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Abstract: Sample size calculations require specification of the treatment effect,

but what if this is not known? Two-stage tests use the first stage to estimate

the treatment effect and modify the sample size accordingly. The purpose of this

paper is to unify the theory of two-stage testing based on treatment effect. The

conditional error function approach of Proschan and Hunsberger (1995) is shown

to be a useful way to evaluate the properties of any two-stage test. The connection

between two-stage tests and positive quadrant tests is exploited to motivate certain

conditional error functions.
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1. Introduction

Sample size calculations are an important part of the planning of any well-

designed experiment. For a t-test of two normal means, this involves the specifi-

cation of the treatment effect, δ, and the standard deviation, σ. Several authors

(for example, Wittes and Brittain (1990), Birkett and Day (1994), Betensky and

Tierney (1997)) have considered two-stage designs whereby the first stage is used

to estimate σ, and that estimate is used to determine the ultimate sample size re-

quired for a desired level of power. These methods are usually sufficient because

in most settings one can specify a desired treatment effect. Sometimes, however,

the current state of knowledge is very limited. In this situation one may wish

to use the first stage to estimate the treatment effect upon which the ultimate

sample size is based.

Two early adaptive methods based on the treatment effect were Bauer and

Köhne (1994) and Proschan and Hunsberger (1995). Bauer and Köhne (1994)

proposed a procedure based on Fisher’s product of p-values. They noted that the

first and second stage p-values p1 and p2 from any test statistic with a density

are independent uniform random variables under the null hypothesis, even if the

second stage sample size depends on first stage results. Thus, −2 ln(p1p2) can

be referred to a chi-squared distribution with 4 degrees of freedom regardless of

how the second stage sample size is chosen. Bauer and Köhne’s procedure is

very general. Not only can it be used for any test statistic with a density, it
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can be used even if one changes the test statistic after looking at the first stage

results. Proschan and Hunsberger (1995) focused on sample size re-estimation

for the comparison of normal means. Their procedure entailed prior specification

of a conditional error (CE) function A(z1) dictating the amount of conditional

type I error rate to use at the end of the study given the first stage z-score

z1. They concentrated on one particular A(z1) called the circular CE function.

Both Bauer and Köhne (1994) and Proschan and Hunsberger (1995) allowed the

possibility of stopping at the first stage if the evidence strongly supported either

a treatment benefit or lack of benefit. Wassmer (1998) compared the Bauer and

Köhne procedure to the circular CE function approach and concluded that they

yield similar power. Several papers have either applied or expanded on the papers

of Bauer and Köhne (1994) and Proschan and Hunsberger (1995); e.g., see Posch

and Bauer (1999), Liu and Chi (2001), and Wassmer (1999). Lehmacher and

Wassmer (1999) and Cui, Hung and Wang (1999) approached the problem from

a completely different perspective. Nonetheless their methods, when restricted

to two stages, can be shown to be equivalent to using a linear conditional error

function.

This paper uses a geometric perspective to (1) characterize the class of two-

stage, α-level tests, (2) demonstrate that two-stage α-level tests and CE functions

are really two sides of the same coin, (3) show the connection between two-stage

α-level tests and positive quadrant tests, and (4) show properties of different CE

function tests.

2. Characterization of Two-Stage Tests

For simplicity, consider the one-tailed t-test comparing a treatment and con-

trol mean, H0 : µC = µT versus H1 : µC < µT , assuming a common standard

deviation σ. Assume for ease of presentation that σ is known (the Discussion

section explains how this assumption can be eliminated). The value z1 of the

first stage z-score with n1 observations per arm is used to determine the number

n2 = n2(z1) of additional observations to take in each arm. First assume that

n2(z1) > 0 for every z1, so that a second stage is assured. We relax this assump-

tion at the end of this section. Let z2 be the z-score for data from the second

stage only. The decision whether to reject the null hypothesis is based on the

value (z1, z2) of the sufficient statistic, the first and second stage z-scores. The

first goal is to characterize two-stage tests based on (z1, z2).

