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Abstract: Given a Markov chain {Xi : i ≥ 0} with finite state space and irreducible

primitive stationary transition matrix P, at time n, corresponding to each possible

one-step transition j → k, we associate random variables Wn with distribution Fjk,

depending only on states j and/or k. Given {Xi}, W1, W2, . . . , are conditionally

independent and need not be integer-valued, nor positive. Define the cumulative

sum Yn = W1+· · ·+Wn, with Y0 = 0. It is proved under certain conditions that the

limiting distribution of {Yn} is in the class of compound Poisson type distributions.

Some applications of the theorem are illustrated.
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1. Introduction

Let {Xn : n ≥ 0} be a Markov chain with state space S = {0, . . . , s}, s < ∞,

stationary transition matrix P =(pij)i,j∈S and initial probability p = (p0, . . . , ps).

It is assumed that P is irreducible and primitive. (P is said to be primitive if 1

is a simple eigenvalue, see Cox and Miller (1965).)

At time n, corresponding to each one-step transition from state j to state

k, we associate a random variable Wn with distribution function Fjk. The ran-

dom variables Wn are in general not independent but, conditional on a given

realization of the Markov chain {Xn} they are mutually independent. That is

Pr(Wn ≤ w | X0 = x0, . . . , Xn−1 = j,Xn = k) = Fjk(w),

Pr(∩n
i=1 {Wi ≤ wi} | ∩n

i=0 {Xi = xi}) = Πn−1
i=0 Fxixi+1

(wi+1).

The Wn are not necessarily discrete, nor positive. A simple example of a con-

tinuous case is the Markov renewal process constructed from the (s + 1)-state

Markov chain by letting Wn be the nth interarrival time, i.e., Fjk(w) = 1−e−λjw,

λj > 0, for w ≥ 0. In this example, Wn depends only on Xn−1.

Define the cumulative sum

Yn = W1 + · · · + Wn, n ≥ 1, (1)
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with Y0 = 0. The vector process {Xn, Yn} is a two-dimensional Markov process in

discrete time. The first sequence {Xn} has discrete state space S while the second

sequence {Yn} is an additive process which may be discrete or continuous. For

detailed discussion of this additive process, see Cox and Miller (1965), pp.352-

353, and Pyke (1961).

In contrast to the cumulative sums {Yn}, we define the usual partial sum Sn

of the Markov chain {Xn} as

Sn = X0 + X1 + · · · + Xn, n ≥ 1. (2)

Note that the partial sum Sn has n + 1 summands while the cumulative sum Yn

has only n.

The sequence of random variables {Wn} and its cumulative sums {Yn} so

constructed cover a wide spectrum of stochastic processes associated with the

Markov chain {Xn}. Following are some examples.

(a). For a fixed state ξ ∈ S, take Wn = 1 if the state ξ is occupied after

the nth transition, and = 0 otherwise. The cumulative sum Yn is the number of

times state ξ is occupied among the times 1, . . . , n. If {Xn} is a Markov Bernoulli

chain with ξ = 1, then Yn = Sn − X0. More generally, for any finite s ≥ 1, if we

take Wn = Xn for n ≥ 1, then

Yn = Sn − X0. (3)

In this case Fjk(w) = 1 if w ≥ k and is 0, otherwise. Therefore the sequence

of partial sums {Sn} can be considered as a special case of the cumulative sums

{Yn}. From this point of view, many results on Poisson/compound Poisson se-

quences {Sn}, such as those obtained by Hsiau (1997), Koopman (1950), Lin and

Wang (1994), Pedler (1971, 1978), Wang (1981), Wang and Yang (1995), Wang

and Tang (1997), etc., are special cases of the main result of this paper.

(b). Let Wn = 1 if the nth transition is “j → k” and = 0 otherwise. Then

Yn is the number of times the transition “j → k” occurs in the first n transitions

of {Xn}. If we let j = k = 1 in the Markov Bernoulli sequence with “1” denoting

“Head”, then Yn is the number of runs of two consecutive heads observed in a

series of tossing a “Markovian” coin. For example, Y14 = 5 for the sequence

“01111001110010”. (There are many types of “runs”. For a detailed analysis of

different types of “runs” in Markov Bernoulli trials, see Wang and Liang (1993)

and Wang and Ji (1995).)

(c). More generally, let {Wn : n ≥ 0} be an arbitrary i.i.d. sequence of

random variables with W0 = 0, then the additive process {Yn} is a random walk

in which the dependence of steps is controlled by the transition matrix P.
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Central limit theorems and related results for the additive process {Yn} have

been studied by many authors, such as Volkov (1958), Gabriel (1959), Miller

(1961, 1962a, 1962b), Kelson and Wishart (1964) and Mathews (1970).

