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Abstract: In this paper, we consider the Tsai-Jewel-Wang estimator F 0
n(x) of an

unknown distribution function F 0 when the data are subject to random left trun-

cation and right censorship. Strong Gaussian approximations of the product-limit

process
√

n[F 0
n(x) − F 0(x)] are constructed with rate O((log n)3/2/n1/8). A func-

tional law of the iterated logarithm for the maximal deviation of the estimator from

the estimand is derived from the construction.
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1. Introduction

Let X, T and S be positive independent random variables with continuous
distribution functions (df) F 0, G0 and L0 respectively. Let Y = min(X,S)

and δ = I(X ≤ S). If Y ≥ T , one observes (Y, T, δ). If Y < T , nothing is
observed. We think of X as survival time, the observation of which is subjected to
right censorship, S, and left truncation, T , mechanisms. δ indicates whether the
observed Y is a censored item or not. This is the left truncation, right censorship

(LTRC) model. Denote the df of Y by J . By the independent assumption, we
have 1−J = (1−F 0)(1−L0). Let (Xi, Ti, Si), i = 1, . . . , N , be i.i.d. as (X,T, S),
where the population size N is fixed but unknown. The basic problem is to

estimate F 0 from the empirical data (Yi, Ti, δi), i = 1, . . . , n, where n is the
number of observed triplets.

As a consequence of truncation, the number of observed pairs, n, is a Bin(N,α)
random variable, with α := P (T ≤ Y ). By the Strong Law of Large Numbers,

n/N → α almost surely as N → ∞. Conditional on the value of n, (Yi, Ti, δi),
i = 1, . . . , n are still i.i.d., but with the joint conditional distribution of (Y, T )
given by H(y, t) = P{Y ≤ y, T ≤ t | T ≤ Y } = α−1

∫ y
0 G0(t ∧ z) dJ(z) for y,

t > 0. The marginal distribution functions are denoted by

F (y) := H(y,∞) = α−1
∫ y

0
G0(z) dJ(z),

G(t) := H(∞, t) = α−1
∫ ∞

0
G0(t ∧ z) dJ(z).
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Here and in the following,
∫ b
a =

∫

(a,b] for 0 ≤ a < b ≤ ∞. Empirical counter-
parts of these distribution functions are denoted by Hn(y, t), Fn(y) and Gn(t),
respectively. For 0 ≤ z < ∞, let

C(z) = G(z) − F (z−) =
1

α
P (T ≤ z ≤ S ) [1 − F (z−)]. (1.1)

C(z) is consistently estimated by Cn(z) = Gn(z) − Fn(z−). The product-limit
(PL) estimator of F 0 (Tsai, Jewel and Wang (1987)) is

1 − F 0
n(t) =

∏

i:Yi≤t

[

1 − 1

nCn(Yi)

]δi

, (1.2)

assuming no ties in the data. This reduces to the Kaplan-Meier PL-estimator
when T = 0, and to the Lynden-Bell (1971) estimator when there is no right
censoring.

Gu and Lai (1990) and Lai and Ying (1991) obtained a functional law of the
iterated logarithm for a slightly modified form of the TJW estimator using mar-
tingale theory. Gijbels and Wang (1993) and Zhou (1996) established almost sure
representation of the TJW estiamtor in terms of sums of normed i.i.d. random
processes. A stronger result is claimed by Zhou and Yip (1999). By invoking
the approximation theorems of Komlós, Major and Tusnády (1975) for the uni-
variate empirical process, they were able to obtain strong approximation of the
product-limit process Zn(t) =

√
n [F 0

n(t) − F 0(t) ] by a two-parameter Gaussian
process at the almost sure rate of O(log2 n/

√
n). From the construction, they

inferred the functional law of the iterated logarithm for the PL-process.
The KMT theorems are not directly applicable in our situation. The PL-

estimator in (1.2) depends on Cn, which is the difference of the marginal empirical
distribution functions of Y and T , given the event {T ≤ Y }. Since F 0 and G0 are
arbitrary, these processes are not independent in general. Therefore, the claim
by Zhou and Yip cannot be true without severe restrictions and, even in that
case, a constructive proof would be non-trivial.