Under the null hypothesis Z1 has a standard normal distribution, and the

conditional distribution of Z2 given Z1 = z1 is also standard normal, even if the

second stage sample size depends on z1. Because the conditional distribution of

Z2 given Z1 = z1 does not depend on z1, Z1 and Z2 are independent. Thus,

Z1 and Z2 are independent and identically distributed standard normals under
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the null hypothesis in the adaptive sample size setting. Any α-level, two-stage

test rejects the null hypothesis for values (z1, z2) in some fixed region R of the

plane, where
∫ ∫

R
φ(z1)φ(z2)dz1dz2 = α and φ denotes the standard normal den-

sity function. This important observation means that even though there is a

rule n2(z1) for determining the second stage, per-arm sample size, the rejection

region R specifies an α-level procedure even if one decides to use a different

second stage sample size, provided that the sample size actually used is a mea-

surable function of z1. For example, suppose one decided a priori to use the

rejection region {(z1, z2) : (z1 + z2)/
√

2 > 1.96}, where z1 is the z-score after

100 observations/arm. Suppose further that the second stage sample size rule

were n2(z1) = 100 if z1 ≤ 1 and 50 if z1 > 1. Even if one decided not to

follow the sample size rule, by choosing n2 = 200 observations/arm, for exam-

ple, the test procedure still has level α = 0.025 if one uses the rejection region

(z1 + z2)/
√

2 > 1.96. The only requirement is that the sample size one would

actually use for different possible values of z1 is a measurable function of z1.

Thus we have the following

Result 1. Any two-stage, α-level test based on the sufficient statistic (Z1, Z2)

corresponds to a fixed rejection region R in the (z1, z2) plane that maintains level

α whether or not the original second stage sample size rule n2(z1) is followed,

provided the sample size actually used is a measurable function of z1.

One type of two-stage test is a CE function test. Before the experiment be-

gins, a CE functionA(z1) is specified, where 0 ≤ A(z1) ≤ 1 and
∫

A(z1)φ(z1)dz1 =

α. Having observed Z= z1, one is allowed to use a conditional type I error rate

of A(z1). Operationally, one chooses n2 additional observations/arm and rejects

the null hypothesis if the z-score using all 2(n1 + n2) observations,

z =

√
n1z1 +

√
n2z2√

n1 + n2
, (1)

exceeds critical value c = c(z1),

c =

√
n1z1 +

√
n2zA√

n1 + n2
, (2)

where zA is shorthand notation for Φ−1{1 − A(z1)}. Proschan and Hunsberger

(1995) showed that this is an α-level procedure for any n2.

It is easy to see from (1) and (2) that rejection of the null hypothesis is

equivalent to z2 > zA (or ≥). Thus for fixed z1, rejection occurs for z2 exceeding

a constant. Such a test is called an increasing test because the test function

ψ(z1, z2) = I{(z1, z2) ∈ R} is increasing in z2. Only increasing tests should be

considered because the likelihood ratio f(z1, z2 | µT − µC = a > 0)/f(z1, z2 |
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µT −µC = 0) is an increasing function of z2 for fixed z1, regardless of the sample

size rule n2(z1).

Result 2. There is a 1-1 correspondence between increasing two-stage tests

ψ(z1, z2) and CE functions A(z1) as follows. With any increasing test function

ψ(z1, z2) associate the CE function A(z1) =
∫

∞

−∞
ψ(z1, z2)φ(z2)dz2; with any CE

function A(z1) associate the increasing test function ψ(z1, z2) = I(z2 > zA). The

following rejection rules are equivalent:

1. ψ(z1, z2) = 1.

2. z2 > zA(z1) (or ≥),

3. z > c (or ≥), where z and c are given by (1) and (2), respectively.

Proof. First we show that A(z1) =
∫

∞

−∞
ψ(z1, z2)φ(z2)dz2 is a CE function.

