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Abstract: In this paper, we consider the hypothesis-testing problem in the contin-

uous one-parameter exponential family using the nonparametric empirical Bayes

approach. In order to estimate an unknown marginal density and its derivative, a

kernel sequence method is introduced. This method uses a sequence of kernel func-

tions and allows the kernel index and window bandwidth to vary simultaneously.

Thus improved estimates are obtained. Then we construct a monotone empirical

Bayes test based on these estimates and show that the rule has a rate of conver-

gence of (ln n)3+ε/n for any ε > 0. This rate substantially improves the previous

results and is much closer to the lower bound rate 1/n. Since the rule is monotone,

it also has good performance for small samples.
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gence, regret bayes risk.

1. Introduction

Assume that X is an observation from the distribution with density

f(x|θ) = c(θ) exp{θx}h(x), −∞ ≤ a < x < b ≤ +∞, (1.1)

where h(x) is continuous, positive for x ∈ (a, b), θ is a parameter distributed
according to an unknown prior G on the parameter space Ω, a subset of the
natural parameter space {θ : c(θ) > 0}.

We consider the problem of testing H0 : θ ≤ θ0 versus H1 : θ > θ0, where
θ0 is known. The loss function is l(θ, 0) = max{θ − θ0, 0} for accepting H0 and
l(θ, 1) = max{θ0 − θ, 0} for accepting H1. A test δ(x) is a measurable mapping
from (a, b) into [0, 1] so that δ(x) = P{ accepting H1|X = x}, i.e., δ(x) is the
probability of accepting H1 when X = x is observed. Let R(G, δ) denote the
Bayes risk of a test δ when G is a prior distribution. Let φG(x) = E[θ|X = x].
Given that E[|θ|] < ∞, a Bayes test δG is found as

δG(x) =

{
1 if φG(x) ≥ θ0,

0 if φG(x) < θ0.
(1.2)
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Because φG(x) involves G, the above solution works only if the prior G

is given. If G is unknown, this testing problem is formed as a compound
decision problem and the empirical Bayes approach is used. Let X1, . . . ,Xn

be the observations from n independent past experiences and let X be the
present observation. Based on X̃n = (X1, . . . ,Xn) and X, an empirical Bayes
rule δn(X, X̃n)(≡ δn(X) ≡ δn) can be constructed. The performance of δn

is measured by R(G, δn) − R(G, δG), where R(G, δn) is the overall risk of δn

and R(G, δn) = E[(1 − δn)(θ − θ0)I[θ>θ0] + δn(θ0 − θ)I[θ≤θ0]]. The quantity
R(G, δn) − R(G, δG) is referred to as the regret Bayes risk (or regret) in the
literature.

Let αG(x) =
∫

c(θ) exp(θx)dG(θ) and ψG(x) =
∫

θc(θ) exp(θx)dG(θ). It is
clear that φG(x) = ψG(x)/αG(x) and φG(x) ≥ θ0 ⇐⇒ w(x) ≡ θ0αG(x)−ψG(x) ≤
0. So the construction of δn involves estimation of αG(x) and φG(x). This
is usually done using a kernel method. In this paper, we introduce a kernel
sequence method and apply it to obtain the estimates of αG(x) and φG(x). The
idea of the kernel sequence method is to use a sequence of kernel functions and
allow both the kernel index and window bandwidth to vary simultaneously.

Based on the estimates of αG(x) and φG(x), we construct an empirical Bayes
rule δn for the testing problem mentioned above. Then we show that δn has a
rate of convergence of (ln n)3+ε/n ( ε > 0 ) with the assumption E[|θ|] < ∞, a
substantial improvement over previous results.

