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Abstract: Linear models are useful alternatives to the Cox (1972) proportional haz-

ards model for analyzing censored regression data. This article develops empirical

likelihood methods for linear regression analysis of right censored data. An adjusted

empirical likelihood is constructed for the vector of regression coefficients using a

synthetic data approach. The adjusted empirical likelihood is shown to have a cen-

tral chi-squared limiting distribution, which enables one to make inference using

standard chi-square tables. We also derive an adjusted empirical likelihood method

for linear combinations of the regression coefficients. In addition, we discuss how

to incorporate auxiliary information. A small simulation study is carried out to

highlight the performance of the adjusted empirical likelihood methods compared

with the traditional normal approximation method. It shows that the empirical

likelihood confidence intervals tend to have more accurate coverage probabilities

than the normal theroy intervals. An illustration is given using the Stanford Heart

Transplant data.

Key words and phrases: Confidence intervals, linear models, right censoring, syn-

thetic data.

1. Introduction

Owen (1991) and Chen (1993, 1994) derived empirical likelihood inference

procedures for linear models. The empirical likelihood methods have sampling

properties similar to those of the bootstrap and have wider validity than the usual

parametric procedures. They also have the appealing feature that the shape and

orientation of the resulting confidence regions are determined entirely by the

data. In contrast, it would be difficult to determine the 1 − α central fraction of

a point cloud with the bootstrap method when the dimension is two or higher.

In survival analysis, the survival time of interest is often not completely

observed. For example, a common situation is that of right censoring where, due

to the end of follow-up or occurrence of competing events, the survival times

of some individuals are not observed, but are known to be greater than some

observed values. The purpose of this paper is to extend the empirical likelihood

method to linear regression analysis for right censored survival data. Linear
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models provide useful alternatives to the popular Cox (1972) model for analysis

of survival data when the proportional hazards assumption fails to hold.

Specifically, assume that one observes n i.i.d. triples (Xi, Ỹi, δi) = (Xi, Yi ∧
Ci, I[Yi ≤ Ci]), i = 1, . . . , n, where for subject i, Yi is a known monotone trans-

formation of the survival time of interest, Ci is the corresponding censoring time

and Xi = (Xi1, . . . , Xip)
τ is a vector of p covariates. Consider the linear model

Yi = Xτ
i β0 + εi, i = 1, . . . , n, (1)

where β0 is an (unknown) column vector of regression coefficients, εi = Yi −
E(Yi|Xi), and Ci is independent of (Xi, Yi), i = 1, . . . , n. Note that the distribu-

tion of εi is completely unknown and that Var (ε|X = x) is allowed to depend on

x. In the absence of censoring, this model reduces to the linear model studied

by Owen (1991) who gave a nice discussion of why empirical likelihood is ade-

quate for linear models with heteroscedastic error terms (Owen (1991), Section

5.1). In this paper, we develop empirical likelihood inference for β0 and its linear

combinations based on right censored data (Xi, Ỹi, δi), i = 1, . . . , n.

Apparently the results of Owen (1991) and Chen (1993, 1994) for complete

data do not apply to censored data since the Yi’s are not always observed. A

possible solution is to consider a synthetic data approach, used by Koul, Susarla

and Ryzin (1981), Leurgans (1987) Srinivasan and Zhou (1991) and Zhou (1992),

to derive least squares estimates of β0. For simplicity, we proceed with Koul et

al.’s (1981) proposal. The basic idea is to first introduce a synthetic response

variable whose expectation is close to that of Yi. This is done in Section 2. A

complete data empirical likelihood is then constructed for β0 from the synthetic

data as if they were i.i.d. observations. Because the synthetic data are in fact

dependent, standard chi-square tables do not directly apply. By examining an

asymptotic expansion of the empirical likelihood, we introduce an empirical ad-

justment and show that the adjusted empirical log-likelihood has an asymptotic

standard chi-square distribution. The adjustment factor reflects the information

loss due to censoring. In the absence of censoring, our adjusted empirical like-

lihood reduces to the standard one of Owen (1991). It is worth noting that a

similar technique was used by Kitamura (1997) who developed a so-called block

empirical likelihood using an adjustment factor in a dependent process model.

We also consider the problem of making empirical likelihood inference for

linear combinations of the regression coefficients. Examples of linear combina-

tions include a single coefficient, a subset of coefficients, and contrasts. For the

complete data problem, Chen (1994) showed that the empirical likelihood still

has a standard chi-square limiting distribution after the nuisance parameters are

profiled out. However, it is not clear whether or not the same can be said for

censored data. Moreover, profiling the nuisance parameters involves constrained
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optimization which may not be an easy task in high dimensional cases. Instead

of using a profile likelihood, we replace the nuisance parameters by their least

squares estimates and derive an adjusted empirical likelihood with an appropriate

adjustment factor.

We further extend the adjusted empirical likelihood method to situations

where there is available auxiliary information on X. The results are useful in

instances where some population characteristics of the covariate X are known.

For example, one may know the mean or median of X, or that the population

distribution is symmetric about a known constant.