In this paper, we investigate the Poisson style convergence theorems of the

additive sequence {Yn}. We show that, under certain conditions, the limiting

distribution of {Yn} is in the class of the compound Poisson distributions. Dif-

ferent problems, such as the occupation times, the number of transitions, etc.,

considered in Pedler (1978) for the two-state Markov chain, can be consolidated

as a single problem through our approach.

2. Preliminaries

Let

φjk(t) =

∫
∞

−∞

eitxFjk(dx) = E
(
eitW | X0 = j,X1 = k

)
,

be the characteristic function (ch.f.) of Fjk. Denote by F
(n)
jk the distribution

function of Yn conditional on the n-stage transition from state j at time 0 to

state k at time n, then the ch.f. of F
(n)
jk is

φ
(n)
jk (t) =

∫
∞

−∞

eitxF
(n)
jk (dx) = E(eitYn | X0 = j,Xn = k).

Denote the n-step transition probabilities by P(n) = (p
(n)
jk ). Define the matrices

P(t) = (pjkφjk(t))j,k∈S and P(n)(t) = (p
(n)
jk φ

(n)
jk (t))j,k∈S. The matrix P(n)(t) is

not the usual n-step transition stochastic matrix, but by conditioning on Xn−1

and using mathematical induction, it can be shown that it satisfies the improtant

property P(n)(t) = Pn(t). (See Cox and Miller (1965), p.136, or Miller (1962a)

for details.) The unconditional ch.f. of Yn is thus

Gn(t) = E(eitYn) = pPn(t)1, t ∈ R, (4)

where 1 is the unit column vector in Rs+1 and p =(p0, . . . , ps) is the initial

probability distribution of X0. We consider some simple examples of (4).

For the two-state case, if we take Wj = Xj and Yn = Sn − X0, then Yn is

the occupation times of state 1 and

P(t) =

(
p00 (1 − p00)e

it

p10 (1 − p10)e
it

)
. (5)

If we take Wj = 1 when “1 → 1” transition occurs at time j and = 0

otherwise, then Yn is the total number of “runs” of type “1 → 1” and

P(t) =

(
p00 (1 − p00)

p10 (1 − p10)e
it

)
. (6)
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The ch.f. P(t) in (5) and (6) can be found in probability generating function
(p.g.f.) form in Koopman (1950), Edwards (1960) and Pedler (1971).

For the general finite-state case, take Wn = Xn, so that

P(t) =
(
pjke

ikt
)

j,k∈S
. (7)

With Yn = Sn−X0, the unconditional ch.f. of Yn is (4) with P(t) as given in (7).
If we take X0 = 0 a.s., the unconditional ch.f. of Yn is

Gn(t) = (p00, p01e
it, . . . , p0se

ist)P(t)n−11. (8)

Since (p00, . . . , p0s) is the unconditional probability of X1, it can be considered
as the “initial” probability of the Markov chain {Xi : i ≥ 1}. The ch.f. (8) in
p.g.f. form was first obtained by Lin and Wang (1994), equation (1.5), and later
independently derived by Hsiau (1997), Lemma 3.2. The p.g.f. in Koopman
(1950) is a special case of (8) for the 2 × 2 case.

It can be shown that (8) can also be written as Gn(t) = (1, eit, . . . , eist)×

Qn−1(t)q, where Q(t) = (pkje
ikt) and q = (p00, . . . , p0s)

T . (See Lin and Wang
(1994), Theorem 1.1.)

The arguments which lead to (8) can be used to show that the ch.f. of Sn,
with initial probability p, is

Gn(t) = p(t)P(t)n1, (9)

where p(t) = (p0, p1e
it, . . . , pse

ist).

3. The Main Results

3.1. The limit conditions

To state our limit conditions and results, we need to introduce a triangular
array of random variables Xni, i = 0, . . . , n, n = 1, . . . , defined on the same state
space S, where the nth row Xn0, . . . , Xnn forms a Markov chain with transition
matrix Pn = (pnjk), j, k ∈ S, and initial probability pn = (pn0, . . . , pns). Let
Wni, i = 1, . . . , n, be the associated random variables with Fnjk(w) = Pr(Wni ≤
w | Xn,i−1 = j, Xni = k), Yni = Wn1 + · · · + Wni, i = 1, . . . , n, (Yn0 ≡ 0),

be the associated additive process. The ch.f.’s φnjk(t) and φ
(n)
njk(t) = E(eitYnn |

Xn0 = j,Xnn = k) and the matrices Pn(t) = (pnjkφnjk(t))j,k∈S and P
(n)
n (t) =

(p
(n)
njkφ

(n)
njk(t))j,k∈S are as defined in the previous section and we take Gnj(t) =

E(eitYnj ).
Let 0 ≤ c < s, C = {0, . . . , c} and S = C∪C c. The following limit conditions,

as n → ∞, are needed for the main results.

