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Abstract: The paper considers improving the efficiency of parameter estimation of
the quasi-likelihood in generalized linear models. The improvement is offered by

employing the empirical likelihood and incorporating extra constraints which better
utilize the provided variance structure of the models. We recommend a particular

choice for the extra constraints to reduce the variance of the quasi-likelihood based
parameter estimators.
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1. Introduction

Let a scalar random variable Y be the response of a random vector X ∈ Rp

such that

E(Y |X) = G(Xτβ) and Var (Y |X) = σ2V {G(Xτ β)}, (1)

where β ∈ Rp is a vector of real parameters, G is a known smooth link function

and V is a known variance function. This is the framework of generalized linear

models under which the quasi-likelihood (Wedderburn (1974)) has been a popular

tool for semiparametric inference, see McCullagh and Nelder (1989). Let µ(β) =

G(Xτβ). The log quasi-likelihood ratio of β is defined as

Q{y;µ(β)} =

∫ µ(β)

y

y − u

V (u)
du.

Let (X1, Y1), . . . , (Xn, Yn) be an independent and identically distributed sample

from (1), and µi(β) = G(Xτ
i β). The joint quasi-likelihood ratio of the data is

n
∑

i=1

Q{Yi, µi(β)}. (2)

The maximum quasi-likelihood estimator of β is the root of

n
∑

i=1

{Yi − µi(β)}G′

(Xτ
i β)Xi

V {µi(β)} = 0, (3)
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which coincides with the optimal estimating function of Godambe (1960, 1976).

Wedderburn (1974) and McCullagh (1983) have shown that the quasi-likelihood

possesses some properties of a real likelihood. The maximum quasi-likelihood

estimator is optimal (smallest asymptotic variance) within the family of all the

linear estimating functions
∑

wi{Yi − µi(β)} = 0. Despite its good properties,

the quasi-likelihood only fully utilizes information on the mean structure of the

model assisted by the variance structure. Information on the variance has not

been fully utilized when the conditional distribution of Y given X is outside

the exponential family. Firth (1987) studied the efficiency of quasi-likelihood

relative to the maximum likelihood estimator outside the exponential family and

reported low efficiency in some cases. As a way to improve the efficiency, Firth

proposed a “refinement” based on knowledge of the third moment. Along the

same line Godambe and Thompson (1989) proposed to extend the estimating

functions based on knowledge of the third and fourth moments of the conditional

distribution of Y given X. To bring more information on the variance structure

into the modeling process, Nelder and Pregibon (1987) added an extra term

log{V (y)} in the quasi-score, while Smyth (1989) considered a sub-model for the

dispersion parameter σ2.

The approach taken in this paper does not assume knowledge of higher mo-

ments, nor a sub-model. To fully utilize information contained in V , we consider

using the empirical likelihood due to its ability to conduct a nonparametric in-

ference without knowledge of higher order moments of the distribution while

implicitly taking them into consideration. Empirical likelihood is a computer in-

tensive statistical method introduced by Owen (1988, 1990) as an alternative to

the bootstrap. Instead of resampling with an equal probability weight for all data

values like the bootstrap, the empirical likelihood chooses the weights by profiling

a multinomial likelihood under a set of constraints. The constraints reflect the

characteristics of the quantity of interest. An updated comprehensive overview

of the empirical likelihood is available in Owen (2001). Empirical likelihood has

been shown in a wide range of situations to have properties analogous to a real

likelihood, see Hall and La Scala (1990), Chen (1994, 1996), Qin and Lawless

(1994, 1995), Li (1995), Jing (1995) and others. Standard empirical likelihood

for generalized linear models has been considered by Kolaczyk (1994), based on

constraints derived from the score function of the quasi-likelihood. A general

framework of empirical likelihood based on estimating function is discussed in

Qin and Lawless (1994).

In this paper we propose an extended empirical likelihood for generalized

linear models that incorporates extra constraints which explore the provided

variance structure. What we propose is different from the approach taken to

find the optimal estimating functions which satisfies E{Yi − µi(β)} = 0 and
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E[{Yi − µi(β)}2 − σ2V (µi)] = 0. Following Godambe and Thompson (1989),

the latter approach, which abandons the original estimating functions based on

the quasi-score, leads to p + 1 estimating functions which depend on the third

and fourth order moments. Our approach is to keep the original estimating

function based on the quasi-score and to add extra constraints from the variance

structure. The total number of constraints will be larger than p + 1. Adding

these extra constraints is to (i) have a better usage of the provided information

on the variance, and (ii) produce more efficient estimators for β and σ2. A choice

of p + 1 extra constraints, which depends only on G, V and X, is recommended.