The use of a likelihood ratio in nonparametric settings dates back at least

to Thomas and Grunkemeier (1975) who derived nonparametric likelihood ratio-

based confidence intervals for survival probabilities. Its first theoretical develop-

ment was due to Owen (1988, 1990), who introduced empirical likelihood con-

fidence regions for the mean of a random vector based on i.i.d. observations.

During the last decade, empirical likelihood has been extended to a wide range

of applications including, among others, linear models (Owen (1991) and Chen

(1993, 1994)), generalized linear models (Kolaczyk (1994), Chen and Cui (2002)),

quantile estimation (Chen and Hall (1993), Zhou and Jing (2002)), biased sample

models (Qin (1993)), generalized estimating equations (Qin and Lawless (1994)),

truncation models (Li (1995a)), dependent process model (Kitamura (1997)),

partial linear models (Wang and Jing (1999)), mixture proportions (Qin (1999)),

random censorship models (Hollander, McKeague and Yang (1997), Li, Hollan-

der, McKeague and Yang (1996), Adimari (1997), Li (1995b), Murphy (1995)),

Li and Van Keilegom (2002), Wang and Li (2002), Wang and Jing (1999) and

Wang and Wang (2001)), and confidence tubes for multiple quantile plots (Ein-

mahl and McKeague (1999)). Some nice discussion of properties of empirical

likelihood can be found in DiCiccio, Hall and Romano (1991), Hall (1992), and

Hall and Scala (1990), and elsewhere.

The paper is organized as follows. In Section 2, we derive an adjusted empir-

ical likelihood for making inference for β0. A Wilks-type theorem is established.

It ensures that the resulting adjusted empirical likelihood confidence region has

asymptotically correct coverage probability. In Section 3, we develop an adjusted

empirical likelihood method for combinations of the regression coefficients. In

Section 4, we describe how to incorporate auxiliary information. In Section 5, we

conduct a small simulation study to compare the adjusted empirical likelihood

method with the traditional normal approximation method. An illustration is

given using the Stanford Heart Transplant data. In Section 6, we note some limi-

tations of the synthetic data approach and discuss possible extensions that could

lead to better empirical likelihood procedures. Proofs are given in the appendix.
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2. Adjusted Empirical Likelihood for Global Inference

In this section we derive an adjusted empirical likelihood (ADEL) method to
make global inference for β0. From now on, we assume that E(XiX

τ
i ) is positive

definite.
Define a synthetic variable YiG = Ỹiδi/(1 −G(Ỹi−)), i = 1, . . . , n, where G is

the cumulative distribution function of the censoring time Ci. It can be verified

that E(YiG | Xi) = E(Yi | Xi). Hence, under the linear model (1), we have

YiG = Xτ
i β0 + ei, (2)

where ei = YiG −E(YiG | Xi).
It follows from (2) that β0 = (EXiX

τ
i )−1E(XiYiG), or EXi(YiG−Xτ

i β0) = 0.
Therefore, for a given β, the problem of testing H0 : β0 = β is equivalent to

testing E(Wi(β)) = 0 based on n i.i.d. observations Wi(β) = Xi(YiG − Xτ
i β),

i = 1, . . . , n.
If G were known, one could test EWi(β) = 0 using the empirical likelihood

of Owen (1990):

ln(β) = −2 sup

{

n
∑

i=1

log(npi)
∣

∣

∣

n
∑

i=1

piWi(β) = 0,
n
∑

i=1

pi = 1, pi ≥ 0, i = 1, . . . , n

}

.

It follows from Owen (1990) that, under H0 : β0 = β, ln(β) has an asymptotic
central chi-sqaure distribution with p degrees of freedom. An essential condition
for this result to hold is that the Wi(β)’s in the linear constraint are i.i.d. random

variables.
Unfortunately, the censoring distribution G is generally unknown and thus

ln(β) cannot be computed since it depends on G. A natural solution is to replace

G by its Kaplan-Meier (1958) estimator in ln(β). Specifically, let Win(β) =
Xi(YiĜn

−Xτ
i β), where Ĝn(t) is the Kaplan-Meier estimator of G given by

1 − Ĝn(t) =
n
∏

i=1

[

n− i

n− i+ 1

]I[Ỹ(i)≤t,δ(i)=0]

,

Ỹ(1) ≤ · · · ≤ Ỹ(n) are the order statistics of the Ỹ -sample, and δ(i) is the δ

associated with Ỹ(i), i = 1, . . . , n. An estimated empirical log-likelihood is defined

by

l̃n(β) = −2 sup

{

n
∑

i=1

log(npi)
∣

∣

∣

n
∑

i=1

piWin(β) = 0,
n
∑

i=1

pi = 1, pi ≥ 0, i = 1, . . . , n

}

.

It is easy to show that

l̃n(β) = 2
n
∑

i=1

log{1 + λτWin(β)}, (3)
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where λ is the solution of the equation

1

n

n
∑

i=1

Win(β)

1 + λτWin(β)
= 0. (4)

Because Win(β), i = 1, . . . , n, are dependent, l̃n(β) no longer has an asymp-

totic standard chi-square distribution. In the appendix (Remark A.1), we show

that l̃n(β0) converges in distribution to
∑p

i=1 wlχ
2
1,l where the χ2

1,l are indepen-

dent χ2
1 random variables, the weights wl are eigenvalues of Σ−1

1 (β0)(Σ1(β0)−Σ2),

and Σ1(β0) and Σ2 are defined by (C.Σ1) and (C.Σ2) in the appendix. Although

the weights could be estimated from data, Monte Carlo simulations would be

needed to compute percentiles of the limiting distribution even if the weights were

known. Instead of estimating the distribution of l̃n(β) directly, we present an-

other method by introducing an adjustment factor for l̃n(β) so that the adjusted

empirical likelihood function has an asymptotic standard chi-square distribution.

