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Abstract: In behavioral experiments the respondents make their choices based on

several factors called attributes. When the attributes are related to benefits and

costs and respondents choose one attribute at a time, the highest level for benefit

attributes and the lowest level for cost attributes will be selected. The relative

importance given by the respondents to the attributes is not determined. If a

set of profiles (factorial treatment combinations) of the attributes is given to the

respondents to choose, it is possible to determine the relative importance of the

attributes under some conditions. If the choice set has a dominating profile (or

dominated profile) almost surely that profile will be selected (or not selected).

Thus the set of profiles given to the respondent known as the choice set should

not have dominating or dominated profiles. Choice sets with no dominating or

dominated profiles are called Pareto optimal subsets. In this paper, we consider

the connectedness and optimality of designs with Pareto optimal choice sets for

n attributes each at 2 levels. Balanced incomplete block designs are helpful to

reduce the choice set sizes without sacrificing optimality and this paper shows

some interesting application of them.
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1. Introduction

Consider a behavioral experiment in which an investigator wishes to study
the relative importance new graduates put on factors (called attributes) like
salary, vacation and pension plan in selecting a first job. To fix the ideas, consider
two salary levels, say $30k and $35k per annum; vacation levels of two weeks for
the first five years and three weeks thereafter, or three weeks from the beginning;
two levels of pension plans, one starting immediately and the other starting after
five years. If a respondent is asked to choose the levels of each factor, naturally
the best level for each factor will be selected. In reality, some trade-offs are
needed and cannot be determined by asking the respondent about each factor.
For this purpose, we create job profiles of the characteristics of the jobs and
ask the respondent to make a choice. For this, we need a choice set of profiles
of the jobs. Profile are denoted by abc where a, b and c are 0 or 1 according
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as the salary, the vacation time and the pension plan are at their low or high
levels, respectively. If we present a choice set with three profiles, {111, 011, 110},
the first dominates the other two and the respondent’s choice is trivially made.
However, if the choice set has profiles {101, 011, 110}, different respondents will
select different profiles and one gains an insight into the importance of salary,
vacation levels, and pension plans. The second choice set has no dominating or
dominated profile. Different types of responses can be obtained from respondents
on the choice set provided to them, such as choose the best profile, rank the
profiles, rate the best profile on a point-scale, etc. In the analysis we make the
assumption that the selection is solely due to the characteristics of the levels of
the factors in the selected profile, and the role of the choice set is to create a
decision making environment. We avoid giving large choice sets or sets of size
one to create a genuine decision making environment.

We now formulate the problem and discuss the main results. Consider a 2n

experiment with n(n ≥ 2) attributes A1, . . . , An, each at two levels denoted by 0
and 1. A combination of the levels of the n attributes will be called a profile and
denoted by (u1, . . . , un). Let S be the set of all the profiles. A Pareto Optimal
(PO) subset of S is defined as follows.

Definition 1.1. A subset T of S is said to be a PO subset if for every two
distinct profiles (u1, . . . , un), (w1, . . . , wn) ∈ T , there exist subscripts i and j

(i �= j) such that ui < wi and uj > wj .

By giving a PO choice set, one can find respondent trade-offs between at-
tributes.

Let yu1,...,un be the response to the profile (u1, . . . , un), the average score
of the profile or the logit of the proportion of times the profile is selected, and
assume the main effects model

yu1,...,un = µ +
n∑

i=1

αi
ui

+ eu1,...,un , (1.1)

where µ is the general mean, αi
ui

is the effect of the ui level of the ith attribute
Ai. Different assumptions can be made regarding the distribution of random
error terms eu1,...,un . However, for the purpose of developing optimal designs, we
assume the eu1,...,un are independently and identically distributed with a mean
0 and constant variance σ2. The available profiles in the choice set may have
competing effect (or cross effect) on the selected profile, but to keep the number
of parameters under control we ignore such cross effects. This is a limitation of
our study.

A design is said to be a connected main effects plan, if we can estimate all
the main effect contrasts from the model (1.1).
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Wiley (1977) recognized the need of PO choice sets in choice experiments.
Krieger and Green (1991) extended that work and constructed orthogonal and
PO subsets (or close to PO subsets). Huber and Hansen (1986) gave some empir-
ical results on comparison of PO designs and orthogonal designs, and reported
that the PO designs predict better. Huber and Zwerina (1996) proposed the
concept of utility balanced designs, which are similar to PO designs. They also
gave methods for constructing them.

Raghavarao and Wiley (1998) considered a general setting with any number
of levels for the attributes and obtained connected main effects plans. Their
results can be strengthened and optimal designs can be obtained when each
attribute has 2 levels. According to them, in case of a 2n experiment, Sl =
{(u1, . . . , un)|∑n

i=1 ui = l} is a PO subset, and no single PO subset Sl is a
connected main effects plan. They further showed that the design based on S[ n

2
]

and S[ n
2
]+1 is a connected main effects plan, where [l] is the integral part of l.