(C− i) Pn → A =

(
R 0

T Q

)
,
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where R = (rjk) is a (c + 1) × (c + 1) irreducible primitive stochastic matrix,

T =(tjk) 6= 0 is a (s − c) × (c + 1) matrix and Q =(qjk) is a (s − c) × (s − c)

substochastic matrix such that the row sums of Q are all less than 1.

(C− ii) npnjk → λjk, for j ∈ C and k ∈ Cc.

(C− iii) pn→ ρ = (ρ0, . . . , ρs),
∑s

j=0 ρj = 1, ρj ≥ 0.

(C− iv)

{
n(φnjk(t) − 1) → 0

φnjk(t) → ϕjk(t)

for j, k ∈ C,

for j ∈ Cc or k ∈ Cc,

where ϕjk(t) are ch.f.’s.

Condition (C−i) implies that, even though the transition matrix Pn is ir-

reducible, it is asymptotically reducible. Its limit has subspace C as an ergodic

class. Evidently, the cumulative sums {Ynn} would diverge with probability one

if Pn were not asymptotically reducible.

Condition (C−ii) implies that the rate of convergence of pnjk to 0 is of

order O(1/n). It is suitable for our purpose but, in view of Prohorov (1953),

Kolmogorov (1956) and Deheuvels and Pfeifer (1986), we believe this condition

could be weakened to “maxjk pnjk → 0, for j ∈ C and k ∈ Cc, as n → ∞”.

Condition (C−iv) implies that, for j, k ∈ C, Fjk converges to δ(0), the

degenerate distribution at the origin and the convergence rate is of order o(1/n).

We denote by χ0 a random variable having distribution ρ.

In the sequel, we refer to (C−i)−(C−iv) as the limit conditions. The bold-

faced “0” sometimes refers to a matrix of zeros and sometimes denotes a vector of

zeros, but “1” always denotes the unit vector and “I” always denotes the identity

matrix.

Parallel to Pn(t), define

A(t) =

(
R 0

T(t) Q(t)

)
, (10)

where T(t) = (tjkϕjk(t)) and Q(t) = (qjkϕjk(t)).

Evidently under the limit conditions, we have, for each t ∈ R,

Pn(t) → A(t), n → ∞. (11)

3.2. Some lemmas

We first state the well-known Perron-Frobenius theorem for irreducible non-

negative square matrices. (See Cox and Miller (1965), Graham (1987) and

Iosifescu (1980). We give it in the form adequate for our purpose, not in its

full generality.) For two matrices A and B of the same dimension, we write

A ≥ B if every element of A −B is nonnegative.
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Theorem 1. (Perron-Frobenius Theorem)

(a) Let A ≥ 0 be an irreducible primitive finite square matrix, and let α1 be

its maximal positive eigenvalue. Then α1 is simple and there exist strictly

positive left and right eigenvectors corresponding to it. In particular, if A is

stochastic, then α1 = 1 is the simple maximal eigenvalue.

(b) Let B =(bjk) be a complex-valued matrix of the same dimension as A, and

let B∗ = (|bjk|)(B in modulus). Let β denote the maximal (in modulus)

eigenvalues of B. If B∗ ≤ A, then |β| ≤ α1. Moreover, if |β| = α1 and

B∗ ≤ A, then B∗ = A.

Lemma 2. For all real t, A(t) has a simple maximal eigenvalue α0(t) = 1 such

that if α(t) is any other eigenvalue of A(t), then |α(t)| < α0(t) = 1.

Proof. By (10), to find the eigenvalues of A(t) it is sufficient to find those of

R and Q(t). The stochastic matrix R is primitive and irreducible, therefore it

has 1 as the simple maximal eigenvalue. The row sums of the matrix Q are all

less than 1, therefore all of its eigenvalues are strictly less than 1. Furthermore,

Q∗(t) ≤ Q, (Q(t) in modulus) and hence any eigenvalue of Q(t) is strictly less

than 1 in modulus.