The following notations are needed. Let F denote the distribution of Yi. Let

F̂n be the Kaplan-Meier estimator of F . Let Qn(s) = (
∑n

i=1 I[Ỹi ≤ s])/n,

Hn(s) =
1
n

∑n
i=1XiYiĜn

I[s < Ỹi]

(1 − Ĝn(s))(1 − F̂n(s−))
,

ΛĜn
n (t) =

∫ t

0

1

1 − Ĝn(s−)
dĜn(s) =

1

n

n
∑

i=1

(1 − δi)I[Ỹi ≤ t]

1 −Qn(Ỹi)
,

Σ̂1n(β) =
1

n

n
∑

i=1

XiX
τ
i (Y

iĜn
−Xτ

i β)2,

Σ̂2n =
1

n

n
∑

i=1

(1 − δi)(Hn(Ỹi)H
τ
n(Ỹi)(1 −4ΛĜn

n (Ỹi)),

Σ̂n(β) = Σ̂1n(β) − Σ̂2n,

Sn(β) =

(

1√
n

n
∑

i=1

Win(β)

)(

1√
n

n
∑

i=1

Win(β)

)τ

.

The adjusted empirical likelihood function is defined by

l̂n,ad(β) = rn(β)l̃n(β), (5)

where rn(β) = tr(Σ̂−1
n (β)Sn(β))/ tr(Σ̂−1

1n (β)Sn(β)). The adjustment factor can

be derived by examining the leading term in the asymptotic expansion of l̃n(β)

given in the proof of Theorem 2.1 in the appendix. Another way of motivat-

ing rn(β) is to use a result of Rao and Scott (1981) who showed that the

distribution of r̃(β0)
∑p

i=1 wiχ
2
1,i may be approximated by χ2

p, where r̃(β0) =
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p/ tr{Σ−1
1 (β0)Σ(β0)}, tr(·) denoting the trace operator. Note that r̃(β0) can

also be written as r̃(β0) = tr{Σ−1(β0)Σ(β0)}/ tr{Σ−1
1 (β0)Σ(β0)}. Replacing

Σ−1(β0),Σ
−1
1 (β0) and Σ(β0) in r̃(β0) by the sample estimates Σ̂−1

n (β0), Σ̂−1
1n (β0)

and Sn(β0), respectively, leads to the expression for rn(β0).

Theorem 2.1. Assume that the conditions (C.XY), (C.FG), (C.Σ1) and (C.Σ2)

listed in the appendix hold.

(a) As n → ∞, l̂n,ad(β0)
d−→χ2

p, where χ2
p is a standard chi-square random vari-

able with p degrees of freedom.

(b) For 0 < α < 1, define Iα = {β : l̂n,ad(β) ≤ χ2
p,α}, where χ2

p,α is the upper αth

percentile of the χ2
p distribution. Then limn→∞ P (β0 ∈ Ia) = 1 − α.

(c) Define Ie = {β : l̃n(β) ≤ χ2
p,α}. Then limn→∞ P (β0 ∈ Ie) > 1 − α.

Remark 2.1. It can be shown that, under mild conditions, rn(β) is always

greater than or equal to 1. This implies that the adjusted interval Ia is a subset

of the unadjusted interval Ie. Furthermore, if δi = 1 for all i, then rn(β) ≡ 1

and Y
iĜn

= Yi for all i. Therefore the adjusted empirical likelihood reduces to

Owen’s (1991) empirical likelihood in the absence of censoring.

Remark 2.2. Theorem 2.1 (b)-(c) show that the asymptotic confidence level of

Ia is 1 − α and that of Ie exceeds 1 − α. In Section 5 we present a simulation

study which indicates that, for small samples, the actual confidence level of Ia

tends to be lower than 1 − α, especially when there is heavy censoring. In such

cases, Ie showed smaller coverage probability errors than Ia since it is wider than

Ia. For large samples, however, Ia is preferred to Ie since it is narrower and is

expected to have a smaller coverage error, Theorem 2.1 (b)-(c) and simulation.

3. Adjusted Empirical Likelihood for Linear Combinations of β0

This section extends the adjusted empirical likelihood method to make in-

ference for a vector of linear combinations θ0 = Cβ0 of β0, where C = (C1, C2),

C1 is a k × k matrix and C2 is a k × (p − k) matrix (k ≤ p − 1). For example,

θ0 is the subvector of the first k regression coefficients if C1 = Ik and C2 = 0.

If k = 1, then θ0 reduces to a single linear combination, which includes an indi-

vidual regression coefficient and the mean response at a given X level as special

cases. Without loss of generality, we assume C−1
1 exists.