Note that A(z1) is a version of E{ψ(Z1, Z2) | Z1 = z1}, so
∫

A(z1)φ(z1)dz1 =

E[E{ψ(Z1, Z2) | Z1}] = E{ψ(Z1, Z2)} = α.

Next we show that 1 and 2 are equivalent. If ψ(z1, z2) is an increasing test

function, then ψ(z1, z2) = 1 is equivalent to z2 > b (or ≥) for some b that may

depend on z1. Furthermore, under H0, Z2 | Z1 = z1 has a standard normal

distribution, so 1 − Φ(b) = Pr(Z2 > b | Z1 = z1) =
∫

∞

−∞
ψ(z1, z2)φ(z2)dz2 =

A(z1), hence b = zA. Technically, this string of equalities holds except on a set

of z1 with probability 0.

The equivalence of 2 and 3 is immediate from (1) and (2), so the proof is

complete.

An implication of Result 2 is that, rather than restricting the class of two-

stage procedures, CE functions provide a useful way to evaluate them. By Result

2, condition 2, the two-stage test is equivalent to rejecting the null hypothesis

when the second stage p-value is less than A(z1). Essentially, the first stage z-

score dictates the α-level to be used for the second stage data, making immediate

the formulas for conditional power, CP , and additional sample size, n2, to achieve

a given conditional power:

CPδ = 1 − Φ

(

zA −
√

n2/2/δ

)

; For CP 1 − β, n2 = 2(zA + zβ)2/δ2, (3)

where δ = (µT − µC)/σ. Thus, the properties of any two-stage test depend only

on the induced CE function A(z1). Another way to look at this is that the set

of points {(z1, z2) : z2 = zA(z1)} forms the boundary of the rejection region.

We now relex the assumption that n2(z1) > 0 for all z1. If n2(z1) = 0, then

we cannot talk about the conditional distribution of Z2 given Z1 = z1 because Z2

does not exist. But suppose we agree to artificially generate a standard normal

deviate to call Z2 in such a case. Now Z1 and Z2 are independent standard

normals regardless of whether n2 = 0, and Results 1 and 2 remain valid. For
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example, suppose we modify the rejection region {(z1, z2) : (z1 + z2)/
√

2 > 1.96}
to {(z1, z2) : z1 > 2.79 or 0 ≤ z1 ≤ 2.79 and (z1 + z2)/

√
2 > 1.97}. This is

a 0.025-level rejection region in the plane. If z1 > 2.79, there is no point in

proceeding to stage 2 because rejection of H0 is assured. Likewise, z1 < 0 obviates

the need for a second stage because acceptance of H0 is assured. The conditional

error function associated with this procedure is 0 if z1 < 0, and is 1 if z1 > 2.79.

We could imagine drawing a standard normal deviate to call z2 in that case, and

then the rejection region may still be expressed as z2 > zA because zA is either

±∞. This is simply a mathematical exercise that guarantees the veracity of the

statement that Z1 and Z2 are independent standard normals (even if n2 = 0).

3. Connection Between Two-Stage Tests and Positive Quadrant Tests

Under the alternative hypothesis, (µT − µC)/σ = δ > 0, the marginal dis-

tribution of Z1 and conditional distribution of Z2 given Z1 are normal with unit

variances and means (θ1, θ2) = (δ/
√

2)(
√
n1,

√
n2). Imagine that the second stage

sample size had been fixed in advance. Then Z1 and Z2 are independent, and

we want to test the null hypothesis that (θ1, θ2) = (0, 0) against the alternative

hypothesis that (θ1, θ2) = (δ/
√

2)(
√
n1,

√
n2) for some δ > 0. There is a specific

direction (
√
n1,

√
n2) for the mean vector (θ1, θ2). The optimal test statistic is

the usual fixed-sample z-statistic (1) for n1 + n2 observations/arm. Each differ-

ent direction (
√
n1,

√
n2) yields a different optimal linear combination of z1 and

z2. In the adaptive sample size setting, n2 is not known a-priori, so the mean

direction for (θ1, θ2) is unknown. The mean direction sweeps out the positive

quadrant Q+ = {(θ1, θ2) : θ1 ≥ 0, θ2 ≥ 0} as n2 ranges from 0 to ∞. Thus, there

is an analogy between two-stage tests and tests of the positive quadrant alter-

native. This analogy is not completely airtight because with two-stage tests, Z1

and Z2 are independent only under the null hypothesis. Still, positive quadrant

tests are appealing in the two-stage setting.