In this paper, we consider the PO subsets Sl and show that any two of them,
Sl and Sk (0 < l < k < n, l �= k), is a connected main effects plan (Section 2).
We examine the optimality of such designs generally (Section 3) and specifically:
Sl and Sl+1 in Section 4; Sl and Sn−1 in Section 5. It may be noted that these
choice sets may have many profiles and may be difficult to administer. In such
cases, we can divide Sl and Sk into choice sets, each with a reasonable number
of profiles (two or more). Different partitionings of PO choice sets may affect
the selected profile by the respondent; but, because of our earlier discussion, this
may not be of great concern. Generally, we ask that each choice set be PO,
and that two PO subsets Sl and Sk provide connected main effects plans. A
substantial reduction in choice set sizes, without sacrificing optimality, can be
achieved through balanced incomplete block designs. These results are discussed
in Section 6.

2. Connected Main Effects PO Designs

Consider two PO subsets, Sl and Sk. Let s denote the total number of profiles
in Sl and Sk, and number them from 1 to s. An even number of respondents
is selected and randomly divided into two equal groups. Responses are recorded
for each profile from each of the two choice sets. We rewrite the model (1.1) as

yi = µ +
n∑

j=1

xijβj + ei, (2.1)

where yi is the response to the ith profile, i = 1, . . . , s, µ is the general mean, βj

is the main effect of the jth attribute, xij is the level of the jth attribute in the
ith profile, and the ei’s are independently and identically distributed with mean
zero and variance σ2.
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Denote the design matrix by D = [1s X], where X is the s × n matrix
whose (i, j)th element is xij and 1s is a s-dimensional vector of ones. After
straightforward algebra, the information matrix A is given by

A = D′D =

[
a0 a11n

a11n (a0 − a2)In + a2Jn

]
,

where In is the n×n identity matrix, Jn is the n×n matrix of all ones, a0 = s,
a1 =

∑s
i=1 xiα, and a2 =

∑s
i=1 xiαxiβ for any α, β = 1, . . . , n, α �= β.

The information matrix of main effects after eliminating µ is

Cm = (a0 − a2)In +
(
a2 − a2

1

a0

)
Jn. (2.2)

Theorem 2.1. For a 2n experiment, the design based on two PO subsets Sl and
Sk is a connected main effects plan, where l �= k, 0 < l, k < n.

Proof. Without loss of generality, take l < k. Clearly, a0 =
(n

l

)
+
(n
k

)
,

a1 =
2l − n

n

(
n

l

)
+

2k − n

n

(
n

k

)
, (2.3)

a2 =
(n− 2l)2 − n

n(n− 1)

(
n

l

)
+

(n− 2k)2 − n

n(n− 1)

(
n

k

)
. (2.4)

Then a0 − a2 = 4l(n−l)
n(n−1)

(n
l

)
+ 4k(n−k)

n(n−1)

(n
k

)
> 0, when l �= 0 or k �= n. Moreover

a0[(a0−a2)+n(a2− a2
1

a0
)] = 4(k−l)2

n

(n
l

)(n
k

)
> 0 when k �= l. When l = 0 and k = n,

the eigenvalues of Cm are zero and Cm is singular. When l �= 0 or k �= n, the
eigenvalues of Cm are non-zero and Cm is non-singular. Thus any two PO sets
Sl and Sk (except l = 0, k = n) is a connected main effects plan.

3. Orthogonal and Optimal PO Designs

To compare designs with different number of profiles, we use the Information
Per Profile (IPP) in the design as an optimality criterion. The Information Per
Profile (θ) is

θ =
n

a0 trace(C−1
m )

, (3.1)

where C−1
m is

C−1
m =

1
a0 − a2

[
In − a0a2 − a2

1

a0(a0 − a2) + n(a0a2 − a2
1)

Jn

]
(3.2)

for any connected main effects plan composed of choice sets Sl and Sk.
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The next theorem whose proof is long and involved (see Zhang (2001) for
details) provides optimal designs for 2n when n = m2 or n = m(m+2). A sketch
of it is given in the Appendix.

Theorem 3.1. (1) θ = 1 if and only if A is a diagonal matrix. (2) For n = m2,
θ = 1 for the choice sets Sn−m

2
and Sn+m

2
; for n = m(m+2), θ = 1 for the choice

sets Sn−m
2

and Sn+m+2
2

(or Sn−m−2
2

and Sn+m
2

). (3) In all other cases, θ < 1.