Lemma 3. Let Π = (π0, . . . , πc) be the stationary distribution of R, i.e., Π

satisfies ΠR = Π with
∑c

j=0 πj = 1 and πj ≥ 0. Under the limit conditions, we

have

lim
n→∞

An(t) = x(t)y(t), (12)

x(t) =

(
1

(I−Q(t))−1
T(t)1

)
, (13)

and y(t) = (Π,0) are right (column) and left (row) eigenvectors, respectively, of

the square matrix A(t) corresponding to the eigenvalue α0(t) = 1.

Proof. It is readily seen that x(t) and y(t) are the right (column) and left (row)

eigenvectors of A(t) corresponding to the eigenvalue α0(t) = 1.

Since α0(t) = 1 is the simple maximal eigenvalue, the matrix A(t) can be

written in Jordan canonical form

A(t) = U(t)

(
1 0

0 J(t)

)
U−1(t),

where J(t) is a Jordan matrix whose diagonal elements are all less than 1 in

modulus, x(t) is the first column of U(t) and y(t) is the first row of U−1(t).

Since

An(t) = U(t)

(
1 0

0 Jn(t)

)
U−1(t)
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and limn→∞ Jn(t) = 0, we have

lim
n→∞

An(t) = U(t)

(
1 0

0 0

)
U−1(t) = x(t)y(t).

Lemma 4. Under the limit conditions, for each t ∈ R there exists an eigenvalue

βn0(t) of Pn(t) such that βn0(t) → 1 and

lim
n→∞

Pn
n(t) = lim

n→∞
βn

n0(t)x(t)y(t), t ∈ R, (14)

where x(t) and y(t) are as defined in Lemma 3.

Proof. The limit conditions lead to (11) which in turn implies that the eigen-
values βni(t) of Pn(t) converge to those of A(t). Therefore for large n, we can

take βn0(t) to be the simple maximal eigenvalue of Pn(t) such that |βni(t)| <

|βn0(t)| ≤ 1, for i = 1, . . . , s. (The last inequality follows from the fact that
P∗

n(t) ≤ Pn(0) = Pn and Pn has 1 as the simple maximal eigenvalue.) Hence,

in Jordan canonical form,

Pn(t) = Hn(t)

(
βn0(t) 0

0 Jn(t)

)
H−1

n (t), (15)

with limn→∞ Jn
n(t) → 0, the first column of Hn(t) is the right eigenvector of Pn(t)

corresponding to βn0(t) which converges to x(t), and the first row of H−1
n (t) is

the left eigenvector of Pn(t) corresponding to βn0(t) which converges to y(t).

The limit (14) thus follows from the Jordan canonical form (15).

Lemma 5. For an irreducible primitive stochastic matrix R with eigenvalues

{1, α1, . . . , αc}, we have
adj(R − I)

Πc
j=1(αj − 1)

= 1Π,

where Π is the stationary distribution of R and adj(R − I) denotes the adjoint

of the square matrix R− I.

Proof. This lemma follows from Theorem 1.8 in Iosifescu (1980), by the fact

that 1 is the simple maximal eigenvalue of R such that 1 and Π are the right

(column) and left (row) eigenvectors corresponding to this eigenvalue.

Lemma 6. Under the limit conditions,

lim
n→∞

βn
n0(t) = G(t), t ∈ R, (16)

where G(t) is defined by

lnG(t) = −
s∑

k=c+1

c∑

j=0

λjkπj (1 − ϕjk(t)xk(t)) , (17)
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and (I−Q(t))−1T(t)1 =(xc+1(t), . . . , xs(t))
T as in (13).

Proof. Denote by {βn0(t), . . . , βns(t)} the eigenvalues of Pn(t), {1, α1, . . . , αc}

those of R and {αc+1(t), . . . , αs(t)} those of Q(t). Then, by (11),

lim
n→∞

det(Pn(t) − zI) = lim
n→∞

Πs
j=0(βnj(t) − z)

= (1 − z)Πc
j=1(αj − z) det(Q(t) − zI). (18)

With det(Pn(t) − zI) = Πs
j=0(βnj(t) − z) and by letting z = 1, we can write

βn0(t) = 1 +
det(Pn(t) − I)

Πs
j=1(βnj(t) − 1)

= 1 +
Cn(t)

n
,

Cn(t) =
ndet(Pn(t) − I)

Πs
j=1(βnj(t) − 1)

. (19)

On the other hand, noting that, by (18), limn→∞ Πs
j=0(βnj(t) − z) = (1 −

z) limn→∞ Πs
j=1(βnj(t) − z), and letting z = 1, we have

lim
n→∞

Πs
j=1(βnj(t) − 1) = Πc

j=1(αj − 1) det(Q(t) − I). (20)

We write p̃njk(t) for pnjkφnjk(t). Denote

Pn(t) = (p̃nij(t)) =

(
Pn11(t) Pn12(t)

Pn21(t) Pn22(t)

)
,

where Pn11(t) and Pn22(t) are of dimension (c+1)× (c+1) and (s− c)× (s− c),

respectively.