An obvious candidate is the likelihood ratio test for the positive quadrant

alternative. The rejection region {z1 > k}∪{z2 > k}∪{z1 > 0, z2 > 0, z2
1 +z2

2 >

k2} is shown in Figure 1 (see Follmann (1998)). It is unlikely in practice that

one would choose to continue the study if z1 < 0. Thus, it is more appealing to

lop off that portion of Figure 1 and recompute k to have an α-level procedure. If

z1 > k or z1 < 0, one stops at the first stage with rejection or acceptance of the

null hypothesis, respectively. If 0 ≤ z1 ≤ k, called the continuation region, one

proceeds to stage 2 and rejects if z2 >
√

k2 − z2
1 . The null conditional probability

of this, given Z1 = z1, is 1 − Φ(
√

k2 − z2
1). Thus the conditional error function

associated with the LRT, modified by eliminating z1 < 0, is the “circular” CE
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function (Figure 1)

Acir(z1) =















0 if z1 < 0,

1 − Φ
(
√

k2 − z2
1

)

if 0 ≤ z1 ≤ k,

1 if z1 > k.

(4)

The values of k for α = 0.025 and α = 0.05 are 2.267 and 1.951, respectively.

 

 

z2

z1

Figure 1. The rejection region for the likelihood ratio test of H0 : (θ1, θ2) =
(0, 0) versus the positive quadrant alternative , Q+ = {(θ1, θ2) : θ1 ≥ 0, θ2 ≥
0} lies beyond the dotted line. Eliminating the portion with z1 < 0 and
decreasing the radius of the circle to maintain level α produces the circular
CE function whose rejection region is shaded.

Another positive quadrant test that could be used in the two-stage setting
is the likelihood ratio test for the (1,1) direction. It rejects the null hypothesis
when (z1 + z2)/

√
2 > zα. The null conditional probability of this, given Z1 = z1,

is 1−Φ(
√

2zα−z1). This test is a special case of the “linear” class of CE functions
zA = a − bz1, b > 0 (Figure 2). Again one would likely not want to continue
if the first stage z-score were negative, so we would lop off that portion of the
rejection region.

Another modification is very desirable for a two-stage test. It would not
make sense to proceed to stage 2, observe z2 < 0, and then declare the treatment
beneficial; if we were unconvinced of treatment benefit at stage 1 then we should
be even less convinced if z2 < 0. A test whose rejection region contains points
(z1, z2) such that z1 is in the continuation region and z2 < 0 is called inconsistent.
We can make the linear CE function tests consistent by excising the portion of
the rejection region below the horizontal axis. Figure 2 shows the modified linear
CE function:

A(z1) =











0 if z1 < 0,

1 − Φ(a− bz1) if 0 ≤ z1 ≤ a/b,

1 if z1 > a/b,

(5)
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for b = 1 (see Section 3 for values of a that yield an α-level CE function).

 

 

z2

z1

Figure 2. Linear CE function with b = 1 (dotted line), generated by a fixed
sample procedure with interim look after planned information fraction 0.5.

It corresponds to the likelihood ratio test for the (1, 1) direction alternative

hypothesis. In practice one might eliminate the portions with z1 < 0 or

points in the continuation region with z2 < 0 and change the intercept

slightly to maintain level α. This “modified” linear CE function has the

shaded portion as its rejection region.

