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Abstract: The double consent randomized design, in which the physician and the

patient know exactly what treatment the patient receives, has been proposed to

alleviate the concern in carrying out a conventional randomized trial. In the latter,

the assignment of patients to treatments after obtaining patients’ informed consents

depends completely on a chance mechanism. We develop four interval estimators,

two using the delta method or the principle of Fieller’s Theorem calculated over the

pooled samples of eligible patients, and two calculated over the samples excluding

patients who have treatment preference. Using Monte Carlo simulation, we eval-

uate and compare the performance of these estimators in a variety of situations.

We note that the estimators using the principle of Fieller’s Theorem outperform

those derived from the delta method with respect to both coverage probability and

average length in almost all situations considered here. We further note that when

the expected number of patients who have no treatment preference is moderate or

large (say ≥ 25) per treatment, the interval estimator using Fieller’s Theorem cal-

culated over the restricted samples is generally more efficient than those calculated

over the entire pooled samples without much loss of accuracy as measured by cov-

erage probability. On the other hand, when the expected number of patients who

have no treatment preference is small, the coverage probability for the estimators

calculated over the restricted samples tends to be less than the desired confidence

level, while the coverage probability of the estimator using Fieller’s Theorem on

the pooled samples may still agree with the desired confidence level.

Key words and phrases: Delta method, Fieller’s theorem, interval estimation, ran-

domized consent design.

1. Introduction

In a conventional randomized trial, the assignment of patients to treatments,

after obtaining patients’ informed consents, depends completely on a chance

mechanism. As noted by Zelen (1982, 1990), at the time of consent the physician

and the patient do not know which treatment the patient will receive. This can

compromise the relationship between the physician and the patient. Further-

more, patients may originally agree to participate in a conventional randomized

trial, but have reservation about continuing once the treatment is known. Some

patients may even decline the treatment. To alleviate this situation, Zelen (1990)
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proposed a double consent randomized design in which patients are randomly as-

signed to the treatments before their consent is sought. After assigning an eligible

patient to a treatment, we approach the patient for consent and discuss all poten-

tial risks, benefits, and treatment opinions. We then ask the patient “if he/she

prefers to receiving any particular treatment, or he/she simply has no treat-

ment preference”. If there is no treatment preference, the patient receives the

randomly assigned treatment. Otherwise, the patient receives the treatment of

choice. Thus the physician and the patient know which treatment applies. Zelen

(1977, 1979, 1990) published a series of papers about the use of the randomized

consent design and included a list of projects employing the design. Subsequently,

numerous papers have discussed a variety of statistical issues associated with the

randomized consent design (Anbar (1983), McHugh (1984), Zelen (1983), Matts

and McHugh (1987, 1993), Bernhard and Compagnone (1989)). None of these

papers, however, focuses on interval estimation of the treatment effects in the

double consent randomized design.

Under the double consent randomized design, we consider four interval esti-

mators: two using the delta method or the principle of Fieller’s Theorem (Casella

and Berger (1990), Chap.9) calculated over the pooled sample of all eligible pa-

tients, and two using calculated over patients who have no treatment preference.

On the basis of Monte Carlo simulation, we evaluate and compare the perfor-

mance of these estimators in a variety of situations.

2. Assumptions and Interval Estimation

Consider the use of a double consent randomized design to compare exper-

imental (i = 1) and standard (i = 2) treatments. Following Zelen (1990), we

assume that a physician will only attempt to register a patient in a clinical trial

if the physician has no treatment preference. We assume further that a patient

who enters a clinical trial using a randomized consent design will agree to receive

the assigned treatment if it coincides with the patient’s preference, or if the pa-

tient has no treatment preference. Suppose there are N such eligible patients.

First we randomly assign these patients to one of the two treatment groups.

We then approach patients for consent. The assigned patients have choices to

stay with the original assignment or switch to the other treatment group. In

other words, a patient will receive the randomly assigned treatment if the pa-

tient has no treatment preference. Otherwise, the patient receives the treatment

according to whatever he/she chooses. Let Yj denote the response on the jth

patient (j = 1, . . . , N). Furthermore, let S1 denote the collection of labels j for

those subjects who are randomly selected to receive the experimental treatment

(i = 1). We can then express the random response Yj on the jth patient as
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(Zelen (1990)):