The readers interested in empirical Bayes approach may refer to two intro-
ductory papers of Robbins (1956, 1964). For the above empirical Bayes test-
ing problem, Johns and Van Ryzin (1972) made an early contribution. Van
Houwelingen (1976) constructed monotone empirical Bayes tests which achieve
the rate O(n−2r/(2r+1)(lnn)2) if E[|θ|r+1] < ∞. Van Houwelingen also showed
that his rules have good performance for small samples since they are monotone.
Karunamuni and Yang (1995) studied monotone rules and their asymptotic be-
havior. With the assumption cG ∈ [−A,A], they obtain the rate O(n−2r/(2r+1)).
Karunamuni (1996) made an attempt to find the optimal rate of convergence of
the monotone empirical Bayes rule. Recently Liang (2000) investigated a special
case of (1.1), namely a N(θ, 1) model, and obtained improved results. See also
Gupta and Li (2001a). Another related work is Stijnen (1985), in which the
asymptotic behavior of both monotone empirical Bayes rules and non-monotone
rules was studied.

This paper is organized as follows. In Section 2 we introduce a few prelim-
inary results and Section 3, the idea of kernel sequence method. In Section 4,
we construct the monotone empirical Bayes test δn and obtain its rate of con-
vergence. Section 5 contains proofs of the main results in Section 4. In the
appendix, we provide proofs of a few lemmas used in Section 5.
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2. Preliminary

We assume that G satisfies
∫ |θ|dG(θ) < ∞ throughout this paper. Note that

αG(x) and φG(x) exist for all x ∈ (a, b) under the assumption
∫ |θ|dG(θ) < ∞

and are infinitely differentiable for x ∈ (a, b). Furthermore φ′
G(x) ≥ 0. If

limx↓a φG(x) ≥ θ0, then φG(x) ≥ θ0 and δG(x) ≡ 1 for all x ∈ (a, b); if
limx↑b φG(x) ≤ θ0, then φG(x) ≤ θ0 and δG(x) ≡ 0 for all x ∈ (a, b). In both
cases, we say δG(x) is degenerate. We assume δG(x) is non-degenerate with
limx↓a φG(x) < θ0 < limx↑b φG(x). Then G is non-degenerate and φ′

G(x) > 0.
Therefore there exists a unique point cG ∈ (a, b) such that φG(x) > θ0 for x > cG,
φG(x) = θ0 for x = cG and φG(x) < θ0 for x < cG (see Van Houwelingen (1976)
and others). Note that w(x) = θ0αG(x)− ψG(x). Then cG is the unique root of
w(x).

Now the Bayes rule defined by (1.2) can be represented as

δG(x) =

{
1 if φG(x) ≥ θ0 ⇐⇒ w(x) ≤ 0 ⇐⇒ x ≥ cG,

0 if φG(x) < θ0 ⇐⇒ w(x) > 0 ⇐⇒ x < cG.
(2.1)

The Bayes rule δG defined by (2.1) is characterized by a single number cG, so a
monotone empirical Bayes test (MEBT) can be constructed through estimating
cG by cn(X1, . . . ,Xn), say, and defining

δn =

{
1 if x ≥ cn,

0 if x < cn.
(2.2)

The regret of δn is

R(G, δn)− R(G, δG) = E

∫ cG

cn

w(x)h(x)dx. (2.3)

3. Kernel Sequence Method

We introduce a kernel sequence method which uses a sequence of kernel
functions instead of a single one. As the number of observations increases, the
kernel function and kernel bandwidth are set to vary simultaneously.

For i = 0, 1 and m = 1, 2, . . ., let Kim(y) be a Borel-measurable function
such that Kim(y) vanishes outside the interval [Aim, Bim]. Suppose

∫
yjK0m(y)dy


= 1 if j = 0,
= 0 if j = 1, . . . , k0m − 1,
�= 0 if j = k0m,

(3.1)

∫
yjK1m(y)dy


= 0 if j = 0, 2, 3, . . . , k1m − 1,
= 1 if j = 1,
�= 0 if j = k1m.

(3.2)
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Let u = un be a sequence of positive numbers and v = vn be a sequence of
positive integers. For any x ∈ (a, b), define

αn(x)=
1
nu

n∑
j=1

K0v

(
Xj − x

u

)/
h(Xj), ψn(x)=

1
nu2

n∑
j=1

K1v

(
Xj − x

u

)/
h(Xj).