It is shown that the extended empirical likelihood is more efficient than the

quasi-likelihood when the conditional distribution of Y given X is outside the

exponential family. When the distribution is within the exponential family, the

empirical likelihood gives estimators which are as efficient as the quasi-likelihood

estimators. So, the extended empirical likelihood acts like an insurance policy

which provides protection against distributions outside the exponential family.

The paper is structured as follows. We review the empirical likelihood for

generalized linear models in Section 2. In Section 3, we introduce the extended

empirical likelihood based on extra constraints on the variance and obtain condi-

tions under which the inference based on the empirical likelihood is more efficient

than that based on the quasi-likelihood. The issue of how to select the extra con-

straints is discussed in Section 4. Results from a simulation study are reported

in Section 5. Proofs are given in the appendix.

2. Empirical Likelihood in Generalised Linear Models

For 1 ≤ i ≤ n, define Z
(1)
i (β) = {Yi − G(Xτ

i β)}G′(Xτ
i β)Xi/V {G(Xτ

i β)}
and Z

(2)
i (β, σ2) = {Yi − G(Xτ

i β)}2/σ4V {G(Xτ
i β)} − 1/σ2. Clearly Z

(1)
i is the

quasi-score associated with the i-th observation, and Z
(2)
i describes the variance

structure of the model. As E{Z (j)
i (β)} = 0 for j = 1 and 2, an empirical

likelihood for (β, σ2) is L(β, σ2) = max
∏n

i=1 pi subject to constraints

∑

piZ
(1)
i (β) = 0 and

∑

piZ
(2)
i (β, σ2) = 0, (4)

where p1, . . . , pn are nonnegative real numbers summing to unity.

As the number of constraints equals the number of parameters, it may be

shown that the optimal pi = n−1, i.e., Owen (1988). Thus, the maximum empir-

ical likelihood estimators for (β, σ2) are the solutions of

∑ {Yi − G(Xτ
i β)}G′(Xτ

i β)Xi

V {G(Xτ
i β)} = 0, (5)

∑ {Yi − G(Xτ
i β)}2

σ4V {G(Xτ
i β)} − 1

σ2
= 0. (6)
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This implies that the maximum empirical likelihood estimator for β is the same

as that of quasi-likelihood, and the estimator for σ2 is of the conventional form

σ̃2 =
∑ {Yi − G(Xτ

i β̂)}2

V {G(Xτ
i β̂)}

,

where β̂ is the quasi-likelihood estimator of β. The advantage of the empirical

likelihood in this case, as pointed out by Kolaczyk (1994), is in its construction

of confidence regions of natural shape and orientation, rather than in parameter

estimation.

The second constraint in (4) does not fully use the information on V . When

V
′

=: V ′(G[Xτβ]) 6= 0, the change of V as reflected in V
′

may contain useful

information on the variance structure. To utilize this information, a general form

of extra constraints is given by

∑

pi

(

[Yi − G(Xτ
i β)]2

σ4V {G(Xτ
i β)} − 1

σ2

)

w(Xτ
i β,Xi) = 0, (7)

where w is a r-dimensional weight function and 1 ≤ r ≤ p. We will show later

that adding these extra constraints leads to variance reduction in parameter

estimation.

Let ε = Y − G(Xτ β), V = V [G(Xτβ)], w = w(Xτ β,X), V ′ = V ′(G[Xτ β]),

Z
(3)
i (β, σ2) = ([Yi − G(Xτ

i β)]2/σ4V {G (Xτ
i β)} − 1/σ2)w(Xτ

i β,Xi) and Zi(β, σ2)

= (Z
(1)τ
i (β), Z

(2)τ
i (β, σ2), Z

(3)τ
i (β, σ2))τ .

We assume the following conditions.