Yj = 1(j ∈ S1)δ0jµ1 + 1(j ∈ S1)δ1jµ
?
1 + 1(j ∈ S1)δ2jµ

?
2 + [1 − 1(j ∈ S1)]δ0jµ2

+[1 − 1(j ∈ S1)]δ1jµ
?
1 + [1 − 1(j ∈ S1)]δ2jµ

?
2 + εj , (1)

where 1(j ∈ S1) is 1 if j ∈ S1 and 0 otherwise; δ0j = 1 if the jth patient

has no preference and = 0 otherwise; δ1j = 1 if the jth patient prefers the

experimental treatment and = 0 otherwise; δ2j = 1 if the jth patient prefers

the standard treatment and = 0 otherwise; δ0j + δ1j + δ2j = 1, P(δlj = 1) = θl

for l = 0, 1, 2; µi and µ?
i , i = 1, 2, denote the unknown mean responses for

patients who have no treatment preference and for patients who have treatment

preference, respectively; εj denotes the measurement error and independently

follows a distribution with E(εj) = 0 and Var (εj) = σ2; εj , δlj , and 1(j ∈
S1) are independent. As noted by Zelen (1990), this model allows the mean

response to vary between patients who have treatment preference and those who

do not, even when they receive the same treatment. Furthermore, given a total

sample size N, equal sample allocation between the two treatments is generally

optimal for maximizing power. We suppose n patients are assigned to each of

the two treatments, N = 2n. As does Zelen (1990), we concentrate on interval

estimation of the difference in the mean responses between the two treatments

among patients who have no treatment preference: ∆ = µ1 − µ2.

On the basis of (1), it follows that the expectation of the difference in the

two pooled sample means over all eligible patients who are randomly assigned to

treatments, but may actually receive the other treatment according to patients’

preference, is

E(Ȳ1 − Ȳ2) = θ0(µ1 − µ2), (2)

where Ȳ1 =
∑

j 1(j ∈ S1)Yj/n, and Ȳ2 =
∑

j [1− 1(j ∈ S1)]Yj/n. Because θ0 ≤ 1,

|E(Ȳ1 − Ȳ2)| ≤ |µ1 − µ2|. In other words, Ȳ1 − Ȳ2 tends to underestimate the

absolute magnitude of the difference between the two treatment mean effects.

Under (1), after some algebraic manipulations, we find

Var (Ȳ1 − Ȳ2) = 4{θ0(1 − θ0)[
µ2

1 + µ2
2

2
] + (µ?

1)
2θ1(1 − θ1) + (µ?

2)
2θ2(1 − θ2) + σ2

−(µ1 + µ2)θ0[µ
?
1θ1 + µ?

2θ2] − 2µ?
1θ1µ

?
2θ2}/N. (3)

Furthermore, we can show that an unbiased estimator of (3) is the traditional

sample variance estimator

V̂ar (Ȳ1 − Ȳ2) =
2

N
[S2

1 + S2
2 ], (4)

where S2
1 =

∑
j 1(j ∈ S1)(Yj − Ȳ1)

2/(n − 1) and S2
2 =

∑
j(1 − 1(j ∈ S1))(Yj −

Ȳ2)
2/(n − 1). This suggests that we can estimate the Var (Ȳ1 − Ȳ2) without
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estimating θ0, θ1, θ2, σ2, µ1, µ2, µ?
1, and µ?

2. By contrast, (4) is biased under a

single-consent randomized design (Matts and McHugh (1993)).

Because of (2), a consistent estimator of ∆ = µ1 − µ2 is

∆̂ = (Ȳ1 − Ȳ2)/θ̂0, (5)

where θ̂0 =
∑N

j=1 δ0j/N . Note that Cov (θ̂0, Ȳ1 − Ȳ2) = (µ1 − µ2)θ0(1 − θ0)/N ,

and hence Var (∆̂), by the delta method, is

Var (∆̂) = Var (Ȳ1 − Ȳ2)/θ
2
0 − (µ1 − µ2)

2(1 − θ0)/(Nθ0). (6)

To estimate the Var (∆̂), we substitute θ̂0 for θ0, Ȳ1 − Ȳ2 for θ0(µ1 − µ2), and

V̂ar (Ȳ1 − Ȳ2) for Var (Ȳ1 − Ȳ2), and hence obtain the variance estimator

V̂ar (∆̂) = V̂ar (Ȳ1 − Ȳ2)/θ̂
2
0 − (Ȳ1 − Ȳ2)

2(1 − θ̂0)/(Nθ̂3
0). (7)