By adding columns 2, . . . , c + 1 to the first one of the matrix Pn(t) − I, we

have

det(Pn(t) − I) = det

(
Bn11(t) Pn12(t)

Bn21(t) Pn22(t) − I

)
, (21)

where each column of Bn11(t) is one from Pn11(t)− I except the first one, which

is (
∑c

k=0 p̃njk(t)−1)T
j=0,...,c. Similarly, each column of Bn21(t) is one from Pn21(t)

except the first one which is (
∑c

k=0 p̃njk(t))
T
j=c+1,...,s.

(Note that in obtaining the form in (21), we add to the first the rest of the

columns in Pn(t) − I. We could have chosen any one among the first (c + 1)

columns in Pn(t) − I and add to that one the rest of the columns and the proof

of this lemma will not be affected.)

By limn→∞ det(Pn22(t) − I)/det(Q(t) − I) = 1, combining (18), (19) and

(20) yields

lim
n→∞

Cn(t) = lim
n→∞

ndet(Bn11(t) −Pn12(t)Dn(t))

Πc
j=1(αj − 1)

, (22)
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where Dn(t) = (dnij(t)) = (Pn22(t) − I)−1Bn21(t). (Note that Dn(t) is a (s −

c) × (c + 1) matrix.) Therefore, to prove (16) we need to find the limit of the

numerator in (22).

We first note that the first column of Dn(t) converges to −(I−Q(t))−1T(t)1

= (−xc+1(t), . . . ,−xs(t))
T of x(t) as in (13). And the jth element, j ∈ C, of the

first column of the matrix Bn11(t) −Pn12(t)Dn(t) in the numerator of (22) is

c∑

k=0

p̃njk(t) − 1 −
s∑

k=c+1

p̃njk(t)dnk1(t)

=
c∑

k=0

pnjk(φnjk(t) − 1) −
s∑

k=c+1

pnjk(1 + φnjk(t)dnk1 (t)). (23)

Multiplying (23) by n and letting n → ∞, from the limit conditions, we get the

limit −
∑s

k=c+1 λjk(1 − ϕjk(t)xk(t)).

On the other hand, the jth element, j ∈ C, of the kth column (1 ≤ k ≤ c)

of the matrix Bn11(t) −Pn12(t)Dn(t) is

p̃njk(t) − δjk −
s∑

`=c+1

p̃nj`(t)dn(`−c)j(t). (24)

Since pnjk → rjk and φnjk(t) → 1 for j, k ∈ C, and pnj` → 0 for ` ∈ Cc, (24)

converges to rjk for all j ∈ C.

Thus

lim
n→∞

Cn(t) =

−det




∑s
j=c+1 λ0j (1 − ϕ0j(t)xj(t)) , r01, . . . , r0c∑s
j=c+1 λ1j (1 − ϕ1j(t)xj(t)) , r11 − 1, . . . , r1c

...
...

...
...∑s

j=c+1 λcj (1 − ϕcj(t)xj(t)) , rc1, . . . , rcc − 1




Πc
j=1 (αj − 1)

.

By Lemma 5 and expansion of this determinant by the first column, we complete

the proof of Lemma 6.

3.3. The main theorem

We are now ready to state and prove our main theorem.

Theorem 7. Under the limit conditions, the limiting ch.f. of Ynn = Wn1 + · · ·+

Wnn is

lim
n→∞

Gnn(t) = ρx(t)G(t), t ∈ R, (25)

where G(t) is defined by (17), ρ = (ρ0, . . . , ρs) is the limit of the initial probability

pn, and x(t) is the column vector defined by (13).



236 Y. H. WANG AND LINGQI TANG

Proof. By (4), Lemma 4 and Lemma 6, we have limn→∞ Gnn(t) = limn→∞ pn×

Pn
n(t)1 = limn→∞ βn

n0(t)pnx(t)y(t)1 = G(t)ρx(t)y(t)1. Since y(t)= (Π,0),

y(t)1 = 1 for all t ∈ R, the proof of the theorem is complete.