The same comments hold for the random truncation model. Both are irre-
ducible two-dimensional models. For this latter model, Tse (2000) has established
strong approximation of the PL-process by a two-parameter Kiefer type process
at the almost sure rate of O((log n)3/2/n1/8). We show the counterpart for the
LTRC model in this paper. The results include the random censorship and tru-
cation models as limiting cases. The approximation rate O((log n)3/2/n1/8) is
not as fast as that claimed by Zhou and Yip, but is still good enough to let us
deduce almost sure statements like the Law of the Iterated Logarithm from that
of the corresponding Gaussian processes.

For the random censorship model (T = 0), the conditional event {T ≤ Y } is
trivially satisfied and the dependence problem does not arise. Note however, even
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in this case, the data lead to the natural formation of two empirical processes, one
for all the observed Y ′s and the other for the observed but uncensored Y ′s only.
Burke, Csörgő and Horváth (1981, 1988) revealed to us the true one-dimensional
nature of the model by embedding the latter as a sub-process of the former. The
construction is non-trivial. It is only then that the KMT approximation theorems
are applicable. Heuristically, the difference between the random censorship and
truncation mechanisms is due to the fact that we have strictly less information
in the latter model since the very existence of a truncated item is hidden from
the observer.

In Section two, we present the main results. Auxiliary results and proofs are
relegated to Section three. Examples of applications can be found in Gijbels and
Wang (1993) and Zhou and Yip (1999).

2. Main Theorems

We have seen that the data in the LTRC model can be organized into the
edf Fn and Gn. The information from the indicator variable has not been taken
into account yet. For this, we use the observed uncensored Y ′s to construct
the edf nF1n(z) =

∑n
i=1 I(Yi ≤ z, δ = 1) which is a consistent estimator of

F1(z) = P (Y ≤ z, δ = 1 | T ≤ Y ). Note that F1 is a sub-distribution of F . The
triplets Fn, Gn and F1n contain all the relevant information from the data for
the estimation of F 0. The corresponding empirical processes are defined as:

α1
n(z1) :=

√
n [Fn(z1) − F (z1) ], α2

n(z2) :=
√

n [Gn(z2) − G(z2) ],

βn1(u) :=
√

n [F1n(u) − F1(u) ].

The notation is intended to remind us that βn1 is a sub-process of α1
n, whereas

α1
n and α2

n together form a two-component random process with covariance de-
pending on (the arbitrary) F 0 and G0.

For any df K, let aK = inf{z : K(z) > 0} and bK = sup{z : K(z) < 1}.
Following Tse (2000), we suppose that aG0 = aJ = 0 throughout. The cumulative
hazard function associated with F 0 is

Λ0(t) :=

∫ t

0

dF 0(z)

1 − F 0(z−)
=

∫ t

0

dF1(z)

C(z)
, 0 ≤ t < ∞,

which is consistently estimated by

Λ0
n(t) :=

∫ t

0

dF1n(z)

Cn(z)
, 0 ≤ t < ∞.

The cumulative hazard process is Ẑn(t) :=
√

n [ Λ0
n(t)−Λ0(t) ]. For the theorems

below, we assume that F 0, G0 and L0 satisfy the condition
∫ ∞

0

dF1(z)

C3(z)
< ∞. (2.1)
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The condition, while not optimal, serves to maintain finite variances of the lim-
iting Gaussian processes near the lower end point and simplifies the proofs.