C1: G(·) is twice continuously differentiable and V (·) is continuously differen-

tiable;

C2: E{Z1(β, σ2)Zτ
1 (β, σ2)} is non-singular;

C3: for some δ > 0, E{|ε|2 + ‖X‖}2+δ < ∞, E{|G′(Xτβ)| + V −1 + w}2+δ < ∞
and E{|G′′(Xτβ)| + |V ′|}1+δ < ∞;

C4: The matrix
(

E[∂Z1(β, σ2)/∂β], E[∂Z1(β, σ2)/∂σ2]
)

has full rank.

These conditions are standard in the theory of quasi-likelihood.

3. An Extended Empirical Likelihood

The extended empirical likelihood for β and σ2 is L(β, σ2) = max
∏n

i=1 pi,

where p1, . . . , pn are nonnegative real numbers summing to unity and are subject

to structure constraints
∑

piZi(β, σ2) = 0. (8)

There are q = p + 1 + r constraints for p + 1 parameters. As the total number of

the constraints is larger than the number of parameters, the maximum empirical
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likelihood estimator for β is different from that based on the quasi-likelihood.

This is an empirical likelihood within the framework of estimating functions

considered in Qin and Lawless (1994). While Qin and Lawless showed that

the variance of the maximum empirical likelihood estimators does not increase

with extra constraints added, we are interested here in the construction of extra

constraints to achieve best possible reduction in the variance.

Let `(β, σ2) = −2 log{nnL(β, σ2)} be the log empirical likelihood ratio.

Then, according to a standard procedure of optimization using the Lagrange

multipliers (Owen (1988)), `(β, σ2) = 2
∑n

i=1 log{1 + λτZi(β, σ2)}, where λ ∈ Rq

satisfies

Q1n(β, σ2, λ) :=
n
∑

i=1

Zi(β, σ2)

1 + λτZi(β, σ2)
= 0. (9)

Differentiating `(β, σ2) with respect to (β, σ2), we have from (9) that

∂`(β, σ2)

∂β
= λτ

n
∑

i=1

∂Zi(β, σ2)/∂β

1 + λτZi(β, σ2)
:= Q2n(β, σ2, λ), (10)

∂l(β, σ2)

∂σ2
= λτ

n
∑

i=1

∂Zi(β, σ2)/∂σ2

1 + λτZi(β, σ2)
:= Q3n(β, σ2, λ).

Let A = E[Z1(β, σ2)Zτ
1 (β, σ2)] and B =

(

E
(

∂Z1(β,σ2)
∂β

)

, E
(

∂Z1(β,σ2)
∂σ2

))

. Accord-

ing to Qin and Lawless (1994), under the conditions C1−C4, the empirical like-

lihood ratio `(β, σ2) attains its minimum at (β̂, σ̂2) and λ̂ = λ(β̂, σ̂2) such that

Q1n(β̂, σ̂2, λ̂) = 0, Q2n(β̂, σ̂2, λ̂) = 0, Q3n(β̂, σ̂2, λ̂) = 0; and
( √

n(β̂ − β)√
n(σ̂2 − σ2)

)

d−→ N(0,Σ),

where Σ = (BτA−1B)−1. So, the asymptotic variances of the empirical likeli-

hood estimators
√

nβ̂ and
√

nσ̂2 are respectively Σβ̂ = (Ip, 0)Σ(Ip, 0)
τ and Σσ̂2 =

(0, 1)Σ(0, 1)τ . The corresponding asymptotic variance of the quasi-likelihood es-

timator for β, denoted by β̃ql, is Σβ̃ql
= σ2{E[G′(Xτβ)2XXτ/V ]}−1. A standard

estimator for σ2 is σ̃2 = n−1∑{Yi−G(Xτ
i β̃ql)}2/V {G(Xτ

i β̃ql)} whose asymptotic

variance is denoted by Σσ̃2 .