We note here that by taking Φ(t) =
∑s

k=c+1

∑c
j=0 (λjkπj/λ)ϕjk(t)xk(t), we

can write the ch.f. G as G(t) = exp{−λ(1 − Φ(t))}. (λ > 0 is the value which

makes Φ(0) = 1.) So G is the ch.f. of the compound Poisson distribution with

parameter λ and compounding distribution defined by the ch.f. Φ. The limit

distribution of Ynn is the convolution of two independent random variables, one

of them being compound Poisson.

If the long-run initial probability ρ is degenerate to the ergodic subspace C,

that is pn → ρ = (ρ0, . . . , ρc, 0, . . . , 0), then, ρx(t) = 1 for all t ∈ R, and the

limiting ch.f. of Ynn in (25) is simply limn→∞ Gnn(t) = G(t), t ∈ R.

A special case of interest is the partial sum Snn = Xn0 + · · ·+Xnn, with Xn0

not degenerate at 0. By using the ch.f. Gnn(t) as defined by (9) and Pn(t) as by

(7), we can prove the next corollary in an identical manner.

Corollary 8. Under the limit conditions (with C = {0}) and in the case that

the Markov sequence {Xn} is not completely stationary, the limiting ch.f. of Snn

is

lim
n→∞

E
(
eit(Xn0+···+Xnn)

)
= ρ(t)x(t)G(t), t ∈ R, (26)

where ρ(t) = (ρ0, ρ1e
it, . . . , ρse

ist),x(t) is defined by (13) and the ϕjk(t) in the

entries in G(t) are ϕjk(t) = eikt.

In case the Markov chain {Xn} is completely stationary with transition ma-

trix defined by (32) below, the limiting ch.f. of Snn is of form (33).

4. Applications

We illustrate the applications of Theorem 7 and Corollary 8 with some ex-

amples.

In the two-state case, if we take c = 0 and C = {0}, with pn1 → ρ, npn01 → λ,

pn10 → τ and x(t) = (1, τϕ10(t)
1−(1−τ)ϕ11(t) )

T , (25) reduces to

ρ(t)x(t)G(t) =
(
1 − ρ +

ρτϕ10(t)

1 − (1 − τ)ϕ11(t)

)
exp

{
− λ

(
1 −

ϕ01(t)τϕ10(t)

1 − (1 − τ)ϕ11(t)

)}
.

(27)

Such ch.f.’s as G(t) = exp{−λ(1−eit)} and G(t) = exp{−λ(1−ϕ(t))}, where

ϕ(t) is a ch.f., can be deduced from (27).

By Corollary 8, the limiting ch.f. of Snn is

(
1 − ρ +

ϕ01(t)ρτϕ10(t)

1 − (1 − τ)ϕ11(t)

)
exp

{
− λ

(
1 −

ϕ01(t)τϕ10(t)

1 − (1 − τ)ϕ11(t)

)}
, (28)
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which is slightly different from (27). (Here ϕ01(t) = eit = ϕ11(t), ϕ10(t) = 1.)

For the completely stationary Markov Bernoulli sequence in Edwards (1960),

with initial probability (1− pn, pn), pn01 = (1− π)pn and pn10 = (1− π)(1− pn),

where 0 ≤ π < 1 is a fixed constant. Under the simple limit condition “npn →

λ > 0”, the ch.f. of Snn is

exp
{
− (1 − π)λ

(
1 −

(1 − π)eit

1 − πeit

)}
. (29)

This result is the main theorem in Wang (1981) and Gani (1982).

Consider the general Markov Bernoulli with initial probability (1 − pn, pn).

If pn → ρ, npn01 → λ > 0, pn10 → τ (0 < τ, ρ < 1), then by (28) and ϕj0(t) = 1,

ϕj1(t) = eit, for j = 0, 1, the limiting ch.f. of Snn is

(
1 − ρ +

ρτeit

1 − (1 − τ)eit

)
exp

{
− λ

(
1 −

τeit

1 − (1 − τ)eit

)}
.

This result is Theorem 2.1 in Lin and Wang (1994).

Denote by Ynn the number of runs of type “1 → 1” occurring in n transitions.

The ch.f.’s ϕ are the same as in the previous case except ϕ01(t) = 1, instead of

eit. The limiting distribution of Ynn, by (28), is

(
1 − ρ +

ρτ

1 − (1 − τ)eit

)
exp

{
− λ

(
1 −

τ

1 − (1 − τ)eit

)}
.

The following are some known results in the literature for the general finite-

state case.