For appropriate u and v, αn(x) and ψn(x) are the estimates of αG(x) and ψG(x),
respectively. In these kernel estimates, u is called the kernel bandwidth and v is
called the kernel index.

Note that the kernel index v of functions K0v and K1v depends on n. As
n increases, v changes, and so K0v and K1v change. Both kernel indices and
window bandwidths vary in the estimates and this is a little different from the
traditional fixed index kernel method.

4. MEBT For General Exponential Family

We use the idea of the kernel sequence method to find estimators of αG(x)
and ψG(x). Then we construct cn based on them.

We now present two sequences of kernel functions K0v and K1v . For odd v,
let K0v(y) = K0(v+1)(y); for even v,

K0v(y) =

{
pvy

v + pv−1yv−1 + · · · + p0, if − 1 ≤ y ≤ 1,
0, otherwise,

pi =


0, if i is odd,

(−1)i/2v!(v + i)!v(v − i)
i!(i + 1)22v+1[(v

2 )!]
2(v+i

2 )!(v−i
2 )!

, if i is even.
(4.1)

For even v, K1v(y) = K1(v+1)(y); for odd v,

K1v(y) =

{
qvy

v + qv−1yv−1 + · · ·+ q0, if − 1 ≤ y ≤ 1,
0, otherwise,

qi =


0, if i is even,

(−1)(i+1)/2(v + 1)!(v + i)!(v − 1)(v − i)
i!(i + 2)22v+1(v−1

2 )!(v+1
2 )!(v+i

2 )!(v−i
2 )!

, if i is odd.
(4.2)

The kernel functions (4.1) and (4.2) are in Gasser, Muller and Mammitzsch
(1985). They showed that K0v(y) satisfies (3.1) with A0v = −1, B0v = 1, k0v = v

if v is even and k0v = v + 1 if v is odd; K1v(y) satisfies (3.2) with A1v = −1,
B1v = 1, k1v = v if v is odd and k1v = v + 1 if v is even.
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For ε > 0, let εn = (lnn)−ε ∧ 1. Denote u = un = ε
1/3
n and v = vn =

[− lnn
lnu ] ∨ 0 + 1, where [x] denote the integer part of x. Then uv ≤ n−1. For any

x ∈ (a, b), define

αn(x) =
1
nu

n∑
j=1

K0v

(
Xj − x

u

)
/h(Xj), ψn(x) =

1
nu2

n∑
j=1

K1v

(
Xj − x

u

)
/h(Xj).

(4.3)
It is shown later that αn(x) and φn(x) are consistent estimators of αG(x) and
φG(x), respectively. Define Wn(x) = θ0αn(x)−ψn(x). Then Wn(x) is a consistent
estimator of w(x).

Since cG is the unique root of w(x), we are going to use Wn(x) to construct
cn. Before doing this, let us examine δG. Note that δG is a monotone rule. If x

is larger than cG, we accept H1; if x is smaller than cG, we accept H0. Since G is
unknown, we do not know at which point we should accept H0 or reject it. But,
one will be more likely to accept H1 if the present observation x is quite large
and accept H0 if it is quite small. Knowing this, we want numbers c1n and c2n
depending on n such that we accept H1 if we observe x > c2n and accept H0 if
we observe x < c1n. Once proper c1n and c2n are found, we can concentrate our
effort on x ∈ [c1n, c2n].

The idea of splitting (a, b) into (a, c1n), [c1n, c2n] and (c2n, b) is called the
localization technique. To implement it, we need the following lemma.

Lemma 4.1. Four sequences of numbers {an, ān, bn, b̄n} can be found such that
an ↓ a, bn ↑ b, and for large n

(i) −[(ln lnn) ∧ u−1] ≤ an < bn ≤ [(ln lnn) ∧ u−1];
(ii) minan<x<bn h(x) ≥ u;
(iii)

∫ an
ān

h(t)dt ≥ 2u,
∫ b̄n
bn

h(t)dt ≥ 2u.

The proof is obvious, hence omitted.