For 0 < t < b < bJ , let

l(t) :=

∫ t

0

dF1(u)

C2(u)
. (2.2)

Theorem 2.1. Suppose (2.1) is satisfied. On a rich enough probability space,

one can define a sequence of independent and identically distributed mean zero

Gaussian processes {Bn(t), 0 < t < b}, for b < bJ , with Cov [Bn(s), Bn(t) ] =
l(min(s, t) ), for 0 < s, t < b < bJ such that, almost surely,

sup
0≤t≤b

| Ẑn(t) − Bn(t) | = O

(

log n

n1/6

)

,

sup
0≤t≤b

|Zn(t) − [1 − F 0(t)]Bn(t) | = O

(

log n

n1/6

)

.

Note that the statements above are conditional on n, the observed sample
size, and that the approximations hold on fixed intervals [0, b]. Both serve to
simplify the argument below. Extending to the more general formulation of Tse
(2000) can be accomplished with more work.

While weak convergence results follow readily from Theorem 2.1, almost sure
statements cannot be obtained from them since the covariances between different
members in the sequences are not specifed. For that purpose, we need the next
theorem.

Theorem 2.2. Assume (2.1) is satisfied. On a rich enough probability space,

one can construct a two-parameter mean zero Gaussian process B(t, u) for t ≥ 0

and u ≥ 0 with Cov [B(s, n), B(t,m) ] =
√

n
m l(s), for n ≤ m, s < t such that,

almost surely,

sup
0≤t≤b

| Ẑn(t) − B(t, n) | = O
((log n)3/2

n1/8

)

,

sup
0≤t≤b

|Zn(t) − [1 − F 0(t)]B(t, n) | = O
((log n)3/2

n1/8

)

.

As a consequence of Theorem 2.2, we obtain the next theorem for the uniform
consistency rate of the PL-estimator for the LTRC model. The proof parallels
that of Theorem 1 in Csörgő and Horváth (1988) for the random censorship
model with our Theorem 2.2 replacing the role of BCH’s strong construction.

Theorem 2.3. If (2.1) is satisfied, then the sequence {(2 log log n)−1/2 Zn(·)} is

almost surely relatively compact in the supremum norm of functions over [0, b],
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and its set of limit points is {l(b)1/2 [1 − F 0(·)] g(l(·)/l(b)) : g ∈ S }, where S is

Strassen’s set of absolutely continuous functions

S =
{

g | g : [0, 1] → R, g(0) = 0,

∫ 1

0

(d g(x)

d x

)2
dx ≤ 1

}

.

Consequently, with v2(t) = (1 − F 0(t))2 l(t),

lim sup
n→∞

(

n

2 log log n

)1/2

sup
t∈[0,b]

| F 0
n(t) − F 0(t) |= sup

t∈[0,b]
v(t),

lim inf
n→∞

(n log log n)1/2 sup
t∈[0,b]

| F 0
n(t) − F 0(t) |
1 − F 0(t)

=
π

81/2
(l(b))1/2,

π

81/2
v(b) ≤ lim inf

n→∞
(n log log n)1/2 sup

t∈[0,b]
| F 0

n(t) − F 0(t) | ≤ π

81/2
(l(b))1/2.

Note that in the absence of censorship, Theorems 2.1, 2.2 and 2.3 give corre-
sponding results for the random truncation model. In the absence of truncation,
the model reduces to the one-dimensional censorship model for which BCH’s
result is optimal.

3. Auxiliary Results and Proofs

As in the random truncation model, we need the results of Borisov (1982)
and M. Csörgő and Horváth (1988), which are stated as Theorems 2.A and 2.B
in Tse (2000). Our goal is to construct strong Gaussian approximations for Ẑn

and Zn. Since the triplets (βn1, α
1
n, α2

n) form the basic ingredients for estimation
of F 0 in the LTRC model, the key to the construction in Theorem 2.1 is to have
simultaneous strong approximations of the triplets at the specified rate. That
this can be done is the content of the next theorem.