First let us consider the simplest case − the i.i.d. multi-state sequence. In

a Markovian context, the (nth) i.i.d. sequence {Xni} has transition probabil-

ities pnjk = Pr(Xnj = k) = Pr(Xn(j+1) = k | Xnj = i) = p∗nk ≥ 0, with∑s
k=0 p∗nk = 1, and initial probability pn=(pn0, . . . , pns). The simple limit condi-

tions are “np∗nk → λ0k = λk > 0, for k = 1, . . . , s” which means ρ = (1, 0, . . . , 0),

R ={1}, T = 1 and Q = 0. Consider Snn, for which ϕj0(t) = 1, ϕjk(t) = eikt

(k = 1, . . . , s and j = 0, . . . , s) and x(t) = 1. By (26), the limiting ch.f. of Snn is

G(t) = exp
{
−

s∑

k=1

λk(1 − eikt)
}

=
s∏

k=1

exp
{
− λk(1 − eikt)

}
, (30)

which is the ch.f. of the sum W1+2W2+ · · ·+sWs, where the Wk are independent

Poisson random variables with parameters λk.

We can rewrite (30) as G(t) = exp{−λ(1 − Φ(t))}, where λ =
∑s

k=1 λk and

Φ(t) =
∑s

k=1(λk/λ)eikt, which is the ch.f. of a multi-state random variable Z

with Pr(Z = k) = λk/λ, k = 1, . . . , s. Thus the limiting distribution of Snn is a
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compound Poisson distribution, not obvious in the form (30). (See Wang and Ji

(1993) for some other related results.)

Actually, this is a rather straight-forward case. The distribution of Snn has

the ch.f.

g(t) =
(
p0 +

s∑

k=1

pke
ikt
)n+1

. (31)

It is easy to see that, under the limit conditions, (31) converges to (30). (We

remark that the distribution corresponding to (31) is sometimes known as “uni-

variate multinomial distribution”. (See Steyn (1951).)

Edwards’ completely stationary Markov Bernoulli model, stated earlier, was

extended to a general finite-state case by Wang and Yang (1995). The transition

matrix Pn=(pnjk) for the general case is

pnjk = πδjk + (1 − π)pnk, j, k ∈ S, (32)

where δjk is the Kronecker delta and pn= (pn0, . . . , pns) is a probability distri-

bution. If we take pn as the initial probability, then we have pnPn= pn, and

the Markov chain becomes completely stationary. (See their paper for detailed

discussions about many properties of this model. In that paper, Edwards’ model

was extended in two directions, one in the multivariate direction and the other

as above.)

The limit conditions are, as in the previous case, “npnk → λk > 0, for

k = 1, . . . , s” which leads to npn0k → λ0k = (1 − π)λk, T =(1 − π, . . . , 1 − π)T

and Q an s × s diagonal matrix with identical diagonal entry π. Consider Snn,

so ϕjk(t) = eikt, for j, k = 0, . . . , s and xk(t) = (1 − π)eikt/(1 − πeikt), for

k = 1, . . . , s. Putting these together, we get

G(t) = exp
{
−

s∑

k=1

(1 − π)λk

(
1 − eikt (1 − π)eikt

1 − πeikt

)}
. (33)

In p.g.f. form, (33) is found on p.48 of Wang and Yang (1995).

Finally, we consider a reliability system known as “consecutive k-out-of-n:

F system”, which consists of n linearly ordered components. The component

failure times are assumed to be i.i.d. and the system fails if and only if at least k

out of the n components fail. It is known (see Chao and Fu (1989)) that such a

system forms a Markov chain with k + 1 states: 0 represents a system in perfect

condition, 1 to k − 1 are levels of deterioration and the state k indicates that

the system has failed. The event {Xn = j} signifies that at time n the system

is in the state j. Two cases arise when the system is in state k. (1) There is a

stand-by system which automatically replaces the failed system at the next time

period after the kth failure occurred; then the state k is a reflexive state and
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Pr(Xn+1 = 0 | Xn = k) = 1 for all n. (2) There is no stand-by system and the

failed system can not be repaired; the state k is then an absorbing state with

Pr(Xn+1 = k | Xn = k) = 1 for all n. In the first case the transition matrix is

P =




1 − α α 0 · · · 0

1 − α 0 α · · · 0
...

...
...

...
...

1 − α 0 0 · · · α

1 0 0 · · · 0




, (34)

take initial probabilities Pr(X1 = j) = pj , j = 0, . . . , k,
∑k

j=0 pj = 1. It turns

out that the second case, whose transition matrix is as (34) except the 1 in the

last row appears at the very end of the row, has the same limiting distribution

for Sn as in the first case. (See Chao and Fu (1989).) (For ease of notation, we

have suppressed the dependence on the subscript n, the nth row of a triangular

array.)