Let c1n = an + u+ u1/3 and c2n = bn − u− u1/3. From Lemma 4.1, we know
that c1n ↓ a and c2n ↑ b. So cG will fall in [c1n, c2n] for large values of n and
therefore can be expressed as cG =

∫ c2n
c1n

I[w(x)>0]dx + c1n. Recall Wn(x), defined
as Wn(x) = θ0αn(x) − ψn(x), is a consistent estimator of w(x). Then we define
cn as:

cn =
∫ c2n

c1n

I[Wn(x)>0]dx + c1n. (4.4)

A monotone empirical Bayes test δn(x) is now proposed as follows:

δn =

{
1 if x ≥ cn,

0 if x < cn.
(4.5)



1066 JIANJUN LI AND SHANTI S. GUPTA

It is obvious that cn ∈ [c1n, c2n] so if x > c2n, we will accept H1, if x < c1n we
will accept H0. If x ∈ [c1n, c2n], we calculate cn and compare x with cn to make
the decision.

The use of the localization technique helps us avoid the boundary effect of
kernel estimates. It provides bounds on the moments of Wn(x) for x∈ [c1n, c2n]
(see Lemma 5.3 below). Also it results in a nice lower bound on |w(x)| for
x∈ [c1n, cG−εG]∪[cG+εG, c2n] and εG >0 (see Lemma 5.2 below). This is crucial
to get the desired rate of convergence in Section 5. The localization technique
has also been used in Gupta and Li (1999), and Gupta and Li (2001a, b).

Note that since Wn(x) is an estimate of w(x), a natural construction of the
empirical Bayes rule should be δn = 1 if Wn(x) ≤ 0 and δn = 0 if Wn(x) > 0.
Unfortunately this construction will lead to a non-monotone rule. We use the
integration of I[Wn(x)>0] in (4.4) instead. This technique is borrowed from Brown,
Cohen, and Strawderman (1976), Van Houwelingen (1976) and Stijnen (1985).

Now we study the large sample behavior of δn. The next two lemmas enable
us to express the regret of δn through cn − cG.

Lemma 4.2. w′(cG) < 0.
Since w′(x) is continuous in (a, b), we can find NεG

(cG), a neighborhood
of cG, such that NεG

(cG) ⊂ (c1n, c2n) ⊂ (a, b) ( for large n), and Aε =
minx∈NεG

(cG)[−w′(x)] > 0. Denote η1 = cG − εG and η2 = cG + εG in the
following.

Lemma 4.3. Let h̄ = sup{h(x) : x ∈ [η1, η2]} and w̄ = sup{−w′(x) : x ∈
[η1, η2]}. Then

R(G, δn)− R(G, δG) ≤ 2−1h̄w̄E(cn − cG)2 + (θ0 + E[|θ|])ε−4G E(cn − cG)4.

Following (4.4) and cG ∈ [c1n, c2n], we have

cn − cG = −
∫ cG

c1n

I[Wn(x)≤0]dx +
∫ c2n

cG

I[Wn(x)>0]dx. (4.6)

So an upper bound for cn − cG is easy to obtain through the properties of Wn(x)
and w(x). Note that Wn(x) can be written as

Wn(x) =
1
n

n∑
j=1

Vn(Xj , x), where Vn(Xj , x) =
θ0
u
·K0v(

Xj−x
u )

h(Xj)
− 1

u2
·K1v(

Xj−x
u )

h(Xj)
.

For fixed n and x, Vn(Xj , x) are i.i.d. random variables, so Wn(x) is the average
of the i.i.d. random variables. After applying the results in Petrov (1995), we
have the following result.

Lemma 4.4. limn→∞[nεn(ln n)−3E(cn−cG)2] = 0, limn→∞[nεn(lnn)−3E(cn−
cG)4] = 0.
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The proofs of Lemmas 4.2−4.4 are given in Section 5. Note that εn ≤
(lnn)−ε. Then as a result of Lemma 4.3 and Lemma 4.4, we have the following.

Theorem 4.1. Assume that
∫ |θ|dG(θ) < ∞ and the Bayes rule δG is non-

degenerate. Then R(G, δn)− R(G, δG) = o((lnn)3+ε/n).

