained by replacing f(ηp) and f(ηq) in

the above formula by their empirical versions (or smoothed ones when appropri-

ate). Thus, a two-sided confidence interval based on the normal approximations

can be taken to be I
(N)
1−α = (θ̂0 − d1−α/2σ̂/

√
n, θ̂0 + d1−α/2σ̂/

√
n), where d1−α

is the 1 − α quantile of a standard normal distribution. For simplicity, in the

simulation studies conducted here, we employ the true value of σ2 rather than

its consistent estimator σ̂2.
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Table 1. p = 0.25, q = 0.75.

nominal level 0.80 0.90 0.95 0.99

n = 20 h = n−3/20 0.813 0.912 0.957 0.990
h = n−1/2 0.811 0.896 0.958 0.992
h = n−1/10 0.813 0.911 0.956 0.988

normal approximation 0.842 0.941 0.971 0.990

n = 30 h = n−3/20 0.809 0.906 0.956 0.992
h = n−1/2 0.807 0.913 0.950 0.990
h = n−1/10 0.811 0.905 0.954 0.990

normal approximation 0.814 0.910 0.951 0.983

n = 100 h = n−3/20 0.800 0.901 0.951 0.990
h = n−1/2 0.806 0.903 0.952 0.989
h = n−1/10 0.800 0.900 0.951 0.990

normal approximation 0.807 0.925 0.954 0.988

Table 2. p = 0.1, q = 0.9.

nominal level 0.80 0.90 0.95 0.99

n = 20 h = n−3/20 0.825 0.918 0.960 0.984
h = n−1/2 0.854 0.922 0.974 0.996
h = n−1/10 0.844 0.923 0.959 0.988

normal approximation 0.845 0.950 0.980 0.993

n = 30 h = n−3/20 0.781 0.927 0.961 0.991
h = n−1/2 0.801 0.965 0.975 0.994
h = n−1/10 0.816 0.924 0.958 0.989

normal approximation 0.826 0.933 0.973 0.993

n = 100 h = n−3/20 0.809 0.905 0.952 0.989
h = n−1/2 0.801 0.965 0.975 0.994
h = n−1/10 0.794 0.894 0.944 0.986

normal approximation 0.806 0.929 0.956 0.990

Table 3. p = 0.2, q = 0.8.

nominal level 0.80 0.90 0.95 0.99

n = 20 h = n−3/20 0.827 0.916 0.967 0.992
h = n−1/2 0.832 0.894 0.973 0.995
h = n−1/10 0.826 0.916 0.965 0.991

normal approximation 0.782 0.873 0.915 0.960

n = 30 h = n−3/20 0.795 0.903 0.955 0.993
h = n−1/2 0.780 0.904 0.946 0.992
h = n−1/10 0.800 0.905 0.955 0.993

normal approximation 0.791 0.881 0.927 0.970

n = 100 h = n−3/20 0.803 0.904 0.952 0.991
h = n−1/2 0.803 0.904 0.951 0.991
h = n−1/10 0.800 0.900 0.951 0.990

normal approximation 0.794 0.912 0.942 0.982
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We make the following observations from the numerical studies.
(1). The empirical likelihood method with bandwidth h = n−3/20, which satisfies

Condition (iii), has almost uniformly more accurate coverage probabilities
than those using the other two choices of bandwidths.

(2). Although we have chosen a wide range of bandwidths, the coverage probabili-
ties seem to change rather slowly. This indicates that the smoothed empirical
likelihood is robust with respect to the bandwidth selection.

(3). For small sample size n, the normal approximation method seems to perform
worse than the smoothed empirical likelihood methods. However, the ad-
vantage of the latter method gradually disappears when the sample sizes get
large, as one might expect.

4. Proof of Theorem 2.1.

Let us first introduce a few lemmas. Throughout the proofs, we use C
to denote a generic constant, which may assume some different value at each
occurrence. Furthermore, we denote δ := hr + n−s, 1/3 < s < 1/2.