Let γ0 = (θτ
0 , β

τ
0(k))

τ , where β0(k) denotes the column subvector of the last

p− k elements of β0. Write Xi = (Xτ
i1 ,X

τ
i2)

τ , where X i1 and X i2 are k× 1 and

(p − k) × 1 subvectors. Let X̃ i = (X̃
τ

i1 , X̃
τ

i2) = (X̃
τ

i1C
−1
1 , X̃

τ

i2 − X̃
τ

i1C
−1
1 C2)

τ .

Then, model (1) reduces to Yi = X̃
τ

i γ0 + εi, i = 1, . . . , n.

Let γ̂n(G) = (
∑n

i=1 X̃ iX̃
τ

i )
−1(
∑n

i=1 X̃iYiG) and let β̂n(k)(G) denote the sub-

vector of the last p − k elements of γ̂n(G). Note that E{X̃ i1(YiG − X̃
τ

i1θ0 −



EMPIRICAL LIKELIHOOD REGRESSION ANALYSIS 57

X̃
τ

i2β̂n(k)(G))} = 0, i = 1, . . . , n. Similar to the previous section, for a given θ,

we introduce the auxiliary variables uin(θ) = X̃i1(YiĜn
− X̃

τ

ilθ− X̃
τ

i2β̂n(k)(Ĝn)),

i = 1, . . . , n, and define an estimated empirical likelihood function lnk(θ) =

2
∑n

i=1 log(1 + λτuin(θ)), where λ satisfies
∑n

i=1 uin(θ)/[1 + λτuin(θ)] = 0.

Again, an adjustment factor is needed for lnk(θ0) to have a central chi-square

limiting distribution. Write

1

n

n
∑

i=1

X̃iX̃
τ

i =





1
n

∑n
i=1 X̃ i1X̃

τ

i1, Kτ
n

Kn, Pn



 .

Let

ηni = X̃i1 −




1

n

n
∑

j=1

X̃j1X̃
τ

j









1

n

n
∑

j=1

X̃jX̃
τ

j





−1

X̃i

+





1

n

n
∑

j=1

X̃j1X̃
τ

j1









1

n

n
∑

j=1

X̃j1X̃
τ

j1−Kτ
nP

−1
n Kn





−1

(X̃i1−Kτ
nP

−1
n X̃i2),

Hn0(s) =
1
n

∑n
i=1 ηniYiĜn

I[s < Ỹi]

(1 − Ĝn(s))(1 − F̂n(s−))
,

Σ̂10n(θ) =
1

n

n
∑

i=1

ηniη
τ
ni(YiĜn

− X̃
τ

i1θ − X̃
τ

i2β̂n(k)(Ĝn))2,

Σ̂20n =
1

n

n
∑

i=1

(1 − δi)Hn0(Ỹi)H
τ
n0(Ỹi)(1 −4ΛĜn

n (Ỹi)),

Σ̂n0(θ) = Σ̂10n(θ) − Σ̂20n,

Σ̃n0(θ) =
1

n

n
∑

i=1

uin(θ)uin(θ)τ ,

Sn0(θ) =

(

1√
n

n
∑

i=1

uin(θ)

)(

1√
n

n
∑

i=1

uin(θ)

)τ

.

An adjusted empirical likelihood is then defined by lnk,ad(θ) = rn0lnk(θ),

where rn0(θ) = tr(Σ̂−1
n0 (θ)Sn0(θ))/ tr(Σ̃−1

n0 (θ)Sn0(θ)).

Theorem 3.1. Assume that (C.XY) and (C.FG) given in the appendix hold. In

addition, assume that Σ10(θ0)=E[η1η
τ
1(Y1G−X̃τ

1 γ0)
2] and Σ20 =

∫ τQ

0 H0(s)H
τ
0(s)×

(1 − F (s−))(1 −4ΛG(s))dG(s) are positive definite matrices, where

H0(s) =
E[η1Y1GI(s < Ỹ1)]

(1 −G(s))(1 − F (s−))
,

ηi = X̃i1 −E(X̃11X̃
τ

1){E(X̃1X̃
τ

1)}−1X̃i
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+E(X̃11X̃
τ

11){E(X̃11X̃
τ

11) −KτP−1K}−1(X̃ i1 −KτP−1X̃i2),

K = E(Kn), P = E(Pn).

Then, lnk,ad(θ0) is asymptotically standard chi-square distributed with k degrees

of freedom.

4. Adjusted Empirical Likelihood with Auxiliary Information

In many applications, some auxiliary population characteristics of X are

known. It has been shown in the literature that effective usage of the available

auxiliary information can lead to more efficient inferences; see e.g., Chen and

Qin (1993), Qin and Lawless (1994) and Zhang (1995, 1996). In this section we

show how to incorporate auxiliary information of X using an adjusted empirical

likelihood.

Assume that the available auxiliary information on X is given in the form

Eg(X) = 0, where g(x) = (g1(x), . . . , gr(x))
τ , r ≥ 1, is a vector of r known

functions.

To make use of the auxiliary information, we maximize

n
∏

i=1

pi (6)

subject to
∑n

i=1 pi = 1,
∑n

i=1 pig(Xi) = 0 and
∑n

i=1 piψin(ξ) = 0, where ψin(ξ) is

Win(β) or uin(θ) as in Sections 2 and 3, depending on the context.