Bauer and Köhne (1994) used Fisher’s product of independent p-values,

p1p2 ={1−Φ(z1)}{1−Φ(z2)}, rejecting when p1p2<cα, where cα=exp{−χ2
4(α)/2}

and χ2
4(α) is the upper α point of a chi-squared distribution with 4 degrees of

freedom. This is another test that performs well when the means of Z1 and Z2 are

both positive. Note that when p1 < cα, one can stop at stage 1 because rejection

of H0 is assured. Bauer and Köhne (1994) also modified their procedure to allow

early stopping for futility when the first stage p-value is less than α0. When

α0 = 0.5 is used, their α = 0.025 procedure stops for benefit at stage 1 when

p1 < 0.0102 (z1 > 2.32). If 0 ≤ z1 ≤ 2.32, one proceeds to stage 2, rejecting when

p1p2 < cα = 0.0038. Thus, the null probability of rejecting the null hypothesis

given Z = z1 is A(z1) = Pr(P1P2 ≤ cα | P1) = cα/P1 = cα/{1 − Φ(z1)}.
Figure 3 shows the plot of zA against z1 for the circular, Bauer-Köhne, and

modified linear CE functions with b = 1. The circular and Bauer-Köhne CE

functions are very close, explaining the similar operating characteristics noted

by Wassmer (1998). Even their continuation regions are nearly identical ([0,

2.27] and [0, 2.32] for the circular and Bauer-Köhne CE functions, respectively).

The continuation region for the modified linear CE function is much larger ([0,

2.79]). Thus, it is more difficult to stop for benefit at stage 1 with the modified

linear CE function. On the other hand, over a wide range of z1 from about

z1 = 0.61 to about z1 = 2.18, the value of z2 needed to reject H0 is smaller for the
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modified linear than for the other tow CE functions (Figure 3). The explanation

is simple: for fixed sample sized with n1 = n2, the linear CE function with

b = 1 is the likelihood ratio test for the alternative that the mean of (Z1, Z2) is

proportional to (1, 1). Thus, it does better than the other two when (z1, z2) is

proportional to (1, 1), or at least close to it. The same is true for the modified

linear CE function because it is so close to the linear CE function. On the

other hand, the circular CE function is motivated by the likelihood ratio test for

the entire positive quadrant, and therefore the entire spectrum of second stage

sample sizes. It does reasonably well across all possible mean directions in the

positive quadrant. It is not as good as the linear CE function if n2 is close to

the originally planned value n1 (in other words, the mean vector for (Z1, Z2) is

in the direction of (1, 1)), but is better than the linear CE function if n2 changes

substantially from what was originally planned. The Bauer-Köhne CE function

is similar. The linear CE function seems preferable for trials in which it is agreed

in advance that the sample size will change only modestly.

 

 

PSfrag replacements

0.61 2.18 2.79

z2

z1

Figure 3. The circular and modified linear CE functions, along with the

CE function implicit in the Bauer-Köhne (1994) procedure with α0 = 0.

Rejection regions lie above these curves. The circular and Bauer-Köhne CE

functions are quite close and have very similar continuation regions, [0, 2.27]

and [0, 2.32], respectively. The modified linear CE function has continuation

region [0, 2.79], which makes it more difficult to stop at the first stage. On

the other hand, across a broad range of z1 from about 0.61 to 2.18, rejection

of H0 occurs for smaller z2 with the modified linear CE function than with

the other two.

4. A New Perspective on Some Old CE Functions

4.1. A desirable but unattainable property

For a given conditional error function, the critical value c of (2) can be

compared to the corresponding value for a fixed-sample z-test with the same
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number of observations. It is desirable for c to be close to zα. We would also like

c ≥ zα; it would not feel right to reject the null hypothesis using a two-stage test

even though the conventional fixed sample size test statistic is not significant.

Unfortunately, no CE function with continuation region (−∞,∞) can satisfy

this requirement:

Result 3. There is no CE function with continuation region (−∞,∞) such that

c ≥ zα for all z1 and n2.

Proof. Formula (2) shows that for n2 → ∞, c→ zA. Requiring c ≥ zα for all z1
and n2 forces zA ≥ zα, which means that A(z1) ≤ α for all z1. The only A(z1)

such that
∫

A(z1)φ(z1)dz1 = α and A(z1) ≤ α for all z1 is A(z1) ≡ α. Thus,

the only possible candidate is the constant CE function. But if A(z1) ≡ α and

z1 = 0, n2 = n1, then c = zα/
√

2 < cα.