These observations suggest that an asymptotic 100(1−α)% confidence interval of

∆ is [
∆̂ − Zα/2

√
V̂ar (∆̂), ∆̂ + Zα/2

√
V̂ar (∆̂)

]
, (8)

where V̂ar (∆̂) is given by (7). Note that ∆̂ is a ratio and its sampling distribution

can be skewed when N is not large. To alleviate this concern, we look to Fieller’s

Theorem and consider Z = (Ȳ1 − Ȳ2) − ∆θ̂0. One has E(Z) = 0. Also, since

Cov (θ̂0, Ȳ1− Ȳ2) = (µ1−µ2)θ0(1−θ0)/N , Var (Z) = Var (Ȳ1− Ȳ2)+∆2Var (θ̂0)−
2∆Cov (θ̂0, Ȳ1 − Ȳ2) = Var (Ȳ1 − Ȳ2) − ∆2θ0(1 − θ0)/N . Then Z/

√
Var (Z) is

asymptotically standard normal and P (Z2/Var (Z) ≤ Z2
α/2

)
.
= 1 − α when N is

large. This leads us to the quadratic inequality

A∆2 − 2B∆ + C ≤ 0, (9)

where A = θ̂2
0 + Z2

α/2
θ̂0(1 − θ̂0)/N, B = θ̂0(Ȳ1 − Ȳ2), and C = (Ȳ1 − Ȳ2)

2 −
Z2

α/2
V̂ar (Ȳ1−Ȳ2). Because A > 0, if B2−AC > 0, then an asymptotic 100(1−α)%

confidence interval for ∆ is
[
B −

√
B2 −AC
A ,

B +
√
B2 −AC
A

]
. (10)

Note that we calculate (8) and (10) on the basis of the pooled samples. Note

also that the parameter θ0(µ1−µ2) represents the difference of the two treatment

mean effects over those patients who have no treatment preference. This leads

us to consider the statistic Ȳ ∗
1 − Ȳ ∗

2 , where Ȳ ∗
1 =

∑
j 1(j ∈ S1)δ0jYj/n and
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Ȳ ∗
2 =

∑
j[1 − 1(j ∈ S1)]δ0jYj/n. Under (1), E(Ȳ ∗

1 − Ȳ ∗
2 ) equals θ0(µ1 − µ2) as

well, and

Var (Ȳ ∗
1 − Ȳ ∗

2 ) = 4{θ0(1 − θ0)[
µ2

1 + µ2
2

2
] + θ0σ

2}/N. (11)

Thus, following similar arguments as those leading to (8), an asymptotic

100(1−α)% confidence interval for ∆ (= µ1 − µ2) is

[
∆̂∗ − Zα/2

√
V̂ar (∆̂

∗
), ∆̂∗ + Z

α/2

√
V̂ar (∆̂

∗
)

]
, (12)

where ∆̂∗ = (Ȳ ∗
1 − Ȳ ∗

2 )/θ̂0, V̂ar (∆̂∗) = V̂ar (Ȳ ∗
1 − Ȳ ∗

2 )/θ̂2
0 − (Ȳ ∗

1 − Ȳ ∗
2 )2(1 −

θ̂0)/(Nθ̂3
0), V̂ar (Ȳ ∗

1 − Ȳ ∗
2 ) = 2[(S?

1 )2+(S∗
2)2]/N , (S?

1)2=
∑

j 1(j ∈ S1)δ0j(Yj −
Ȳ ∗

1 )2/(n − 1), and (S?
2)2 =

∑
j(1 − 1(j ∈ S1))δ0j(Yj − Ȳ ∗

2 )2/(n − 1).

Similarly, employing the principle of Fieller’s theorem, we consider the

quadratic inequality

A∗∆2 − 2B∗∆ + C∗ ≤ 0, (13)

where A∗=θ̂2
0 + Z2

α/2
θ̂0(1 − θ̂0)/N, B∗ = θ̂0(Ȳ

∗
1 − Ȳ ∗

2 ), and C∗ = (Ȳ ∗
1 − Ȳ ∗

2 )2−
Z2

α/2
V̂ar (Ȳ ∗

1 − Ȳ ∗
2 ). If (B∗)2 −A∗C∗ > 0, an asymptotic 100(1−α)% confidence

interval for ∆ is
[
B∗ −

√
(B∗)2 −A∗C∗

A∗
,

B∗ +
√

(B∗)2 −A∗C∗

A∗

]
. (14)