Let Ani(ξ) = (gτ (Xi), ψ
τ
in(ξ))τ . By the method of Lagrange multipliers,

(6) is maximized at pin = 1/[n(1 + ζτ
nAni(ξ))], i = 1, . . . , n, where ζn satisfies

∑n
i=1Ani(ξ)/[n(1 + ζτ

nAni(ξ))] = 0. Hence, the empirical log-likelihood ratio

function is given by ln,AU(ξ) = −2
∑n

i=1 log npin = 2
∑n

i=1 log(1 + ζτ
nAni(ξ)).

Just like l̃n(β) in Section 2, an adjustment factor is needed for

ln,AU(ξ) to have a standard chi-square asymptotic distribution. Let

Vn1(ξ) = (
∑n

i=1 g(Xi)g
τ (Xi))/n, Vn2(ξ) = (

∑n
i=1 g(Xi)ψin(ξ))/n and Vn3(ξ) =

(
∑n

i=1 ψin(ξ)ψτ
in(ξ))/n,

Vn1,AU(β) =





Vn1(ξ), Vn2(ξ)

V τ
n2(ξ), Vn3(ξ)



 and Vn2,AU (β) =





Vn1(ξ), 0

0 Ŝn(ξ)



 ,

where Ŝn(ξ) is Σ̂n(β) defined in Section 2 or σ̂2
n(θ) in Section 3.

Similar to (5), we define an adjusted empirical log-likelihood for ξ by l̂n,AU(ξ)

= rn,AU (ξ)ln,AU (ξ), where rn,AU(ξ) = tr(V −1
n2,AU (ξ)Ψn(ξ))/ tr(V −1

n1,AU (ξ)Ψn(ξ))

and Ψn(ξ) = (
∑n

i=1Ani(ξ))(
∑n

i=1Ani(ξ))
τ .

Theorem 4.1. Assume that Eg(X)gτ (X) is positive definite and that E g(X)Xτ Ỹ δ

1−G(Ỹ )

exists.
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(a) Let ξ = β and ψin(ξ) = Win(β). Then, under the conditions of Theorem 2.1,

l̂n,AU(β0)
d−→χ2

p+r as n→ ∞.

(b) Let ψin(ξ) = uin(θ), where ξ = θ is a vector of k linear combinations of β as

in Section 3. Then, under conditions of Theorem 3.1, l̂n,AU(θ0)
d−→χ2

r+k as

n→ ∞.

5. Example and Simulation

In this section we illustrate the adjusted empirical likelihood method and

compare it to the normal approximation method using a real data set. We

also present a small simulation study to compare the performance of empirical

likelihood confidence intervals to the normal approximation method.

Consider the heart transplant data of Miller ((1976), Table 1). The data

includes the lengths of survival (in days) after transplantation, ages at time of

transplant, and T5 mismatch scores for 69 patients who received heart transplants

at Stanford and were followed from October 1 1967 to April 1 1974. The T5

mismatch score is a measure of the degree of dissimilarity between the donor and

recipient tissue. Twenty-four patients were still alive on April 1 1974 and thus

their survival times were censored.

Let Y be the logarithm to base 10 of the length of survival from transplanta-

tion. The three models we consider are (I) regress Y on the mismatch score T5;

(II) regress Y on age; (III) regress Y on both T5 and age (Koul, Susarla and van

Ryzin (1981)). As in Koul et al. (1981), regressions of survival on the mismatch

score T5 were performed with nonrejection related death being treated as cen-

soring since the mismatch score is directed at the rejection phenomenon (Miller

(1976)). Confidence intervals for the slope parameters based on the normal ap-

proximation method (cf. Koul et al. (1981) and Lai, Ying and Zheng (1995)) the

adjusted empirical likelihood (ADEL) and the estimated likelihood are given in

Table 1.

Table 1. 95% adjusted empirical likelihood (ADEL), estimated empirical

likelihood (EEL), and normal confidence interval estimates for heart trans-

plant data.

Confidence Intervals

Model Parameter Estimate ADEL EEL Normal

(I) βT5 0.258 [−0.512, 0.943 ] [−0.518, 0.947 ] [−0.466, 0.943 ]
(II) βage 0.054 [ 0.019, 0.108 ] [ 0.016, 0.112 ] [ 0.017, 0.096 ]

(III) βT5 0.052 [−0.717, 0.759 ] [−0.721, 0.762 ] [−0.643, 0.746 ]

βage 0.077 [ 0.042, 0.139 ] [ 0.037, 0.150 ] [ 0.039, 0.114 ]

(IV) βT5 −0.108 [−0.691, 0.405 ] [−0.696, 0.409 ] [−0.601, 0.386 ]

βage 0.056 [ 0.021, 0.109 ] [ 0.018, 0.113 ] [ 0.019, 0.093 ]
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It is seen that for the heart transplant data, the empirical confidence intervals

are comparable to those of the normal approximation method. As expected, the

estimated empirical likelihood (EEL) is the most conservative and gives larger

intervals. It is observed that the empirical likelihood confidence intervals are

asymmetric about the point estimate. They are shifted to the left for βT5 and

to the right for βage compared to the normal confidence intervals. Recall that

the traditional normal approximation method always imposes symmetry on the

confidence interval. This is not a desirable property since the underlying dis-

tribution of the parameter estimate can be skewed. The empirical likelihood

method is able to pick up possible skewness in the underlying distribution of the

parameter estimate.