From Theorem 3.1, it follows that the optimal choice sets for a 24 experiment
are S1 = {0001, 0010, 0100, 1000}, and S3 = {1110, 1101, 1011, 0111}.

From (2.2) and the proof of Theorem 3.1, we want a2 to be close to a2
1/a0 to

have orthogonality, and a2
1 to be small to have small variances.

When n �= m2 or m(m + 2), we find the best two choice sets among Sl and
Sl+1 (Section 4) and among Sl and Sn−l (Section 5). Because Sl, Sl+1 and Sl+2

provide a connected design to estimate main effects and 2 factor interactions
(Zhang (2001)), one can augment the choice sets Sl and Sl+1, considered in
Section 4, by Sl+2 to estimate two factor interactions, if needed. While reducing
the choice set sizes, we are going to use balanced incomplete block designs and
their complements. With this in mind we develop best choice sets of the form Sl

and Sn−l in Section 5.

4. Best PO Sets Sl and Sl+1

Theorem 4.1. The design based on S[ n
2
] and S[ n

2
]+1 has maximum IPP among

designs based on Sl and Sl+1.

Proof. Taking k = l + 1 in the expressions of a0, a1, and a2, straightforward
algebra yields

θ(l) =
n

a0 Trace(C−1
m )

=
2(l + 1)(n − l)

n(n + 1)
. (4.1)

Now θ(l+1)
θ(l) = (l+2)(n−l−1)

(l+1)(n−l) is larger, equal or less than 1, according as l is less,
equal or larger than n

2 − 1. Thus l = [n
2 ] maximizes θ(l) and completes the proof

of the Theorem.
The choice sets given in Theorem 4.1 were also given by Raghavarao and

Wiley (1998).

5. Best PO Sets Sl and Sn−l

Consider the connected main effects plans based on two PO subsets Sl and
Sn−l for l = 1, . . . , n− 1. Without loss of generality, take l ≤ [n

2 ].
Taking k = n− l in the expressions of a0, a1, and a2, straightforward algebra

shows that
θ =

n

a0 Trace(C−1
m )

=
(1 − z)(1 + (n − 1)z)

1 + (n− 2)z
, (5.1)



1090 DAMARAJU RAGHAVARAO AND DAOZHI ZHANG

where z = a2
a0

= (n−2l)2−n
n(n−1) , as a function of l, decreases with respect to l.

Lemma 5.1. θ, as a function of z, decreases on z ≥ 0 and increases on z ≤ 0.

Theorem 5.1. The design based on S
[ n−√

n
2

]
and S

n−[ n−√
n

2
]

has maximum IPP

among designs based on Sl and Sn−l.

Proof. Note that z ≥ 0 if and only if l ≤ n−√
n

2 . From Lemma 5.1, we see
that θ, as a function of l, decreases if l ≥ n−√

n
2 and increases if l ≤ n−√

n
2 . This

completes the proof.
The optimal designs given in Theorem 5.1 are those given in Theorem 3.1

when n = m2.

6. Some Reduced Size Optimal PO Designs

As indicated in Section 1, the PO design based on subsets Sl and Sk may
have too many profiles. For example, when n = 9 the optimal design based on
S3 and S6 has 84 profiles in each choice set. This is impractical.

We provide designs using choice sets with fewer profiles through Balanced In-
complete Block (BIB) designs that have the same Information Per Profile (IPP).
For the definition of BIB designs and their complements, see Raghavarao (1971).

Consider a BIB design with parameters v = n, b, k, r, λ and the comple-
mentary v∗ = n, b∗ = b, k∗ = n−k, r∗ = b−r and λ∗ = b−2r+λ. From the first
design we form a choice set S∗

k of b profiles, where the ith profile corresponds to
the ith block, with the symbol present interpreted as the high level, and absent
as the low level of that attribute. We can similarly form S∗

n−k.

Theorem 6.1. The IPP θ for the design based on Sk and Sn−k is the IPP θ∗

for the design based on S∗
k and S∗

n−k.

Proof. For the design based on Sk and Sn−k, taking l = n−k in the expressions
of a0, a1, and a2 and simplifying, we get

θ =
n

a0 trace(C−1
m )

=
4k(n − k)(n − 2k)2

n[(n− 2k)2(n− 2) + n]
. (6.1)

For the design based on S∗
k and S∗

n−k, the information matrix, A∗, can be written
as

A∗ =

[
a∗0 a∗11n

a∗11n (a∗0 − a∗2)In + a∗2Jn

]
,

where a∗0 = 2b, a∗l = 0, and a∗2 = 2(b− 4r + 4λ).
The IPP θ∗ of the design based on S∗

k and S∗
n−k is

θ∗ =
a∗0 − a∗2

a∗0
× a∗0(a∗0 − a∗2) + n(a∗0a∗2 − a∗21 )

a∗0(a∗0−a∗2)+(n−1)(a∗0a∗2−a∗21 )
=

4k(n− k)(n − 2k)2

n[(n−2k)2(n−2)+n]
. (6.2)
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Thus θ = θ∗, completing the proof of the theorem.
The following corollary is an immediate consequence.