Remark 4.1. To apply the kernel sequence method, a key question is how
to construct the sequence of kernel functions. Here we use results of Gasser,
Muller and Mammitzsch (1985), but expect that the rate can be improved with
a “better” kernel sequence.

Remark 4.2. The rule δn is monotone and is weakly admissible as discussed by
Van Houwelingen (1976). It therefore has good performance for small samples.

Remark 4.3. What is the best possible rate of MEBT’s? In Gupta and Li
(2001b), it is proved that 1/n is a (natural) minimax lower bound rate for
MEBT’s in the exponential family (1.1). That is,

inf
δ∗n∈D

sup
G∈G

[R(G, δ∗n)− R(G, δG)] ≥ l/n for some l > 0,

where D is the set of monotone empirical Bayes rules of type (2.2) and G is the
set of prior distributions with supports inside [θ01, θ02] � θ0. However, we do not
know whether the rate 1/n is achievable or not.

5. Proofs

We prove the results in the previous sections. First we state some useful
lemmas, proofs of which are in the appendix.

Lemma 5.1. Let ᾱn = max{αG(x) : x ∈ [an, bn]}. For sufficiently large n,
ᾱn ≤ (2u)−1.

Lemma 5.2. For sufficiently large n, if x ∈ [c1n, c2n], |w(x)| ≤ 2u−2, and if x ∈
[c1n, η1]∪ [η2, c2n], |w(x)| ≥ M · u(lnn)−B for some positive constants M and B.

Lemma 5.3. Let wn(x) = E[Vn(Xj , x)], Zjn = Vn(Xj , x) − wn(x), σ2n(x) =
E[|Zjn|2] and γn(x) = E[|Zjn|3]. For sufficiently large n, there exist positive
constants l1, l2, l3 and l4 such that
(i) for x ∈ [c1n, c2n], |wn(x)− w(x)| ≤ 1/

√
n;

(ii) for x ∈ [c1n, c2n], σn(x) ≤ l1v
3/2u−5/2;

(iii) for x ∈ [η1, η2], l2 ≤ σn(x) ≤ l3(v/u)3/2;
(iv) for x ∈ [c1n, c2n], γn(x) ≤ l4v

1336vu−6.

Lemma 5.4. Let dn =
√

v3/nu3. For x ∈ [c1n, c2n], n sufficiently large, w(x) >

dn =⇒ wn(x) ≥ w(x)/2, w(x) < −dn =⇒ wn(x) ≤ w(x)/2.
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Proof of lemma 4.2. Note that αG(x) is infinitely differentiable, α′
G(x)=ψG(x)

and w′(x) = θ0ψG(x)−ψ′
G(x). If ψG(cG) = 0, then w′(cG) = − ∫

θ2c(θ)eθcGdG(θ)
< 0. If ψG(cG) > 0, by Jensen’s inequality ψ′

G(cG)/ψG(cG) > ψG(cG)/αG(cG) =
θ0. Thus w′(cG) < 0. Similarly if ψG(cG) < 0, w′(cG) < 0. The proof of Lemma
4.2 is complete.

Proof of lemma 4.3. From (2.3),

R(G, δn)−R(G, δG)≤E

[
I[|cn−cG|>εG]

∫ cG

cn

w(x)h(x)dx
]
+h̄E

[
I[|cn−cG|≤εG]

∫ cG

cn

w(x)dx
]

≤(θ0+µG)ε−4G E(cn−cG)4+1/2h̄w̄E(cn−cG)2,

where
∫ cG
cn

w(x)h(x)dx ≤ (θ0 + µG) and, by a Taylor expansion,

I[|cn−cG|≤εG]

∫ cG

cn

w(x)dx = −1/2×w′(ĉn)(cn−cG)2I[|cn−cG|≤εG] ≤ 1/2w̄(cn−cG)2.