We carried out a small Monte Carlo simulation to examine coverage prob-

abilities of the empirical likelihood confidence intervals compared to the nor-

mal approximation method. The data were generated from the following model:

Y = 1 +X + ε, where X and ε are independent normal random variables with

mean 0 and variance 0.25, the censoring time C is a normal random variable

with mean µ and standard deviation 4. We vary µ to produce different amounts

of censoring. We also vary the sample size n. The simulated confidence levels of

the empirical likelihood and normal confidence intervals for the slope parameter

are given in Table 2. Each entry in the table was computed using 5000 Monte

Carlo samples.

Table 2. Simulated coverage probabilities (%) of the normal, the adjusted
empirical likelihood (ADEL) and the estimated empirical likelihood (EEL)
confidence intervals for the slope parameter (nominal level = 1 − α).

Censoring Sample 1 − α = 90% 1 − α = 95%

Rate Size Normal ADEL EEL Normal ADEL EEL

60% 50 77.9* 83.5 86.6 82.6* 88.8 92.0

100 82.2* 86.5 90.5 88.5* 92.4 94.7

500 90.4 90.9 94.4* 94.2 95.1 97.2*
32% 50 85.6* 87.8 89.5 87.4* 92.1 93.7

100 89.4* 89.9 91.6 93.0* 94.8 96.4

500 91.3 91.4 94.1* 95.4 95.6 97.1*

(* indicates a coverage probability that deviates the most from the nominal
level among the three methods: “normal”, “ADEL” and “EEL”.)

Table 2 shows that the adjusted empirical likelihood confidence interval has

more accurate coverage probabilities than the normal approximation method.

The improvement of the empirical likelihood method is usually more pronounced

for small samples (e.g., n = 50). Although the estimated empirical likelihood

method is conservative for large samples (e.g., n = 500), it does improve the
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coverage for small samples. We actually conducted a more extensive simulation.

The results are consistent with those in Table 2 and thus are not included.

6. Concluding Remarks

Empirical likelihood methods are studied for linear regression analysis of

right censored data. Our results are valid for the heteroscedastic model that

allows the conditional variance of the response to vary with the level of the

covariate. The proposed method for the coefficient vector β0 reduces to that

of Owen (1991) in the absence of censoring. However, our method for linear

combinations of β0 has not been seen in the literature even for complete data.

The empirical likelihood method demonstrates better small sample performance

than the normal approximation method in a small simulation study and the

improvement could be more pronounced in higher dimensional cases.

The synthetic data used in this article has some limitations. As shown by

our simulation results (Table 2), the coverage probability can be far below the

nominal level when there is heavy censoring and the sample size is small, even

though the adjusted empirical likelihood method produces some improvement

over the normal approximation method. Other types of synthetic data have been

suggested in the literature for right censored data; see, e.g., Leurgans (1987) and

Lai et al. (1995) among others. We point out that the idea used in this article

can be applied directly to derive adjusted empirical likelihood procedures based

on other synthetic data. Furthermore, one could develop adjusted empirical like-

lihood along the same lines based on general estimating equations (Buckley and

James (1979) and Lai et al. (1995)). The use of other types of synthetic data or

general estimating equations may lead to more efficient empirical likelihood pro-

cedures. Further investigation of various adjusted empirical likelihood methods

for right censored data will be carried out in another paper.

7. Appendix

The following conditions are needed in Theorem 2.1.

(C.XY). E(XI[s < Y ]) exists for every 0 ≤ s <∞.

(C.FG) (i). For all s ≤ τQ ≡ inf{t : Q(t) = 1}, G(s) and F (s) have no

common jumps, where Q(t) = P (Ỹ ≤ t).

(ii). E
[

‖X‖Y
(1−G(y))(1−F (Y ))

1
2

]

<∞.

(iii).
∫ τQ

0 ‖H(s)‖{[1 − F (s)]/[1 − F (s−)]}[dG(s)/(1 − G(s))] < ∞,

where H(s) = E[XYGI(s < Ỹ )]/{(1 −G(s))(1 − F (s−))}.
(C.Σ1). Σ1(β0) = E[XXτ (YG −Xτβ0)

2] is a positive definite matrix.

(C.Σ2). Σ2 =
∫∞
0 H(s)Hτ (s) (1 − F (s−))(1 −4ΛG(s)) dG(s) is a positive

definite matrix, where
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ΛG(t) =

∫ t

−∞

1

1 −G(s−)
dG(s).

The following lemma is needed to prove Theorem 2.1. For simplicity, we

denote Win(β0) by Win.

Lemma A.1. Suppose that the assumptions (C.XY), (C.FG)(ii), (iii) and (C.Σ1)

hold. Then n−
1
2
∑n

i=1Win
L−→Z, where Z is a p-variate normal N(0,Σ(β0)) ran-

dom vector, Σ(β0) = Σ1(β0)−Σ2, and Σ1(β0) and Σ2 are defined in assumptions

(C.Σ1) and (C.Σ2).