3. Monte Carlo Simulation

To evaluate the finite sample performance of the interval estimators given

at (8), (10), (12), and (14), we use Monte Carlo simulation. Note with Zelen

(1990), that when the probability of no treatment preference is smaller than

the probability that a physician is willing to enter a patient into a conventional

randomized trial, the double consent randomized design will be less efficient

than the conventional randomized trial and the former is not recommended for

use. The values of θ0 in five studies using double consent randomized design

ranged from 0.28 to 0.78 (Zelen (1990), Table II on page 654). Here, we consider

probability vectors of treatment preference (θ0, θ1, θ2) = (0.5, 0.3, 0.2), (1/3,

1/3, 1/3), (0.2, 0.3, 0.5), sample sizes from each treatment of n = 30, 50, 100,

mean responses for the two treatments of µ1 = 1, 2, 5 and µ2 = 0, standard

deviations of measurement error at σ = 1, 2, 5, and nuisance parameters of the

mean responses for those patients with self-selected treatments at levels µ?
1 = −2,

2, µ?
2 = −2, 2. For each configuration determined by a combination of these

parameters, we apply SAS (1990) to generate 10,000 random samples to calculate
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the coverage probability and the average length of a 95% confidence interval for

the estimators (8), (10), (12), and (14). We generate measurement error εj

from a normal distribution with mean 0 and standard deviation σ. Note that

if the estimator θ̂0 is 0, we cannot use the estimators (8), (10), (12), and (14).

Furthermore, if B2 − AC (or (B∗)2 − A∗C∗)≤ 0, we cannot use (10) (or (14)).

We calculate coverage probability and average length over those samples where

estimators exist. For completeness, we also indicate how often a problem arises

in a sample.

4. Results

Table 1 gives the estimated coverage probability and average length (in

parenthesis) for 95% confidence interval using (8), (10), (12), and (14) in situa-

tions where the probability vector of treatment preference is (θ0, θ1, θ2) = (0.5,

0.3, 0.2) or (0.2, 0.3, 0.5), the sample size from each treatment is n = 30 or

100, the mean responses for the two treatments are µ1 = 1 or 5 and µ2 = 0, the

standard deviation of measurement error is σ = 1 or 5, and the nuisance param-

eters of the mean responses for those patients with self-selected treatments are

µ?
1 = −2 and µ?

2 = −2 or 2. Results from other situations generally look similar

to those of Table 1, so we do not present them here. These results are available

from the authors.

First, note that when n is not large (< 100, say), the coverage probability

of (8) and (12) tends to be smaller than 95%, especially when θ0 is small, while

the coverage probability of (10) generally behaves well. Note that (12) and

(14), calculated over patients who have no treatment preference, are generally

much more efficient than (8) and (10), calculated over pooled samples. For

example, consider the case (θ0, θ1, θ2) = (0.5, 0.3, 0.2), n = 100, µ1 = 1, σ = 1,

µ?
1 = −2, and µ?

2 = −2. As compared with the estimated average length of the

resulting 95% confidence interval using (10) and (14), the estimated coverage

probabilities are 0.947 and 0.950, respectively, but the latter is approximately

53% (= (1.760−0.822)/1.760) more efficient than the former. Furthermore, when

θ0 = 0.5 and n is large (≥ 100), (14) is generally preferable to (10). Finally, we

have found that the probabilities of failing to produce a 95% confidence interval

through (8), (10), (12), and (14) are small (
.
= 0.01) or even negligible (< 0.001).

5. Discussion

A more systematic and detailed discussion of selection bias due to patients’

treatment preference in point estimation of treatment effects using different def-

initions in a variety of designs, including conventional randomized trials, single-

consent randomized trials, and double consent randomized trials, can be found



INTERVAL ESTIMATION IN DOUBLE CONSENT DESIGN 185

Table 1. The estimated coverage probability and average length (in parenthesis)
of 95% confidence interval by use of interval estimators (8), (10), (12), and (14)
for the probability vector of treatment preference (θ0, θ1, θ2) = (0.5, 0.3, 0.2) and
(0.2, 0.3, 0.5) in the situations, in which the sample size from each treatment n = 30
and 100; the mean responses for the two treatments µ1 = 1, 5 and µ2 = 0; the
standard deviation of measurement error σ = 1 and 5; and the mean responses for
patients with self-selected treatments µ?

1
= −2, µ?

2
= −2, 2.

n µ1 σ µ?