We use Corollary 8 to find the limit distribution of Sn in the first case. Here

c = 0, s = k, Q = 0s×s, T = x(t) = (1, 1, . . . , 1)T , limn→∞ nα = λ01 = λ > 0,

λ0j = 0 for j = 1, . . . , s, ρ(t) = (ρ0, ρ1e
it, . . . , ρse

ist), ϕj0(t) = 1 and ϕjk(t) = eikt

for all j ≥ 0, k ≥ 1. The limiting ch.f. is

(ρ0 + ρ1e
it + · · · + ρse

ist) exp
{
−λ

(
1 − eit

)}
. (35)

The distribution can be identified as that of the sum of two independent random

variables Z and Y, where Pr(Z = j) = ρj , for j = 0, . . . , s, and Y is Poisson with

parameter λ. The ch.f. (35), in p.g.f. form, is found in Theorem 3.1 in Lin and

Wang (1994).

In all the above examples C = {0}. As a demonstration to show that the

ergodic set does not have to be the singleton set {0}, let us consider a case with

c = 1, s = 3 and C = {0, 1}. All R, T, and Q are 2× 2 matrices with R = (rjk)

satisfying 0 < rjk < 1, and rj0 + rj1 = 1 for j, k = 0, 1. The stationary

distribution Π =(π0, π1) of R is easily seen to be π0 = r10/(r10 + r01), and π1 =

r01/(r10 + r01), so that y(t) = (π0, π1, 0, 0) and x(t) = (1, 1, x2(t), x3(t))
T , where

(
x2(t)

x3(t)

)
= (I−Q(t))−1

T(t)1.

The four parameters λjk = limn→∞ npjk ≥ 0, for j = 0, 1 and k = 2, 3.

The limiting ch.f. G(t) is

G(t) = (ρ0 + ρ1 + ρ2x2(t) + ρ3x3(t)) exp {−λ (1 − Φ(t))} , (36)

where Φ(t) =
∑3

k=2

∑1
j=0(λjkπj/λ)ϕjk(t)xk(t), with λ =

∑3
k=2

∑1
j=0 λjkπj.
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We consider further two instances of the sequence {Yn}.

(a) Let Yn be the number of times “runs” of type “2 → 2” or “3 → 3” occur

in n transitions. Then ϕjk(t) = 1, for all j, k = 0, 1, 2, 3, except ϕ22(t) =

ϕ33(t) = eit. To obtain a manageable expression for G, we take

T =

(
1 − α 0

0 1 − β

)
and Q =

(
α 0

0 β

)
, 0 < α, β < 1.

Then x2(t) = (1 − α)/(1 − αeit) and x3(t) = (1 − β)/(1 − βeit). And

G(t)=

(
ρ0+ρ1+ρ2

(1−α)

1−αeit
+ρ3

(1−β)

1−βeit

)
exp

{
−υ2

(
1−

(1−α)

1−αeit

)
−υ3

(
1−

(1−β)

1−βeit

)}
,

(37)

where υ2 = λ02π0+λ12π1 and υ3 = λ03π0+λ13π1. The distribution corresponding

to (37) is that of Z + U1 + U2, where Z, U1 and U2 are independent with
{

P (Z = 0) = ρ0 + ρ1

P (Z = k) = ρ2α(1 − α)k + ρ3β(1 − β)k, k = 1, 2, . . . ,

while U1 and U2 have compound Poisson distributions with parameters υ2 and

υ3 and geometric compounding distributions {α(1 − α)k; k = 0, 1, . . . , } and

{β(1 − β)k; k = 0, 1, . . . , }, respectively.

(b) Let Yn be the number of times the chain visits the states {2, 3} in n

transitions, so that ϕj2(t) = ϕj3(t) = eit and ϕj0(t) = ϕj1(t) = 1, for all j = 0,

1, 2, 3. For simplicity, we let the limit ρ = (ρ0, ρ1, 0, 0) and

T =

(
1 − α 0

0 1 − α

)
and Q =

(
α/2 α/2

α/2 α/2

)
, 0 < α < 1.

It can be shown that (I−Q(t))−1T(t)1 = ((1 − α)2, (1 − α)2)T , so that

3∑

k=2

1∑

j=0

λjkπjϕjk(t)xk(t) = {(1 − α)2
3∑

k=2

1∑

j=0

λjkπj}e
it.

Letting λ = (1−α)2
∑3

k=2

∑1
j=0 λjkπj , we obtain G(t) = exp(−λ(1− eit)), which

is the ch.f. of the Poisson distribution with parameter λ.
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