Theorem 3.1. On a rich enough probability space, one can define three sequences

of Gaussian processes Wn1(t), W 1
n(t) and W 2

n(t) such that, for s = (s0, s1, s2) ∈
R3+, αn(s) = (βn1(s0), α

1
n(s1), α

2
n(s2)), and Wn(s) = (Wn1(s0),W

1
n(s1),W

2
n(s2)),

we have, almost surely, sups∈R3+ | αn(s) − Wn(s) |= O(log n/n1/6). Moreover,

Wn is a 3-dimensional vector-valued mean zero Gaussian process having the same

covariance structure as the vector αn:

E Wn1(u)Wn1(v) = min (F1(u), F1(v) ) − F1(u)F1(v),

E W 1
n(u)W 1

n(v) = min (F (u), F (v) ) − F (u)F (v),

E W 2
n(u)W 2

n(v) = min (G(u), G(v) ) − G(u)G(v),

E Wn1(u)W 1
n(v) = min (F1(u), F1(v) ) − F1(u)F (v),

E Wn1(u)W 2
n(v) = H1(u, v) − F1(u)G(v),

E W 1
n(u)W 2

n(v) = H(u, v) − F (u)G(v),
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where H1(u, v) = P (Y ≤ u, T ≤ v, δ = 1 | T ≤ Y ) and u, v ∈ R.

Proof. By Borisov’s theorem, we can construct a probability space with two

sequences of random processes (α1
n, α2

n) and (W 1
n ,W 2

n) defined on it such that,

almost surely, supu∈R+ | αi
n(u) − W i

n(u) |= O(log n/n1/6), jointly for i = 1, 2.

Our theorem requires that βn1 and Wn1 be included in the approximation. For

that purpose, we make a further specification on the construction of α1
n and W 1

n .

Let F2(u) = F (u) − F1(u). This is the distribution function for the ob-

served, censored Y items. Set Fi(∞) = limu→∞ Fi(u), i = 1, 2. It follows that

F (∞) = limu→∞ F (u) = 1. Let Y 1
1 , . . . , Y 1

n1
denote the n1 observed uncensored Y

items in order of appearance, and Y 2
1 , . . . , Y 2

n2
denote the n2 observed censored Y

items, also in order of appearance. Of course, n1+n2 = n. Then the random vari-

ables F1(Y
1
1 ), . . . , F1(Y

1
n1

) are uniformly distributed on the interval (0, F1(∞)).

Similarly, the shifted random variables F2(Y
2
1 )+F1(∞), . . . , F2(Y

2
n2

)+F1(∞) are

uniformly distributed on the interval (F1(∞), 1).

Let α̃ denote the empirical process of n i.i.d. unif(0, 1) random variables and

W̃ 1
n be copies of its Brownian Bridge limit. Define βn1(u) = α̃n(F1(u)), βn2(u) =

α̃n(F2(u) + F1(∞)) − α̃n(F1(∞)), and α1
n(u) = βn1(u) + βn2(u), together with

their corresponding Gaussian limits Wn1(u) = W̃ 1
n(F1(u)), Wn2(u) = W̃ 1

n(F2(u)+

F1(∞)) − W̃ 1
n(F1(∞)), and W 1

n(u) = Wn1(u) + Wn2(u). Then, the construction

above for (α1
n, α2

n) and W 1
n ,W 2

n automatically includes the desired result for αn1

and Wn1.

Lastly, a lengthy but straightforward calculation analogous to that of Wang,

Jewel and Tsai (1986) for the random truncation model shows that the joint

covariance of Wn1, W 1
n and W 2

n are as stated in the theorem. We skip those

details.

We now turn to the proof of Theorem 2.1. The construction holds on the

probability space of Theorem 3.1.

Proof of Theorem 2.1. For the sake of simplicity, we often denote sup0≤t≤b|f(t)|
by ‖f(·)‖. We start with the usual decomposition of Ẑn(t):

Ẑn(t) =

∫ t

0

dβn1

C
+

∫ t

0

√
n (C − Cn)

C2
dF1 + Rn1(t),

Rn1(t) =

∫ t

0

√
n (C − Cn)

C2
d(Fn1 − F1) +

∫ t

0

√
n (C − Cn)2

Cn C2
dFn1.