2
(8) (10) (12) (14)

(θ0, θ1, θ2) = (0.5, 0.3, 0.2)

30 1 1 -2 0.934?(3.266) 0.944(3.164) 0.935?(1.509) 0.942(1.467)

2 0.932?(3.607) 0.941(3.493) 0.936?(1.501) 0.943(1.460)

5 -2 0.935?(10.48) 0.942(10.14) 0.933?(7.108) 0.941(6.887)

2 0.937?(10.60) 0.946(10.26) 0.938?(7.086) 0.947(6.864)

5 1 -2 0.930?(5.015) 0.941(4.897) 0.930?(2.922) 0.943(2.900)
2 0.929?(4.560) 0.941(4.460) 0.928?(2.924) 0.937?(2.901)

5 -2 0.935?(11.15) 0.944(10.82) 0.937?(7.537) 0.944(7.327)

2 0.933?(10.97) 0.943(10.64) 0.940(7.534) 0.947(7.325)

100 1 1 -2 0.945(1.776) 0.947(1.760) 0.948(0.829) 0.950(0.822)
2 0.943(1.964) 0.945(1.946) 0.948(0.830) 0.950(0.823)

5 -2 0.949(5.727) 0.951(5.672) 0.949(3.916) 0.951(3.878)

2 0.944(5.784) 0.945(5.728) 0.945(3.920) 0.947(3.883)

5 1 -2 0.941(2.738) 0.945(2.718) 0.940(1.597) 0.945(1.593)
2 0.941(2.490) 0.945(2.473) 0.941(1.594) 0.947(1.590)

5 -2 0.938?(6.072) 0.940(6.017) 0.946(4.140) 0.945(4.105)

2 0.947(5.985) 0.948(5.930) 0.945(4.144) 0.948(4.109)

(θ0, θ1, θ2) = (0.2, 0.3, 0.5)

30 1 1 -2 0.906?(7.224) 0.938?(6.433) 0.904?(2.392) 0.928?(2.180)

2 0.910?(10.47) 0.945(9.280) 0.914?(2.396) 0.927?(2.181)

5 -2 0.913?(26.33) 0.944(23.36) 0.915?(10.92) 0.948(9.747)

2 0.910?(27.72) 0.946(24.55) 0.915?(10.97) 0.951(9.777)
5 1 -2 0.910?(10.47) 0.933?(9.549) 0.911?(5.514) 0.899?(5.365)

2 0.912?(11.15) 0.950(10.08) 0.908?(5.492) 0.904?(5.354)

5 -2 0.912?(27.39) 0.944(24.38) 0.916?(11.95) 0.932?(10.88)

2 0.915?(27.80) 0.947(24.73) 0.913?(11.97) 0.932?(10.89)

100 1 1 -2 0.935?(3.940) 0.945(3.797) 0.939?(1.350) 0.944(1.309)
2 0.940(5.619) 0.950(5.410) 0.942(1.347) 0.946(1.306)

5 -2 0.941(14.28) 0.949(13.74) 0.941(6.167) 0.950(5.942)

2 0.938?(14.80) 0.948(14.25) 0.942(6.160) 0.951(5.935)

5 1 -2 0.935?(5.716) 0.946(5.554) 0.934?(3.033) 0.932?(3.013)
2 0.933?(6.022) 0.947(5.845) 0.938?(3.040) 0.935?(3.019)

5 -2 0.941(14.85) 0.951(14.31) 0.938?(6.737) 0.943(6.530)

2 0.939?(14.94) 0.948(14.41) 0.938?(6.730) 0.943(6.524)
? means the estimated coverage probability ≤ the desired 95% confidence level by more than 1%.
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elsewhere (Lin and Lui (2002)). We have shown here that one can easily in-

corporate the effect due to this selection bias into interval estimators for both

pooled and restricted samples. Monte Carlo simulations demonstrate that pro-

posed estimators perform reasonably well in situations of the type considered

here.

Note that if we have only the information on whether patients accept or reject

assigned treatments, the estimators calculated over the restricted sample are not

applicable. Still, (8) and (10) remain useful: we can estimate the probability of

no treatment preference θ0 by twice the sample proportion of patients who accept

their assigned treatments less 1, this without the need for identifying patients

who have no treatment preference (Zelen (1990)).

On the basis of Monte Carlo simulation, we find that (10) and (14) derived

by using the principle of Fieller’s Theorem outperform (8) and (12) derived by

using the delta method. Other applications of this idea can be found in many

situations for example (Lui (1996), Lui, Cumberland and Kuo (1996), Lui, Mayer

and Eckhardt (2000)).
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