Lemma 4.1. Assume that conditions (i) and (ii) hold. For each η satisfying

|η − ηp| ≤ δ, we have

Ew1(Xi, η) = [F (η) − F (ηp)] + O(hr), (4.1)

Ew2(Xi, η) = [F (η + θ0) − F (ηq)] + O(hr), (4.2)

Var [w1(Xi, η)] = F (η) [1 − F (η)] + O(h), (4.3)

Var [w2(Xi, η)] = F (η + θ0) [1 − F (η + θ0)] + O(h), (4.4)

E [w1(Xi, η)w2(Xi, η)] = F (η) − pq + O(δ). (4.5)

The proof uses Taylor expansions, and is omitted.
Denote w11(η) = 1

n

∑n
i=1 w1(Xi, η), w12(η) = 1

n

∑n
i=1 w2

1(Xi, η), w21(η) =
1
n

∑n
i=1w2(Xi, η), w22(η)= 1

n

∑n
i=1w

2
2(Xi, η), and w3(η)= 1

n

∑n
i=1w1(Xi, η)w2(Xi, η).

Lemma 4.2. Under the conditions (i)−(iii), uniformly for η ∈ {η : |η−ηp| ≤ δ},
we have w11(η) = Op(δ), w21(η) = Op(δ), w12(η) = p(1 − p) + Op(δ + h),
w22(η) = q(1 − q) + Op(δ + h), and w3(η) = p(1 − q) + Op(δ + h).

Proof. We only prove w11(η) = Op(δ), others are shown similarly. Since

w1(Xi, η) − w1(Xi, ηp) =
(η − ηp)

h
K

(
ηp − Xi

h

)
+

(η − ηp)
2

2h2
K ′

(
ηi − Xi

h

)
,

where ηi is between ηp and η, we have

w11(η) = w11(ηp) +
(η − ηp)

nh

n∑

i=1

K

(
ηp − Xi

h

)
+

(η − ηp)
2

2nh2

n∑

i=1

K ′

(
ηi − Xi

h

)

=: w11(ηp) + ∆n1 + ∆n2, say. (4.6)
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From Lemma 4.1, Ew1(X1, ηp) = O(hr). From this and the CLT, it follows that

w11(ηp) = Ew1(X1, ηp)+ [w11(ηp) − Ew1(X1, ηp)] = O(hr)+Op(n
−1/2) = Op(δ).

(4.7)
Now let us look at ∆n1. As at (4.24) later in the paper, we can show that

1

nh

n∑

i=1

[
K

(
ηp − Xi

h

)
− EK

(
ηp − Xi

h

)]
→ 0 a.s. (4.8)

Also note that

h−1EK

(
ηp − X1

h

)
=

∫ ∞

−∞

K(x)f(ηp − hx)dx = f(ηp) + O(h). (4.9)

It then follows from (4.8) and (4.9) that ∆n1 = Op(δ).
Finally, we turn to ∆n2. Conditions (ii) and (iii) imply that

∣∣∣∣K
′

(
η−Xi

h

)∣∣∣∣ ≤ C, and h−2δ ≤ hr−2+h−2n−s = hr−2 +
ns−1/2

(h4n4s−1)1/2
≤ C.

It then follows easily that ∆n2 = O(δ). The proof is complete.

Lemma 4.3. Under the conditions (i)−(iii), for each η satisfying |η − ηp| ≤ δ,
as n → ∞, we have

w11(η) = O
(
δ + hr + n−1/2(log n)1/2

)
= O(δ) a.s., (4.10)

w21(η) = O
(
δ + hr + n−1/2(log n)1/2

)
= O(δ) a.s., (4.11)

w12(η) = p(1 − p) + O
(
δ + h + n−1/2(log n)1/2

)
= p(1 − p) + O(h) a.s., (4.12)

w22(η) = q(1 − q) + O
(
δ + h + n−1/2(log n)1/2

)
= q(1 − q) + O(h) a.s., (4.13)

w3(η) = p(1 − q) + O
(
δ + h + n−1/2(log n)1/2

)
= p(1 − q) + O(h) a.s. (4.14)

Proof. Recall the Bernstein inequality

P (|Ȳ − µ̄| ≥ t) ≤ 2 exp

(
− nt2

2Var (Y1) + 2
3mt

)
, (4.15)

where Y1, . . . , Yn are i.i.d. r.v.’s satisfying P (|Yi − EYi| ≤ m) = 1 and t >
0. (see Serfling (1980), p.95) Choosing Yi = wk