Note that
√

n (C − Cn) = α1
n − α2

n. An integration by parts yields

Ẑn(t) =
βn1(t)

C(t)
+

∫ t

0

βn1

C2
dG −

∫ t

0

βn1

C2
dF +

∫ t

0

α1
n

C2
dF1 −

∫ t

0

α2
n

C2
dF1 + Rn1(t).
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Define, for t ∈ [0, b], the sequence of Gaussian processes

Bn(t) :=
Wn1(t)

C(t)
+

∫ t

0

Wn1

C2
dG −

∫ t

0

Wn1

C2
dF +

∫ t

0

W 1
n

C2
dF1 −

∫ t

0

W 2
n

C2
dF1.

Clearly, E Bn(t) = 0. Lengthy calculation also gives the covariance of Bn(t):

Cov [Bn(s), Bn(t)] = l(s ∧ t) = l(s) ∧ l(t) for s, t > 0, where l(t) is defined in

(2.2). Define l−1(t) as the generalized inverse function of l(t) in the same way as

do Burke, Csörgő and Horváth (1981) for the random censorship model. Then the

covariance formula above implies that Wn(·) = Bn(l−1(·)) is a standard Wiener

process on [0,∞] for each n, and hence Bn(t) = Wn(l(t)), for t ≥ 0.

Theorem 2.1 is about the order of ‖Ẑn − Bn‖ = ‖Rn1 + Rn2‖, where

Rn2 =

∫ t

0

βn1−Wn1

C2
dG−

∫ t

0

βn1−Wn1

C2
dF +

∫ t

0

α1
n+W 1

n

C2
dF1−

∫ t

0

α2
n+W 2

n

C2
dF1.

By Theorem 2.1 of Zhou and Yip, ‖Rn1‖ = O(log log n/
√

n) almost surely. Sup-

pose Ẑn and Bn are constructed on the probability space of Theorem 3.1, using

{βn1, α
1
n, α2

n} and {Wn1,W
1
n ,W 2

n} defined there. Then ‖Rn2‖ = O(log n/n1/6).

We get the first statement of the theorem. Finally, combining this statement

with Theorem 2.2 of Zhou and Yip, we get the second statement of the theorem.

Proof of Theorem 2.2. This is similar to the proofs of Theorem 2.1 with the

role of Theorem 2.A replaced by Theorem 2.B in Tse (2000).

Proof of Theorem 2.3. Observe that the process {[1 − F 0(t)]B(t, u), 0 < t ≤
b, u ≥ 0} is equal in distribution to the process

{

l(b)1/2 [ 1 − F 0(t) ]u1/2 W

(

l(t)

l(b)
, u

)

, 0 < t ≤ b, u ≥ 0
}

,

where W (t, u) is a standard two-parameter Wiener process. Hence the first state-

ment of the theorem follows from the standard Functional Law of the Iterated

Logarithm for a two-parameter Wiener process (Theorem 1.14.1 in Csörgő and

Révész (1981)). This implies that

sup
g∈S

sup
0<t≤b

∣

∣

∣

∣

l(b)1/2 [ 1 − F 0(t) ] g

(

l(t)

l(b)

) ∣

∣

∣

∣

≤ sup
0<t≤b

v(t),

where the inequality is obtained from Riesz’ lemma (Lemma 1.3.1 in Csörgő and

Révész), according to which |g(t)| ≤ t1/2 on (0, 1) for any g ∈ S. The opposite

inequality is trivial.

The first liminf statement also follows from Theorem 2.2 and the represen-

tation of [1−F 0(t)]B(t, u) via Chung’s second loglog law for the two-parameter

Wiener process, obtained from Chung’s original law as applied for partial sums
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of independent Wiener processes. The second liminf law is a trivial consequence
of the first.
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