Proof. The proof is similar to that of Theorem 2 of Lai, Ying and Zheng (1995),

and is omitted.

Proof of Theorem 2.1. (a) To prove part (a) of the theorem, we need to show

that (i) max1≤i≤n ‖Win‖ = op(n
1
2 ), and (ii) λ = Op(n

− 1
2 ). We first prove (i). It

is seen that

max
1≤i≤n

‖Win‖ ≤ max
1≤i≤n

‖Xi(YiĜn
− YiG)‖ + max

1≤i≤n
‖Wi‖, (7)

max
1≤i≤n

‖Xi(YiĜn
− YiG)‖ ≤ max

1≤i≤n
‖XiYiG‖ sup

0≤z≤Ỹ(n)

∣

∣

∣

∣

∣

Ĝn(z) −G(z)

1 − Ĝn(z)

∣

∣

∣

∣

∣

. (8)

By Lemma 3 of Owen (1990), we have

max
1≤i≤n

‖Wi‖ = o(n
1
2 ) (9)

under assumption (C.FG)(ii). Moreover, it follows from Zhou (1992) that

sup
0≤s≤Ỹ(n)

∣

∣

∣

∣

∣

Ĝn(s−) −G(s−)

1 − Ĝn(s−)

∣

∣

∣

∣

∣

= Op(1). (10)

Thus, (i) follows immediately from (7)−(10).

Next, we prove (ii). Let λ = ρθ, where ρ ≥ 0 and ‖θ‖ = 1. Recall that

Σ̂1n(β0) = 1/n
∑n

i=1WinW
τ
in. Let

Σ̃1n(β0) =
1

n

n
∑

i=1

XiX
τ
i

(

δiỸi

1 −G(Ỹi)
−Xτ

i β0

)2

.

It can be shown that

Σ̂1n(β0) = Σ̃1n(β0) + op(1). (11)

Let σp be the smallest eigenvalue of S = E[XX τ (ỸG −Xτβ0)
2]. Then, by Owen

(1990),

θ′Σ̃1n(β0)θ ≥ σp + op(1). (12)
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Let ej be the unit vector in the jth coordinate direction. By Lemma A.1,

∥

∥

∥

∥

∥

∥

1

n

p
∑

j=1

e′j

n
∑

i=1

Win

∥

∥

∥

∥

∥

∥

= Op(n
− 1

2 ). (13)

It follows from (4), (11)−(13), and the arguments used in the proof of (2.14) of

Owen (1990) that ‖λ‖ = Op(n
− 1

2 ). This proves (ii).

It follows from (i) and (ii) that max1≤i≤n |λτWin| = Op(n
− 1

2 )op(n
1
2 ) = op(1).

Hence, by Taylor’s expansion, we have log(1+λτWin) = λτWin− 1
2(λτWin)2 +ηi,

where, for some constant C > 0, P (|ηi| ≤ C|λτWin|3, 1 ≤ i ≤ n) → 1 as n→ ∞.

Therefore

l̃n(β0) = 2
n
∑

i=1

log{1 + λτWin} = 2
n
∑

i=1

(

λτWin − 1

2
(λτWin)2

)

+ rn, (14)

P

(

|rn| ≤ C
n
∑

i=1

|λτWin|3
)

→ 1, as n→ ∞. (15)

Note that
∑n

i=1 |λτWin|3≤‖λ‖3 max1≤i≤n ‖Win‖
∑n

i=1 ‖Win‖2 =op(1), where

the last step follows from (i), (ii), and the fact that

1

n

n
∑

i=1

‖Win‖2 = Op(1). (16)

This, combined with (15), implies that

|rn| = op(1). (17)

Note that

0 =
1

n

n
∑

i=1

Win

1 + λWin

=
1

n

n
∑

i=1

Win

[

1 − λτWin +
(λτWin)2

1 + λτWin

]

=
1

n

n
∑

i=1

Win −
(

1

n

n
∑

i=1

WinW
τ
in

)

λ+
1

n

n
∑

i=1

Win(λτWin)2

1 + λτWin

. (18)

By (11), (18), (i) and (ii), we get

λ =

(

n
∑

i=1

WinW
τ
in

)−1 n
∑

i=1

Win + op(n
− 1

2 ). (19)
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It is seen from (18) that

0 =
n
∑

i=1

λτWin

1 + λτWin
=

n
∑

i=1

(λτWin) −
n
∑

i=1

(λτWin)2 +
1

n

n
∑

i=1

(λτWin)3

1 + λτWin
. (20)

Moreover, by (i), (ii) and (16), we have

1

n

n
∑

i=1

(λτWin)3

1 + λτWin
= op(1). (21)

It is easy to see that (20) and (21) imply

n
∑

i=1

λτWin =
n
∑

i=1

(λτWin)2 + op(1). (22)

Combining (14), (17), (19) and (22) yields

l̃n(β0) =

(

1√
n

n
∑

i=1

Win

)τ

Σ̂−1
1n (β0)

(

1√
n

n
∑

i=1

Win

)

+ op(1). (23)

A direct argument can be used to prove

Σ̂1n(β0)
p−→Σ1(β0), (24)

where Σ1(β0) is defined in assumption (C.Σ1) in the beginning of this section.