1(Xi, η) for k = 1, 2, and t =
dn−1/2(log n)1/2 for some d > 0 to be determined later, we get

∞∑

n=1

P
(
|w1k(η) − Ew1k(η)| ≥ dn−1/2(log n)1/2

)

≤ 2
∞∑

n=1

exp

(
−d2 log n

2C + 2
3dn−1/2(log n)1/2

)
≤ 2

∞∑

n=1

exp (−2 log n)
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for d sufficiently large, and this is finite. By the Borel-Cantelli Lemma, |w1k(η)−
Ew1k(η)| < dn−1/2(log n)1/2 a.s., k = 1, 2. Thus, (4.10) and (4.12) follows from

these inequalities and Lemma 4.1. Similarly, we can prove (4.11), (4.13) and

(4.14).

Lemma 4.4. Under the conditions (i)−(iii), uniformly for η ∈ {η : |η−ηp| ≤ δ},
we have

λ(η) = Op (δ) , t(η) = Op (δ) . (4.16)

Furthermore, on the boundary points, we have

λ (ηp ± δ) = O
(
δ + hr + n−1/2(log n)1/2

)
a.s., (4.17)

t(ηp ± δ) = O
(
δ + hr + n−1/2(log n)1/2

)
a.s. (4.18)

Proof. Let wi(η) = (w1(Xi, η), w2(Xi, η))T , ρ = [λ2(η) + t2(η)]1/2, ρ(ξ1, ξ2)
T =

(λ(η), t(η))T , ξT = (ξ1, ξ2)
T , and Zn = max1≤i≤n |wi(η)|. From (2.8)−(2.9), we

have

ρξT Sξ

1 + ρZn
≤ |w11(η)| + |w21(η)|, where S =:

(
w12(η) w3(η)

w3(η) w22(η)

)
. (4.19)

By Lemma 4.2, we have that, uniformly for η ∈ {η : |η − ηp| ≤ δ},

S =

(
p(1 − p) p(1 − q)

p(1 − q) q(1 − q)

)
+ Op(δ + h) =: S0 + Op(δ + h). (4.20)

Let σp be the minimal eigenroot of S0. Then

ξT S0ξ ≥ σp/2. (4.21)

We also have Zn ≤ C. Combining (4.19)−(4.21), we obtain ρ = Op(δ) uniformly

for η ∈ {η : |η − ηp| ≤ δ}. This proves (4.16).

Next we prove (4.17) (the proof of (4.18) is similar). It follows from Lemma

4.3 that S = S0 + O(δ + h + n−1/2(log n)1/2) a.s. Hence if n is sufficiently large,

ξT Sξ ≥ σp/2 a.s. (4.22)

Also from (4.3),

wj1(ηp + δ) = O(δ + hr + n−1/2(log n)1/2) a.s., j = 1, 2. (4.23)

Combining (4.19), (4.22) and (4.23), we have ρ = O(δ) a.s. This completes the

proof.
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Lemma 4.5. Under the conditions (i)−(iii), with probability one, for sufficiently

large n, there exists a solution η̃E, λ(η̃E) and t(η̃E) to (2.8)−(2.10) such that

R(θ0, η) attains its maximum value R(θ0) at η = η̃E.

Proof. Let η1 = ηp+δ. From (2.8)−(2.9) and (4.17)−(4.18), we have S(η1)(λ(η1),

t(η1))
T = (w11(η1), w21(η1))

T + O(δ2) a.s., where

S(η1)=:

(
w12(η1) w3(η1)

w3(η1) w22(η1)

)
=S0+O(δ+hr+n−1/2(log n)1/2) a.s. (by Lemma 4.3).

Thus, (λ(η1), t(η1))
T = S−1(η1)(w11(η1), w21(η1))

T +O(δ2) a.s. Taylor expansion
of − log R(θ0, η1) gives

− log R(θ0, η1)

= nλ(η1)w11(η1) + nt(η1)w21(η1) −
1

2

n∑

i=1

[λ(η1)w1(Xi, η1) + t(η1)w2(Xi, η1)]
2

+O(nδ3) a.s.