Corollary 6.1.1. (1) The design generated from the BIB design with parameters
n = 4t + 1, b = 8t + 2, k = 2t, r = 4t, λ = 2t − 1 and its complement has the
same IPP as the design based on S[ n

2
] and S[ n

2
]+1 provided n is a prime or a

prime power. (2) The design generated from the BIB design with the parameters
n = 4t + 3, b = 4t + 3, k = 2t + 1, r = 2t + 1, λ = t and its complement has the
same IPP as the design based on S[ n

2
] and S[ n

2
]+1, for infinitely many n. (3) The

design generated from the BIB design with the parameters n = m2, b = m(m+1),
k = m(m−1)

2 , r = m2−1
2 , λ = (m+1)(m−2)

4 and its complement has the same IPP,
namely 1, as the design based on Sn−m

2
and Sn+m

2
, provided m = 4t + 3 is a

prime or a prime power. (4) The design generated from the BIB design with the
parameters n = m2, b = 2m(m + 1), k = m(m−1)

2 , r = m2 − 1, λ = (m+1)(m−2)
2

and its complement has the same IPP, namely 1, as the design based on Sn−m
2

and Sn+m
2

, provided m = 4t + 1 is a prime or a prime power.

Corollary 6.1.1 indicates that for n = 9, we can construct a connected main
effects plan based on the choice set S∗

3 and S∗
6 with 12 profiles in each choice set.

Remark. It may be noted that the two choice sets Sl and Sk together do not
form a PO subset. However, each respondent receives a PO subset Sl or Sk and
in that sense the choice sets are PO subsets.

Acknowledgements

The authors are very thankful to the two referees and an associate editor for
their helpful comments in improving the presentation of this paper.

Appendix

Proof of Theorem 3.1. Clearly, θ = 1 if A is a diagonal matrix. We prove
the necessity of (1). If λi, i = 1, . . . , n, are the eigenvalues of the matrix Cm,
Trace(Cm) =

∑n
i=1 λi = n(a0 − a2

1
a0

). Since trace(C−1
m ) =

∑
λ−1

i and the arith-
metic mean is at least the harmonic mean of λi

a0
for i = 1, . . . , n, we have

θ =
[ 1
n

∑ 1
(λi/a0)

]−1 ≤ 1
n

n∑
i=1

λi

a0
= 1 − a2

1

a2
0

≤ 1. (A.1)

From (A.1), if θ = 1 then a1 = 0. In this case θ = (1 − a2
a0

) × (1 + (n −
1)a2

a0
)(1 + (n − 2)a2

a0
)−1, and is 1 if and only if a2 = 0. Thus θ = 1 if and only

if a1 = 0 and a2 = 0. Then the design is orthogonal, and A is a diagonal
matrix. This completes the proof of (1). When a1 = 0 and a2 = 0, we get
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− (n−2l)2−n
n(n−1) × 2k−n

2l−n

(n
k

)
+ (n−2k)2−n

n(n−1)

(n
k

)
= 0, which implies that

n = (n− 2l)(2k − n). (A.2)

Because the design based on Sl and Sk, and the design based on Sn−l and Sn−k

have the same information matrix Cm, we can take k + l ≥ n. Rewrite (A.2) as

n = m(m + 2i), (A.3)

where m = n−2l(> 0) and i = k+ l−n(≥ 0). Now (A.3) is a necessary condition
for a1 = 0 and a2 = 0. Sufficiency of this condition can be verified and is true
for i = 0 and i = 1. This completes the proof of part (2) of the theorem.

If i ≥ 2, we have l = n−m
2 = m(m+2i−1)

2 , k = n+m+2i
2 , and

a1 =
(n − 1)!

l!(n− k)!(n − l)(n − l − 1) · · · (l + 1)
×

(k
i

)
i!

m + 2i
[−f(i) + 1],

f(i) =
m
(l+m+i

i

)
(m + 2i)

(l
i

) .
Then f(2) = m4+10m3+31m2+30m+8

m4+10m3+31m2+22m−24
> 1, and f(i+1)

f(i) = l(m+2i)+(m+i+1)(m+2i)
l(m+2i)+2l−2i−i(m+2i) > 1.

Thus f(i) > 1, if i ≥ 2 and a1 < 0, and in this case θ < 1. This completes the
proof of part (3) of the theorem.
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