Put µ3(X) = E[(ε/(σ
√

V ))3 | X] and µ4(X) = E[(ε/(σ
√

V ))4 | X]. To

simplify notation, we write them as µ3 and µ4. Define

A11 = σ4Σ−1
β̃ql

= σ2E
[G′(Xτβ)2

V
XXτ

]

,

A22 =







E
[

µ4−1
σ4

]

E
[µ4 − 1

σ4
wτ
]

E
[µ4 − 1

σ4
w
]

E
[µ4 − 1

σ4
wwτ

]






,
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A12 =

(

E
[µ3G

′(Xτβ)

σ
√

V
X
]

, E
[µ3G

′(Xτβ)

σ
√

V
Xwτ ]

)

,

B1 =

(

E
[V ′G′(Xτβ)

σ2V
X
]

, E
[V ′G′(Xτβ)

σ2V
Xwτ

]

)

and B2 =

(

1

σ4
, E
[wτ

σ4

]

)

.

Then,

A =

(

A11 A12

Aτ
12 A22

)

and Bτ = −
(

σ−2A11 B1

0 B2

)

.

For a d×d non-negative definite symmetric matrix M we write M ≥l 0 if M

has exactly l(≤ d) positive eigenvalues. Moreover, define ∆ = (Aτ
12 − Bτ

1 ,−Bτ
2 )τ .

Theorem 1. (i) Under conditions C1−C4, Σβ̃ql
−Σβ̂ ≥l−1 0 where l = rank(∆).

(ii) The asymptotic variance of σ̂2 is less than the asymptotic variance of σ̃2 if

and only if l > 1.

Remark 1. Given a choice of weight w, the rank l depends on µ3 = µ3(X) but

is free of the fourth moment µ4(X). If the rank l = p + 1, then there will be

reduction in variance of β̃ql in all directions.

Remark 2. If l = 1 (note that l ≥ 1), there will be no reduction in the

variance, which is also implied by Corollary 3 of Qin and Lawless (1994). This

happens when the conditional distribution of Y given X is within the exponential

family. This means that the extended empirical likelihood does not offer any

improvement over (but has the same efficiency as) the quasi-likelihood. This is

not surprising as, within the exponential family, the quasi-likelihood estimator

is optimal and the information on the variance has been fully represented by the

mean structure. The extended empirical likelihood function acts like an insurance

policy that provides protection against departure from the exponential family.

4. Choosing the Weight

We discuss the choice of the weight function w in order to achieve variance

reduction. Ideally we are tempted to find a w such that

Σβ̃ql
− Σβ̂(w) is maximized among all choices of w, (11)

where β̂(w) is the extended empirical likelihood estimator of β based on the

weight w. (Here, for two non-negative definite symmetric matrices T and S of

the same order, T is said to be larger than S (written T > S) if T − S ≥l 0 for

some positive integer l). However, an optimal w free of unknown quantities is

difficult, if not impossible, to obtain. The following theorem suggests a particular

weight function.
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Theorem 2. If E(ε3|X)=0, E(ε4|X)=κσ4V 2 for some κ>1 and Cov(V ′GX/V )

> 0, then the optimal weight function under (11) is

w?(Xτβ,X) = V ′{G(Xτ β)}G′(Xτβ)X/V {G(Xτ β)}. (12)

Note that under the conditions of Theorem 2, ∆ = (Aτ
12 − Bτ

1 , −Bτ
2 )τ has

full rank p + 1 if w? is used as the weight function.

Now we consider the case when µ3(X) 6= 0. Let γ =:
(

µ3(X) − V ′

σ
√

V

)

G′X
σ
√

V

and P = Ir+1 − A
−1/2
22.1 Bτ

2 (B2A
−1
22.1B

τ
2 )−1B2A

−1/2
22.1 be the projection matrix onto

the column space of A
−1/2
22.1 Bτ

2 . It may be shown that

Σβ̂(w) =

(

σ−4A11 + (A12 − B1)A
−1/2
22.1 PA

−1/2
22.1 (A12 − B1)

τ
)−1

.

According to (11), we want to find a w such that (A12 −B1)A
−1/2
22.1 PA

−1/2
22.1 (A12 −

B1)
τ is as large as possible. As A12 −B1 =

(

E(γ), E(γwτ )
)

and PA
−1/2
22.1 Bτ

2 = 0,

(A12 − B1)A
−1/2
22.1 PA

−1/2
22.1 (A12 − B1)

τ

= [(E(γ), E(γwτ )) − σ4E(γ)B2]A
−1/2
22.1 PA

−1/2
22.1 [(E(γ), E(γwτ ))τ − σ4Bτ

2E(γ)τ ]

= [0, E(γwτ ) − E(γ)E(wτ )]A
−1/2
22.1 PA

−1/2
22.1 [0, E(γwτ ) − E(γ)E(wτ )]τ

= Cov (γ,w)Γ(w)Cov (γ,w)τ ,

where Γ(w) = (0, Ip)A
−1/2
22.1 PA

−1/2
22.1 (0, Ip)

τ > 0. The task of finding w to maximize

Cov (γ,w)Γ(w)Cov (γ,w)τ is not trivial due to the complexity of Γ(w). If some

additional assumptions on µ3(X) and µ4(X) are given, it may be possible to find

the optimal w within a confined family of distributions.