=
n

2
(w11(η1), w21(η1))S

−1(η1)(w11(η1), w21(η1))
T + O(nδ3) a.s.

=
n

2

(
w11(ηp)+(nh)−1

n∑

i=1

K

(
η′i−Xi

h

)
δ, w21(ηp)+(nh)−1

n∑

i=1

K

(
η′′i −Xi

h

)
δ

)
S−1(η1)

×
(

w11(ηp)+(nh)−1
n∑

i=1

K

(
η′i−Xi

h

)
δ, w21(ηp)+(nh)−1

n∑

i=1

K

(
η′′i −Xi

h

)
δ

)T

+O(nδ3) a.s.,

where η′i is between ηp and ηp + δ, η′′i is between ηp + θ0 and ηp + θ0 + δ. Note

that the η′i’s are independent. Hence the Bernstein inequality implies

∞∑

n=1

P

(∣∣∣∣∣
1

nh

n∑

i=1

[
K

(
η′i − Xi

h

)
− EK

(
η′i − Xi

h

)]∣∣∣∣∣ ≥ dh

)

≤ 2
∞∑

n=1

exp

(
−nd2h4

2C + 2
3dh2

)
≤ 2

∞∑

n=1

exp (−2 log n) < ∞,

for d sufficiently large, and this is finite. We have used nh4n4s−2 → ∞ in the

second to last inequality. By the Borel-Cantelli lemma, we get

1

nh

n∑

i=1

[
K

(
η′i − Xi

h

)
− EK

(
η′i − Xi

h

)]
→ 0 a.s.

We also have

h−1EK

(
η′i − X1

h

)
= h−1

∫ ∞

−∞

K

(
η′i − x

h

)
f(x)dx
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= h−1
∫ ∞

−∞

K

(
η′i − ηp

h
+

ηp − x

h

)
f(x)dx–

=

∫ ∞

−∞

K

(
η′i − ηp

h
+ x

)
f(ηp − hx)dx–

=

∫ ∞

−∞

K

(
η′i − ηp

h
+ x

)
f(ηp)dx + O(h)–

= f(ηp) + O(h),

where in the last equality, we have used |η ′
i − ηp/h| ≤ δh−1 ≤ Ch for each i.

Hence

1

nh

n∑

i=1

K

(
η′i − Xi

h

)
→ f(ηp) a.s. (4.24)

Similarly,

1

nh

n∑

i=1

K

(
η′′i − Xi

h

)
→ f(ηq) a.s. (4.25)

From (4.24)−(4.25), and also noting that for j = 1, 2, wj1(ηp) − Ewj1(ηp) =

O(n−1/2(log n)1/2) a.s., and Ewj1(ηp) = O(hr), we have −2 log R(θ0, η1) ≥ (C −
εn)nδ2 a.s., where εn → 0. But −2 log R(θ0, ηp) = n(w11(ηp), w21(ηp))S

−1(ηp)

(w11(ηp), w21(ηp))
T +O(nδ3)=o(nδ2) a.s. Hence −2 log R(θ0, ηp+δ)>−2 log R(θ0,

ηp) a.s. Similarly −2 log R(θ0, ηp − δ) > −2 log R(θ0, ηp) a.s.

Since −2 log R(θ0, η) is a differentiable function of η for η ∈ [ηp − δ, ηp + δ],

−2 log R(θ0, η) attains its minimum in the region (ηp − δ, ηp + δ), say at η̃E , such

that η̃E, λ(η̃E), t(η̃E) satisfy equations (2.8)−(2.10).

Lemma 4.6. Under the conditions (i)−(iii), for η̃E given in Lemma 4.5, we

have
√

n (η̃E − ηp) →L N
(
0, c2

1p(1 − p) + c2
2q(1 − q) + 2c1c2p(1 − q))

)
, λ(η̃E) =

−{f(ηq)/f(ηp)}t(η̃E) + op(n
−1/2),

√
nt(η̃E) →L N(0, d2

1p(1 − p) + d2
2q(1 − q)

−2d1d2p(1−q)), where c0 = f2(ηp)q(1−q)−2p(1−q)f(ηp)f(ηq)+f2(ηq)p(1−p),

c1 = (1 − q)[qf(ηq) −pf(ηp)]/c0, c2 = p[(1 − p)f(ηq) − (1 − q)f(ηp)]/c0, d1 =

f(ηp)f(ηq)/c0, and d2 = f2(ηp)/c0.