Proof of lemma 4.4. From (4.6),

E(cn − cG)2 ≤ E

[∫ cG

c1n

I[Wn(x)≤0]dx
]2

+E

[∫ c2n

cG

I[Wn(x)>0]dx

]2
≡ r1n + r2n. (5.1)

The Hölder inequality and a little algebra shows that

r1n ≤ 2(c2n − c1n)I1 + 2I2 + 2I3, (5.2)

where I1 =
∫ η1
c1n

P (Wn(x) ≤ 0 )dx, I2 =
( ∫ cG

η1
I[w(x)≤ dn ] dx

)2
, I3 =

E[
∫ cG
η1

I[ Wn(x)≤ 0,w(x)> dn ] dx ]2. For w(x) > dn, wn(x) ≥ w(x)/2 from Lemma
5.4. Then we have

P (Wn(x)≤0)=P

(
1√
nσ2n

n∑
j=1

Zjn≤−√
nwn(x)
σn

)
≤P

(
1√
nσ2n

n∑
j=1

Zjn≤−√
nw(x)
2σn

)
.

Applying Theorem 5.16 on page 168 in Petrov (1995) to the RHS of the above
inequality,

P (Wn(x) ≤ 0) ≤ Φ(−
√

nw(x)
2σn

) +
8Aγn(x)√

n[2σn +
√

nw(x)]3
≡ Sn(x) + Tn(x), (5.3)

where A is a constant and Φ(·) is the cdf of N(0, 1). For x ∈ [c1n, η1], w(x) ≥
Mu(lnn)−B and certainly w(x) > dn for large n. Also note that σn ≤ l1u

−5/2v3/2

and γn(x) ≤ l4v
1336vu−6. It follows that Sn(x) ≤ Φ(−n1/4) and Tn(x) ≤ n−3/2

for large n. Thus

(c2n − c1n)I1 = (c2n − c1n)
∫ η1∨c1n

c1n

P (Wn(x) ≤ 0)dx = o(n−1). (5.4)
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For x ∈ [η1, cG], |w′(x)| ≥ Aε. Thus I2 ≤ A−2
ε [

∫ cG
η1

I[w(x)≤dn]w
′(x)dx]2. Letting

y = w(x)/dn, I2 ≤ A−2
ε d2n

∫ ∞
0 I[y≤1]dy = A−2

ε d2n. Therefore

I2 = O(d2n) = o((ln n)3/(nεn)). (5.5)

By the Hölder inequality again,

I3 ≤
∫ cG

η1

P (Wn(x) ≤ 0)[w(x)]3/2I[w(x)>dn]dx ×
∫ cG

η1

[w(x)]−3/2I[w(x)>dn]dx.

Letting y = w(x)/dn,
∫ cG
η1

[w(x)]−3/2I[w(x)>dn]dx ≤ 2/[Aε

√
dn]. Using the previ-

ous two inequalities and (5.3), we have

I3 ≤ 2/(Aεdn
1/2)

{∫ cG

η1

Sn(x)[w(x)]3/2dx +
∫ cG

η1

Tn(x)[w(x)]3/2dx
}

. (5.6)

For x ∈ [η1, cG], l2 ≤ σn ≤ l3
√

v3/u3 and γn(x) ≤ l4v
1336vu−6. Therefore∫ cG

η1

Sn(x)w
3
2 (x)dx ≤ 1

Aε

∫ cG

η1

Φ
(
−
√

nu3w(x)
2l3

√
v3

)
[w(x)]

3
2 dw(x)

≤ (2l3dn)5/2

Aε

∫ ∞

0
Φ(−y)y

3
2 dy, (5.7)∫ cG

η1

Tn(x)[w(x)]3/2dx ≤ 8Al4v
1336v

Aεn7/4u6

∫ ∞

0

y3/2

[2l2 + y]3
dy. (5.8)

Combining (5.6)−(5.8), we have I3 = o((ln n)3/(nεn)). This together with (5.4)
and (5.5) yields r1n = o((ln n)3/(nεn)). Similarly, r2n = o((lnn)3/(nεn)). Then
E(cn − cG)2 = o((ln n)3/(nεn)). Observe that (cn − cG)4 ≤ (

∫ cG
c1n

I[Wn(x)≤0]dx)
4+

(
∫ c2n
cG

I[Wn(x)>0]dx)
4, and

E

(∫ cG

c1n

I[Wn(x)≤0]dx
)4

≤ 8(c2n − c1n)3I1 + 4ε2G(I2 + I3) = o((ln n)3/(nεn)).