Result 3 applies when the continuation region is (−∞,∞) but what if we

accept H0 at stage 1 if z1 < a, reject if z1 > b, and continue if a ≤ z1 ≤ b?

Unfortunately, this does not avoid the problem. Assuming n1 is large, (2) shows

that c is approximately z1 when n2 is small. Therefore, to ensure that c ≥ zα

for all n2, no z1 in the continuation region can be less than zα. But then the

total type I error rate is at most
∫

∞

zα
A(z1)φ(z1) ≤ α, with equality if and only if

A(z1) = 1 for all z1 > zα. In other words, the only such CE function corresponds

to a fixed sample z-test on stage 1 data only.

It is simply too much to ask that c ≥ zα for all conceivable values of n2, no

matter how illogical they are. Choosing n2 small when z1 is small is bound to

cause problems. When n2 is logically tied to z1, the critical value becomes much

better behaved. A comprehensive examination of the behavior of the critical

value for different CE functions is beyond the scope of this paper, but we next

use a geometric perspective to prove certain desirable properties of critical values

for the circular and linear CE functions.

4.2. Circular CE functions

Equations (1) and (2) show that the z-score and critical value are ± the length

of the projections of (z1, z2) and (z1, zA), respectively, on (
√
n1,

√
n2). Using

this geometric perspective, we can motivate the circular CE function. Suppose

we used a fixed critical value cf for the z-score (1). Proschan and Hunsberger

(1995) showed that by suitable choice of n2(z1), the type I error rate could be

inflated to 1 − Φ(cf ) + exp(−c2f/2)/4. Now consider an unrealistic, seemingly

more informative scenario in which one is clairvoyant and knows at stage 1 what

z2 will be. Thus z1 and z2 are known, and n2 can be chosen to maximize z.

Paradoxically, incorporating this knowledge in the choice of n2 does not further

inflate the type I error rate. Figure 4 shows that when 0 ≤ z1 ≤ cf , z is
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maximized when (
√
n1,

√
n2) is in the same direction as (z1, z2), in which case

z = L1−‖(z1, z2)‖. Rejection of the null hypothesis occurs for (z1, z2) beyond the

circle of radius cf in Figure 4. In the absence of knowledge of z2, one can choose

(
√
n1,

√
n2) in the direction of the point on the circle, (z1,

√

c2f − z2
1), in which

case z is the length, L2, of the projection of (z1, z2) on (z1,
√

c2f − z2
1). It is clear

from Figure 4 that if L1 exceeds the radius of the circle (namely cf ) then so does

L2. Thus, the null hypothesis is rejected just as often when one does not know

z2 as when he does. The rejection rates for the clairvoyant and nonclairvoyant

statisticians are the same even though L1 is always larger than L2. The key was

to choose (
√
n1,

√
n2) in the same direction as (z1, zAcir

).

Geometric reasoning can also be used to prove the following result.
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Figure 4. For two-stage tests, the usual z-score, z, for all 2(n1 +n2) observa-

tions is ± the length of the projection of (z1, z2) onto (
√
n1,

√
n2). Assume

that z1 ≥ 0, z2 ≥ 0. If one used a fixed critical value, cf , rejection occurs

when this length exceeds cf , meaning that the projection vector extends be-

yond the displayed circle of radius zα. If one were clairvoyant and knew, at

stage 1, not just z1, but z2 as well, one could make z as large as possible by

choosing n2 such that (
√
n1,

√
n2) is in the same direction as (z1, z2). Then

z = L1, the length of the thin line. In the absence of clairvoyance, one could

choose n2 such that (
√
n1,

√
n2) is in the same direction as (z1,

√

c2f − z2
1).