When µ3(X) and µ4(X) are unknown, the choice of w? is supported by

the following heuristic arguments. Let Zi be a random variable that has the

same mean and variance structure as {Yi − G(Xτ
i β)}2, that is E(Zi|Xi) =

σ2V {G(Xτ
i β)} and Var (Zi|Xi) = {µ4(Xi) − 1}σ4V 2{G(Xτ

i β)}. The optimal

estimating function within the family of
∑

[Zi − σ2V {G(Xτ
i β)}]wi = 0 is

∑ {Yi − G(Xτ
i β)}2 − σ2V {G(Xτ

i β)}
(µ4 − 1)σ2V 2{G(Xτ

i β)} V ′{G(Xτ
i β)}G′(Xτ

i β)Xi = 0,

which is equivalent to

∑

[{Yi − G(Xτ
i β)}2

V {G(Xτ
i β)} − σ4

]

V ′{G(Xτ
i β)}G′(Xτ

i β)Xi

{µ4(X) − 1}V {G(Xτ
i β)} = 0.

This indicates w?/{µ4(X) − 1} is the optimal weight and would be close to w?

if µ4(X) is close to a constant. So, the extended empirical likelihood is based
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on 2p + 1 estimating functions with the first p + 1 being the standard quasi-

likelihood estimating functions for the mean, and the last p being “close” to the

quasi-likelihood estimation functions for the variance.

When w? is used as the weight function,

∆ =

(

A12 − B1

−B2

)

=









E
{(

µ3(X) − V ′

σ
√

V

)G′(Xτβ)X√
V

}

E
{(

µ3(X) − V ′

σ
√

V

)G′(Xτβ)X√
V

w?τ
}

1

σ4
E
(w?τ

σ4

)









.

This matrix has rank p + 1 if and only if E[{µ3(X) − V ′/(σ
√

V )}G′(Xτβ)×
Xw?τ /

√
V ] has rank p. When this happens, there will be reduction in variance

in all directions, according to Theorem 1.

5. Simulation Results

In this section we report some simulation results to show the performance

of the extended empirical likelihood estimators. The following generalized linear

models were considered in the simulation: Yi = G(Xτ
i β) + σV 1/2{G(Xτ

i β)}εi,

where G(t) = exp(t), V (t) = t2, Xi = (Xi1, Xi2)
τ were independent and iden-

tically uniformly distributed in [0, 2] × [0, 2] and εi were i.i.d. random variables

independent of Xi, with zero expectation. We chose two distributions for εi:

the standard normal N(0, 1) and the uniform[−1, 1]. The parameter values were

β1 = 0.1, β2 = 0.2 and σ = 0.5.

The recommended weight w? given in (12) was used to set up the extended

empirical likelihood for (β, σ2). The conjugate gradient method was used to

search for the optimal empirical likelihood parameter estimates by modifying a

routine given in Press, Teukolsky, Vetterling and Flannery (1992). The sample

size used in the simulation ranged from 60 to 200.

The simulation results are summarized in Figure 1 for normal errors, and in

Figure 2 for uniform errors, based on 500 simulations. We observe from these

figures that the variances of the extended empirical likelihood estimates for β1

and β2 were substantially smaller than their quasi-likelihood counterparts for

both types of error distributions. The results on the mean square errors of

the estimates show that the reduction in variance by the extended empirical

likelihood came at no cost in bias. At the same time, the simulation shows

that the extended empirical likelihood offered only small improvement on the

estimation of σ2. This is not unexpected within our theory.
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Figure 1. Standard deviations and root mean square errors of quasi-likelihood
(in solid lines) and extended empirical likelihood likelihood (in dashed lines)
estimates for (β1, β2, σ