Proof. Define λ = λ(η), λ̃E = λ(η̃E), t = t(η), and t̃E = t(η̃E). Further denote

the left hand sides of (2.8)−(2.10) by Qjn(η, λ, t), j = 1, 2, 3, respectively. It

follows from Lemma 4.5 that Qin

(
η̃E , λ̃E , t̃E

)
= 0 for i = 1, 2, 3. Therefore, by

Lemma 4.4, Lemma 4.5 and a Taylor expansion, we get



0

0

0


 =




Q1n(ηp, 0, 0)

Q2n(ηp, 0, 0)

Q2n(ηp, 0, 0)


+ Ŝ1




η̃E − ηp

λ̃E

t̃E


+ Op

(
δ2
)

,
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where, by some simple calculations,

Ŝ1 =:




∂Q1n(ηp,0,0)
∂η

∂Q1n(ηp,0,0)
∂λ

∂Q1n(ηp,0,0)
∂t

∂Q2n(ηp,0,0)
∂η

∂Q2n(ηp,0,0)
∂λ

∂Q2n(ηp,0,0)
∂t

∂Q3n(ηp,0,0)
∂η

∂Q3n(ηp,0,0)
∂λ

∂Q3n(ηp,0,0)
∂t




−→a.s.




f(ηp) −p(1 − p) −p(1 − q)

f(ηq) −p(1 − q) −q(1 − q)

0 f(ηp) f(ηq)


 =: S1.

Condition (iii) implies δ2 = (h2r + 2hrn−s + n−2s) = o(n−1/2). Hence



η̃E − ηp

λ̃E

t̃E


 = −S−1

1




Q1n(ηp, 0, 0)

Q2n(ηp, 0, 0)

0


+ op(n

−1/2).

This leads to

η̃E − ηp = c−1
0 [(1 − q)(qf(ηq) − pf(ηp))Q1n(ηp, 0, 0)

+p((1 − p)f(ηq) − (1 − q)f(ηp))Q2n(ηp, 0, 0)] + op(n
−1/2),

λ̃E = c−1
0 [−f2(ηq)Q1n(ηp, 0, 0) + f(ηp)f(ηq)Q2n(ηp, 0, 0)] + op(n

−1/2),

t̃E = c−1
0 [f(ηp)f(ηq)Q1n(ηp, 0, 0) − f 2(ηp)Q2n(ηp, 0, 0)] + op(n

−1/2).

Finally, the lemma follows directly from the above and the fact that

√
n

(
Q1n(ηp, 0, 0)

Q2n(ηp, 0, 0)

)
→L N

((
0

0

)
,

(
p(1 − p) p(1 − q)

p(1 − q) q(1 − q)

))
.

Proof of Theorem 2.1. By (2.8), (2.9) and Lemma 4.4, w11(η̃E) = λ(η̃E)
w12(η̃E)+t(η̃E)w3(η̃E) + op(n

−1/2), and w21(η̃E)=λ(η̃E)w3(η̃E) + t(η̃E)4w22(η̃E)

+op(n
−1/2). From these, Lemma 4.6, and a Taylor expansion, we get

−2 log R(θ0, η̃E)

= 2

(
nλ(η̃E)w11(η̃E) + nt(η̃E)w21(η̃E)

)

−
n∑

i=1

[λ(η̃E)w1(Xi, η̃E) + t(η̃E)w2(Xi, η̃E)]2 + op(1)

= nλ2(η̃E)w12(η̃E) + 2nλ(η̃E)t(η̃E)w3(η̃E) + nt2(η̃E)w22(η̃E) + op(1)

= nt2(η̃E)

[
f2(ηq)

f2(ηp)
w12(η̃E) − 2

f(ηq)

f(ηp)
w3(η̃E) + w22(η̃E)

]
+ op(1).

Finally, the proof follows from this, Lemma (4.6) and the fact that w12(η̃E) →
p(1 − p), w22(η̃E) → q(1 − q), w3(η̃E) → p(1 − q) a.s.
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