Then z = L2, the length of the thick line. It is clear that whenever L1 is

beyond the radius of the circle, so too is L2, even though L1 is always larger

than L2. Thus, the maximum α-inflation is the same whether or not one is

clairvoyant.
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Result 4. A consistent two-stage procedure with continuation region [0, k] (first

stage critical value k) is guaranteed to have second stage critical value no greater

than k for all values of n2 iff z2
1 + z2

A ≤ k2 for 0 ≤ z1 ≤ k. Therefore, among all

consistent tests with the same continuation region as Acir(z1), the only one that

guarantees that the final critical value will be no larger than that of the first stage

for any n2 is the test associated with Acir(z1).

Proof. It is clear that for the circular CE function, the length of the projection

of (z1, zA) onto any vector in the positive quadrant can be no larger than the

radius of the circle, which is the first stage critical value. Thus, the circular CE

function has the stated property.

To see that no other CE function has this property, let A(z1) be the CE func-

tion associated with any other consistent test with continuation region [0, kcir].

Because
∫

A(z1)φ(z)(z)dz1 =
∫

Acir(z1)φ(z1)dz1, there must be at least one z1
for which A(z1) > Acir(z1), and hence at least one z1 for which ‖(z1, zA)‖ >

‖(z1, zAcir(z1))‖ = k. If n2 is selected such that (
√
n1,

√
n2) is in the same direc-

tion as (z1, zA), then the critical value will be ‖(z1, zA)‖ > k.

4.3. Linear CE functions

The simplest type of CE function is motivated by consideration of fixed

sample size designs. Suppose an experiment with a fixed number, n, of patients

is monitored after a fraction t of them are evaluated, 0 < t < 1. The null

conditional probability of a significant result at the end of the study, given the

current z-score z1, is

A(z1) = 1 − Φ{(zα − t1/2z1)/(1 − t)1/2}. (6)

Now consider a different experiment with an adaptive sample size plan using

the CE function (6). After observing the first stage data one may decide to

continue with the originally planned sample size, in which case the critical value

at the end of the study is zα. On the other hand, one may decide to increase

or decrease the final sample size, resulting in a different critical value. A CE

function that is a conditional power function for a fixed sample test is said to be

generated by that fixed sample procedure.

Note that zA = Φ−1{1 − A(z1)} = a − bz1, where a = zα/
√

1 − t and b =
√

t/(1 − t). These are “linear” CE functions, in Proschan and Hunsberger’s

(1995) parlance. Thus, every CE function generated by a fixed-sample procedure

corresponds to a linear CE function. The converse is also true; for any linear CE

function with b ≥ 0 there corresponds a fixed-sample size procedure generating it.
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Result 5. There is a 1-1 correspondence between the set of linear CE functions

zA = a − bz1, b ≥ 0, and the set of CE functions generated by fixed sample

procedures with interim look at information time t, 0 ≤ t < 1. Specifically,

b =
√

t/(1 − t).

It is useful to consider two extreme case of the linear CE function. The

first is a = zα, b = 0. This is generated by a fixed sample size procedure with

interim look at information time 0. Regardless of the data at the first stage the

amount of conditional type I error rate to use at the end of the study is α. By

Result 2, this is equivalent to discarding the first stage data and rejecting the

null hypothesis if z2 > zα. Thus, using the CE function generated by a t = 0

interim look is clearly suboptimal. The second extreme case is b → ∞, which is

generated by a fixed sample size procedure with interim look at information time

1. In this case A(z1) tends to 0 if z1 < zα and 1 if z1 > zα. In other words, this

is equivalent to ignoring the second stage data and rejecting the null hypothesis

if z1 > zα. One should not collect any second stage data in this case.

A more reasonable procedure is exactly halfway between the two extremes,

t = 0 and t = 1. Let a = zα

√
2, b = 1. This is generated by a fixed sample size

procedure with interim look at t = 1/2. If one decided to go with the originally

planned sample size, the critical value would be zα. If one decided to enlarge or

diminish the original sample size, the critical value would change somewhat, but

not nearly as drastically as it would with a steep b. The fact that the critical

value does not change if one uses the originally planned sample size characterizes

the linear CE functions, as we see in Result 6.