2), with normally distributed errors.
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Figure 2. Standard deviations and root mean square errors of quasi-likelihood
(in solid lines) and extended empirical likelihood likelihood (in dashed lines)
estimates for (β1, β2, σ

2), with uniformly distributed errors.
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Appendix A. Proof of Theorem 1

(i) Let A22.1 = A22 − A21A
−1
11 A12, non-singular when A is which is non-

singular. Then,

Σ−1 = BτA−1B =

(

σ−4A11 0

0 0

)

+ Bτ

(

A−1
11 A12

−Ir+1

)

A−1
22.1

(

A21A
−1
11 ,−Ir+1

)

B

=

(

σ−4A11 0

0 0

)

+ D, (13)

where D = ∆A−1
22.1∆

τ and ∆ =

(

A12 − B1

−B2

)

. Clearly rank(D) = rank(∆) = l.

Let D1 = Ip − (Ip, 0){
(

Ip 0

0 0

)

+ C}−1(Ip, 0)
τ and

C = σ4

(

A
−1/2
11 0

0 1

)

D1

(

A
−1/2
11 0

0 1

)

.

Then, Σβ̃ql
− Σβ̂ = σ4A−1

11 − (Ip, 0)
(

BτA−1B
)−1

(Ip, 0)
τ = σ4A

−1/2
11 D−1

1 A
−1/2
11 . If

l = 1, C can be written as C = (bτ
1 , b2)

τ (bτ
1 , b2), where b1 ∈ Rp+1, b2 =

√
d > 0

for some d > 0. Then

D1 = Ip−(Ip, 0)

(

Ip + b1b
τ
1 b2b1

b2b
τ
1 b2

2

)−1

(Ip, 0)
τ = Ip−(Ip+b1b

τ
1−b2b1b

−2
2 b2b

τ
1)

−1 = 0,

which means that
Σβ̃ql

− Σβ̂ = 0 if l = 1. (14)

If l > 1, C can be written as

C =

(

A−1/2 0

0 1

)

B

(

A−1/2 0

0 1

)

=:

(

C11 C2

Cτ
2 bp+1,p+1

)

for some bp+1,p+1 6= 0. Then

D1 = Ip −
(

Ip, 0
)

(

Ip + C11 C2

Cτ
2 bp+1,p+1

)−1
(

Ip, 0
)τ

= Ip −
(

Ip + C11 − b−1
p+1,p+1C2C

τ
2

)−1
.
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As C11−b−1
p+1,p+1C2C

τ
2 is non-negative definite and has rank l−1, there exists an

orthogonal matrix U such that U τ
(

C11 − b−1
p+1,p+1C2C

τ
2

)

U = diag(η1, . . . , ηl−1,

0, . . . , 0), where η1, . . . , ηl−1 are the positive eigenvalues of C11 − b−1
p+1,p+1C2C

τ
2 .

So, D1 = U diag(1 − (1 + η1)
−1, . . . , 1 − (1 + ηl−1)

−1, 0, . . . , 0)U τ and Σβ̃ql
−

Σβ̂ =σ4A
−1/2
11 U diag(1 − (1 + η1)

−1, . . . , 1 − (1 + ηl−1)
−1, 0, . . . , 0)U τA

−1/2
11 ,which

complete the proof of (i).

(ii) The asymptotic variance of σ̂2 is (0, 1)Σ−1(0, 1)τ . Denote

A22.1 = A22 − A21A
−1
11 A12 =

(

a A1

Aτ
1 A2

)

and

(

A12 − B1

−B2

)

= (b,B3),

where a is a non-zero scalar, A2 is a non-singular square matrix and b a r + 1

dimensional vector. Then

BτA−1B =

(

σ−4A11 0

0 0

)

+ (b,B3)A
∗−1
22.1(b,B3)

τ

=

(

σ−4A11 0

0 0

)

+ (b,B3)

((

a−1 0

0 0

)

+ A3A
τ
3

)

(b,B3)
τ

=: A∗
1 + (b,B3)A3A

τ
3(b,B3)

τ ,

where

A∗
1 =

(

σ−4A11 0

0 0

)

+
bbτ

a
, Aτ

3 = A
∗−1/2
22.1

(

Aτ
1/a −Ir

)

and A∗
22.1 = A2−A1A

τ
1/a.