Furthermore,

Σ̂2n(β0) =

∫ ∞

0
Hn(z)Hτ

n(z)(1 −4ΛĜn
n (z))(1 −Qn(z−))dΛĜn(z)

p−→Σ2(β0),

by Stute and Wang (1993). Hence,

Σ̂n(β0)
p−→Σ(β0). (25)

By Lemma A.1, (17), (23) and (25),

l̂n,ad(β0)=

(

1√
n

n
∑

i=1

Win

)τ

Σ̂−1
n (β0)

(

1√
n

n
∑

i=1

Win

)

+rn(β0)op(1)
d−→ZτΣ−1(β0)Z∼χ2

p.

This proves part (a).

(b). Part (a) implies immediately that P (β0 ∈ Iα) = P (l̂n,ad(β0) ≤ χ2
p,α) →

1 − α.

(c). It follows from (23), (24) and Lemma A.1 that

l̃n(β0) =

(

1√
n

n
∑

i=1

Win

)τ

Σ̂−1
1n (β0)

(

1√
n

n
∑

i=1

Win

)

+ op(1)
d−→ZτΣ−1

1 (β0)Z. (26)
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Therefore, P (β0∈Ie)=P (l̃(β0)≤χ2
p,α)→P (ZτΣ−1

1 (β0)Z≤χ2
p,α)>P (ZτΣ−1(β0)Z

≤ χ2
p,α) = 1 − α.

Remark A.1. It follows from (26) that the asymptotic distribution of l̃n(β0)

is the same as that of
∑p

l=1wlX 2
1,l where wl, l = 1, . . . , p, are the eigenvalues of

Σ−1
1 (β0)Σ(β0) and the χ2

1,l’s are independent standard chi-square random vari-

ables with one degree of freedom.

Proof of Thoerem 3.1. Similar to (23) and (24), it can be shown that

l̂nk,ad(θ0) =

(

1√
n

n
∑

i=1

uin(θ0)

)

Σ̂−1
n0 (θ0)

(

1√
n

n
∑

i=1

uin(θ0)

)

+ op(1), (27)

Σ̂n0(θ0)
p−→Σ0(θ0), (28)

where Σ0(θ0) = Σ10(θ0) − Σ20(θ0). Next we show that

1√
n

n
∑

i=1

uin(θ0)
L−→N(0,Σ0(θ0)). (29)

Let γ̂n = γ̂n(Ĝn) and θ̂n be the subvector of the first k elements of γ̂n. Using

X̃
τ

i γ̂n = X̃
τ

i1θ̂n + X̃
τ

i2β̃n(k)(Ĝn), it can be verified that

1√
n

n
∑

i=1

uin(θ0) =
1√
n

n
∑

i=1

X̃i1(YiĜn
− X̃

τ

i γ0)

+
1√
n

n
∑

i=1

X̃ i1X̃
τ

i (γ0 − γ̂n) +
1√
n

n
∑

i=1

X̃i1X̃
τ

i1(θ̂n − θ0). (30)

Denote the three terms on the right side of (30) by Tn1, Tn2 and Tn3 respectively.

Then,

Tn2 = −(E[X̃11X̃
τ

1 ])(EX̃1X̃
τ

1)
−1

[

1√
n

n
∑

i=1

X̃ i(YiĜn
− X̃

τ

i γ0)

]

+ op(1), (31)

Tn3 = E(X̃11X̃
τ

11){E(X̃ i1X̃
τ

i1) −KτP−1K}−1

×
[

1√
n

n
∑

i=1

(X̃i1 −KτP−1X̃i2)(YiĜn
− X̃

τ

i γ0)

]

+ op(1). (32)

It follows from (30), (31) and (32) that

1√
n

n
∑

i=1

uin(θ0) =
1√
n

n
∑

i=1

ηi(YiĜn
− X̃

τ

i γ0) + op(1), (33)
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where ηi is defined in Theorem 3.1. This, together with the arguments in the

proof of Theorem 2 of Lai, Ying and Zheng (1995) leads to (29).

Finally, combining (27), (28) and (29) completes the proof.

Lemma A.2. (i). If ψin(ξ) = Win(β) and the conditions of Theorems 2.1 and 4.1

hold, then 1√
n

∑n
i=1Ani(β0)

L−→N(0, V2,AU (β0)), where V2,AU (β0)=

(

V1, 0

0, Σ(β0)

)

.

(ii). If ψin(ξ) = uin(θ) and the conditions of Theorems 3.1 and 4.1 hold, then
1√
n

∑n
i=1Ani(θ0) is asymptotically normal with mean 0 and variance-covariance

matrix

V2,AU(θ0) =





V1, 0

0, σ2(θ0)



 .

Proof. Part (i) is a direct consequence of Lemma A.1 and the following facts:
1√
n

∑n
i=1 g(Xi)

L−→N(0, V1(β0)), Cov ( 1√
n

∑

g(Xi),
1√
n

∑n
i=1Win(β0)) → 0. Part

(ii) can be proved along the same lines.

Proof of Theorem 4.1. The theorem can be proved using Lemma A.2 and the

same arguments used in the proof of Theorems 2.1 and 3.1. We omit the details.
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