Result 6. Let n∗2 be a fixed number. The only CE function for which the final

critical value equals zα whenever n2 = n∗2, regardless of z1, is the linear CE

function generated by the fixed sample size procedure with an interim look after

n1 of n1 + n∗2 planned observations.

Proof. As we have seen, the critical value if n2 = n∗2 is ± the length of projection

of (z1, z2) onto (
√
n1,

√

n∗2). Figure 5 shows that for the length of this projection

to exactly equal 1.96 for all z1, (z1, zA) must lie on the dotted line orthogonal to

(
√
n1,

√

n∗2).

As noted earlier, in practice one might modify the linear CE function to stop

for futility at stage 1 when z1 < 0, and eliminate z2 < 0 from the rejection region.

This results in the modified linear CE function specified in equation (5). Table

1 gives the intercept yielding an α-level procedure for linear and modified linear

CE functions generated by a fixed sample procedure with interim look at time

t. Of course other modifications are possible. One could use other continuation
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regions in conjunction with the linear CE function. One could take continuation

region [−∞, b], where b is any standard monitoring boundary at the first look

of a two-look trial. Use of the linear CE function with this continuation region

is equivalent to Lehmacher and Wassmer’s (1999) and Cui, Hung and Wang’s

(1999) method restricted to two stages.

Table 1. Values of the intercept a and slope b for the linear and modified
linear CE functions generated by a fixed sample size design with interim

look after information fraction t. The first and second numbers under the a
columns correspond to the linear and modified linear CE functions, respec-

tively. With the linear CE function, there is no stopping at stage 1. One

rejects H0 at the second stage if z2 > a− bz1. With the modified linear CE
function, one stops at stage 1 for futility if z1 < 0 or benefit if z1 > a/b, and

otherwise proceeds to stage 2 and rejects H0 if z2 > a− bz1.

t b = {t/(1− t)}1/2 a for α = 0.025 a for α = 0.05

0.25 0.577 2.263 2.213 1.899 1.825
0.50 1.000 2.772 2.790 2.326 2.358

0.75 1.732 3.920 4.031 3.290 3.432
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Figure 5. Projections. The critical value c for the usual z-score is ± the
length of the projection of (z1, zA) onto (

√
n1,

√
n2). Fix n2 at its originally

planned value n∗2. For the length of the projection to equal 1.96 irrespective
of z1, (z1, zA) must lie on the dotted line orthogonal to (

√
n1,

√

n∗2). In

other words, zA must be linear. This figure depicts the linear CE function
zA = 6.20− 3z1, generated by a fixed-sample procedure with t = 0.9. When

t is so extreme, the critical value can change radically when n2 is changed.

When z1 = 1 and the total sample size is increased by 25% from what was
originally anticipated, c increases from 1.96 to 2.54. By contrast, if t = 0.5

and z1 = 1, a 25% increase in sample size increases the critical value from
1.96 to only 2.005.
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5. Discussion

Although for ease of presentation we assumed the standard deviation was

known, Lehmacher and Wassmer (1999) have shown how to eliminate this as-

sumption. Specifically, let Zi = Φ−1(1 − pi), where pi is the p-value associated

with the t-statistic applied to the data from stage i, i = 1, 2. Then Z1 and Z2

are independent standard normals under the null hypothesis, just as in the case

of known σ.

It is important to recognize the limitations of two-stage tests based on the

treatment difference. They should not be used when sample size is based on

detecting a specified minimum clinically relevant difference; then adaptively in-

creasing the sample size risks detecting a small, clinically unmeaningful treatment

effect. There is also the practical limitation that if the first-stage results are quite

different than expected, the sample size may have to be drastically large than

planned. That is why conditional power should be computed for several alter-

natives, ranging from what was originally hypothesized to what was observed

in stage 1. Though they have limitations, two-stage procedures offer a way to

estimate the treatment effect and project sample size using the most relevant

data available, namely those from the current experiment.
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