Then E(cn − cG)4 = o((lnn)3/(nεn)). This completes the proof of Lemma 4.4.

Appendix

Lemma A.1. The following hold.
(i) |Kiv(y)| ≤ kv1036v for some constant k, i = 0, 1.
(ii) v−1

∫ |K0v(y)|2dy → π−1 as v → ∞.
(iii) v−3

∫ |K1v(y)|2dy → (3π)−1 as v → ∞.

Proof. (i) is obtained by simple calculations. By definition and Theorem 1 of
Gasser, Muller and Mammitzsch (1985), for an even v,∫ 1

−1
K2
0v(y)dy =

v2[(v − 1)!!]2

2[v!!]2
,

∫ 1

−1
K2
1v(y)dy =

v2[(v + 1)!!]2

6[v!!]2
,
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where v!! = v × (v − 2) × · · · × 1 if v is odd and v!! = v × (v − 2) × · · · × 2 if v

is even. Since s[(2s − 1)!!]2/[(2s)!!]2 → π−1 as s → ∞, (ii) and (iii) are obvious.
The case of odd v can be proved similarly.

Proof of Lemma 5.1. Note that α′′
G(x) =

∫
θ2c(θ)eθxdG(θ) > 0 for x ∈ (a, b).

Then αG(x) is a convex function and ᾱn = αG(an)∨αG(bn). We prove αG(an) ≤
(2u)−1, the proof of αG(bn) ≤ (2u)−1 is similar. Since c(θ) = 1/{∫ b

a h(x)eθxdx}
and αG(an) =

∫
c(θ)eθandG(θ), it follows

αG(an) ≤
∫
[θ≥0]

1∫ b̄n
an

h(x) exp(θ(x − an))dx
dG(θ)

+
∫
[θ<0]

1∫ an
ān

h(x) exp(θ(x − an))dx
dG(θ).

Note that
∫ b̄n
an

exp(θ(x−an))h(x)dx ≥ 2u as θ ≥ 0 and
∫ an
ān

exp(θ(x−an))h(x)dx ≥
2u as θ < 0, from Lemma 4.1. Then Lemma 5.1 holds.

Proof of Lemma 5.2. Since ψG(x)=
∫

θc(θ) exp(θx)dG(θ) and u|θ|≤exp(u|θ|),

|ψG(x)| ≤ u−1
[∫
[θ≥0]

c(θ) exp(θ(x + u))dG(θ) +
∫
[θ<0]

c(θ) exp(θ(x − u))dG(θ)
]
.

From Lemma 5.1, for x ∈ [c1n, c2n], αG(x) ≤ 1/(2u). Then |ψG(x)| ≤ 1/u2 and
|w(x)| ≤ 2/u2 for large n. Assume that B > 0 such that

∫
[|θ|≤B] dG(θ) > 0. Let

ΩB = {θ : θ ∈ Ω, |θ| ≤ B}. Since 1/c(θ) is a convex function of θ on Ω, c(θ) is
bounded on ΩB. Thus

∫
ΩB

c(θ)dG(θ) is finite.
Recall that w(x)=αG(x)[θ0−φG(x)]. Since φG(x) is increasing and φG(cG)=

0, then for x ∈ [c1n, η1], θ0 − φG(x) ≥ θ0 − φG(η1) > 0; for x ∈ [η2, c2n], φG(x)−
θ0 ≥ φG(η2)− θ0 > 0. For x ∈ [c1n, c2n], |x| ≤ ln lnn and

αG(x) ≥
∫
ΩB

c(θ) exp(−θ| ln lnn|)dG(θ) ≥ (lnn)−B
∫
ΩB

c(θ)dG(θ).

Let M = {[θ0 − φG(η1)] ∧ [φG(η2) − θ0]} · ∫
ΩB

c(θ)dG(θ). Then Lemma 5.2 is
proved.