Note that A∗
1 is non-singular as the (r+1)-th element of b, br+1 =1/σ4 6=0. Hence,

(0, 1)Σ(0, 1)τ =(0, 1)[Bτ A−1B]−1(0, 1)τ=(0, 1)[A∗
1+(b,B3)A3A

τ
3(b,B3)

τ ]−1(0, 1)τ .

Notice that the rank of (b,B3)A3A
τ
3(b,B3)

τ = l = rank (∆), and Σσ̃2 = (0, 1)×
A∗−1

1 (0, 1)τ . Using the same argument as in proving (i), (ii) can be established.

Appendix B. Proof of Theorem 2

Lemma 1. Let ξ be a q-variate and η be a p-variate random vector where

q ≤ p, E(‖ξ‖2 + ‖η‖2) < +∞ and E(ξξτ ) > 0, then E(ηξτ )[E(ξξτ )]−1E(ξητ ) ≤
E(ηητ ). Furthermore, equality holds if and only if η = Cξ a.s., where C =

E(ηξτ )[E(ξξτ )]−1.

Proof. Let C = E(ηξτ )[E(ξξτ )]−1. As E(‖ξ‖2 + ‖η‖2) < +∞, we have

E[(Cξ − η)(Cξ − η)τ ] ≥ 0, which implies that CE(ξξτ )Cτ − Cξητ − ηξτCτ +

ηητ ≥ 0. Substituting C = E(ηξτ )[E(ξξτ )]−1 into the above inequality, we

have E(ηξτ )[E(ξξτ )]−1E(ξητ ) ≤ E(ηητ ). If the equality holds, it means that

E[(Cξ − η)(Cξ − η)τ ] = 0, and then η = Cξ a.s.
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Proof of Theorem 2. Under the assumptions, with D0 = Cov (w),

BτA−1B =

(

σ−4A11 0

0 0

)

+ B1

(

A−1
22.1 −

A−1
22.1B

τ
2B2A

−1
22.1

B2A
−1
22.1B

τ
2

)

Bτ
1 ,

A−1
22.1 =

σ4

κ − 1

(

1 + E(wτ )D−1
0 E(w) −E(wτ )D−1

0

−D−1
0 E(w) D−1

0

)

,

Bτ
2B2 =

1

σ8

(

1 E(w)

E(wτ ) E(w)E(wτ )

)

and
A−1

22.1B
τ
2B2A

−1
22.1

B2A
−1
22.1B

τ
2

=
σ4

κ − 1

(

1 0

0 0

)

.

Therefore,

B1

(

A−1
22.1 −

A−1
22.1B

τ
2B2A

−1
22.1

B2A
−1
22.1B

τ
2

)

Bτ
1 =

σ4

κ − 1
B1

(

E(wτ ),−1
)

D−1
0

(

E(wτ ),−1
)τ

Bτ
1

=: g(w)gτ (w)/(κ − 1),

where g(w) = (E[V ′G′(Xτβ)Xwτ/V ] − E[V ′G′(Xτβ)X/V ]E(wτ ))D
−1/2
0 =

E((V ′G′(Xτβ)X/V )[wτ − E(wτ )]D
−1/2
0 ).

Now Σβ̂(w) = (Ip, 0)Σ
−1(Ip, 0)

τ = ((A11/σ
4) + (g(w)g(w)τ /κ − 1))−1. For

two k×k positive definite symmetric matrices T and S, T −S > 0 iff T −1−S−1 <

0. So finding a w to maximize Σβ̃ql
−Σβ̂(w) is equivalent to finding w to maximize

g(w)g(w)τ .

As Cov [V ′G′(Xτβ)X/V ] > 0, applying Lemma 1 we have g(w)g(w)τ ≤
E{[V ′G′(Xτβ)]2XXτ/V 2}, and the equality holds if and only if r = p and

w = [Cov {V ′G′(Xτβ)X/V }]−1/2V ′G′(Xτβ)X/V . The standardization by

[Cov {V ′G′(Xτβ)X/V }]−1/2 is unnecessary, and the optimal weight is w =

V ′G′(Xτβ)X/V . This completes the proof.
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