Proof of Lemma 5.3. We prove (i) for even v only, odd v follows similarly.
Using a Taylor expansion of eθux, simple calculations show that

E

[
K0v(

Xj−x
u )

uh(Xj)

]
=

∫
c(θ)eθxdG(θ) + uv

∫
θvc(θ)eθx

[∫ 1

−1
K0v(t)tveθut∗

v!
dt

]
dG(θ),

E

[
K1v(

Xj−x
u )

u2h(Xj)

]
=

∫
θc(θ)eθxdG(θ)+ uv

∫
θv+1c(θ)eθx

[∫ 1

−1
K1(t)tv+1eθut∗∗

(v + 1)!
dt

]
dG(θ),
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where |t∗|, |t∗∗| < 1. Then E[Vn(Xj , x)] = w(x) + uv/2dn(x) and

dn(x) = θ0u
v/2

∫
θv

v!
c(θ)eθx

[∫ 1

−1
K0v(t)tveθut∗dt

]
dG(θ)

−uv/2
∫

θv+1

(v + 1)!
c(θ)eθx

[∫ 1

−1
K1v(t)tv+1eθut∗∗dt

]
dG(θ).

Since (u1/3θ)v/v! ≤ exp(|θ|u1/3) and (u1/3θ)v+1/(v + 1)! ≤ exp(|θ|u1/3), for
x ∈ [c1n, c2n], |dn(x)| ≤ uv/6−1 ∫

c(θ)eθx+|θ|u+|θ|u1/3
dG(θ) · [|θ0|

∫ 1
−1|K0v(t)|dt +∫ 1

−1|K1v(t)|dt]≤uv/6−1ᾱn{|θ0|
[
2

∫ 1
−1|K0v(y)|2dy]1/2+[2

∫ 1
−1|K1v(y)|2dy]1/2}. From

Lemma A.1 and Lemma 5.1, |dn(x)| → 0 uniformly for x ∈ [c1n, c2n]. Then (i) is
proved. For x ∈ [c1n, c2n], h(x + u) ≥ u from Lemma 4.1 and

σ2n(x) ≤ E[θ0
K0v(

Xj−x
u )

uh(Xj)
− K1v(

Xj−x
u )

u2h(Xj)
]2

= u−3
∫ ∫ 1

−1
[θ0uK0v(t)− K1v(t)]2c(θ)eθxeθut[h(x + ut)]−1dtdG(θ)

≤ l21u
−4v3

∫
c(θ)eθxe|θ|udG(θ) ≤ l21u

−5v3.

Especially, for x ∈ [η1, η2], letting h = min{h(x + ut) : x ∈ [η1, η2], |t| ≤ 1},
σ2n(x) ≤ l5u

−3h̄−1v3
∫

c(θ)eθxe|θ|udG(θ) ≤ l23u
−3v3. It is easy to see that σ2n(x) >

l22. We prove (iii) next. From Lemma A.1, for i = 0 or 1, |Kiv(t)| ≤ kv1036v.
Also note that |Kiv(t)| = 0 if |t| > 1. Then

|Kiv((y − x)/u)/h(y)|I[c1n≤x≤c2n] ≤ kv1036v/h(y)I[c1n≤y≤c2n+u] ≤ kv1036vu−1.

For x ∈ [c1n, c2n], E[|Zjn(x)|3] ≤ 2kv1036vu−1E[Z2jn(x)] ≤ l4v
1336vu−6. The

proof of Lemma 5.3 is complete.

Proof of Lemma 5.4. From Lemma 5.3, we have |wn(x) − w(x)| ≤ 1/
√

n for
all x ∈ [c1n, c2n]. If w(x) > dn and n is large,

wn(x)
w(x)

≥ w(x)− dn + dn − |wn(x)− w(x)|
w(x)− dn + dn

≥ dn − |wn(x)− w(x)|
dn

≥ 1
2
.

Similarly, we can prove that w(x) < −dn =⇒ wn(x) ≤ w(x)/2.
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