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Abstract: The input energy constraints in a linear dynamic system considered in

this paper are of the form that the Euclidean norm of each column of its design

matrix is bounded above by a constant. An exact Lp-optimal design is obtained in

closed form which is easily computable. Interestingly, the Lp-optimal designs for

the generalized and the ordinary least squares estimators coincide. An example is

given to demonstrate how the results can be used to find a design that performs

well under all Lp criteria.
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1. Introduction

Consider the linear regression model

y = Xβ + e, (1)

where y is an n× 1 vector of observations, X is an n× r (n ≥ r) design matrix,
β is an r × 1 vector of unknown parameters, and e is an n× 1 vector of random
errors. The vector e has mean zero and covariance matrix σ2Λ, where σ is an
unknown parameter and Λ is a known n × n positive definite matrix. An exact
optimal design for (1) is the design matrix which is “optimal” in a certain sense
in a given experimental region.

The form of the experimental region depends on the meaning of the design
variables which constitute the design matrix X. Most research in this area has
been limited to situations where all elements in X can be independently chosen, or
where restrictions are only allowed among elements in the same row. An example
of the former case is weighing designs (see for example Banerjee (1975)), while
typical examples of the latter include polynomial regression (see Gaffke and Krafft
(1982), Constantine, Lim and Studden (1987), Kraft and Schaefer (1995), and
Chang and Yeh (1998)), and the design of mixture experiments (see Chan (1995)
for a review). However, experimental regions with restrictions on elements in the
same column can arise naturally in real applications. For example, a column of



1016 KIM-HUNG LI AND NAI N. CHAN

X may represent (a function of) the money or time to be spent in an experiment,
so that control on the total amount of money or time specifies a constraint on
the column. Optimal designs under column constraints are considered in Rao
(1973, pp.235-236).

The experimental region considered in this paper is the set H of all n × r

design matrices X (of rank r) of which the ith column has a Euclidean norm not
exceeding ci, i = 1, . . . , r, where the ci’s are given positive numbers. Such a region
has been considered in Dorogovcev (1971), Chan and Li (1989), and Li, Chan
and Wong (1998). Without loss of generality, we assume that c1 ≤ c2 ≤ · · · ≤ cr.

Restrictions on sum of squares are common in dynamic systems. In system
theory, energy is defined as a sum of squares; it becomes an integral of a squared
function in continuous time systems. A constraint on the energy of an input
signal is a restriction on the sum of squared inputs (see for example Levadi
(1966), and Mehra (1974)). If each column of X stores the values of an input
signal, the experimental region H corresponds to putting an energy constraint
on each of the signals.

For a given design matrix X of rank r, the best linear unbiased estimator of
β based on the observation y is the generalized least squares estimator (GLSE)
(X ′Λ−1X)−1X ′Λ−1y. Further, the covariance matrix of the GLSE is σ2Σ, where
Σ = (X ′Λ−1X)−1. Another unbiased estimator of the parameter β is the ordinary
least squares estimator (OLSE) (X ′X)−1X ′y.

Denote by Var (β̂) the r × r covariance matrix (depending on X) of an es-
timator β̂ of β. We use the Lp-optimality criterion (see also the matrix mean
φp-optimality criterion in Pukelsheim (1993, pp.140-143)) which is to find a de-
sign matrix X ∈ H that minimizes [tr{Var (β̂)p}]1/p. When p tends to zero, this
reduces to D-optimality (which is to minimize the determinant of Var (β̂)); when
p is one, it is simply A-optimality; and when p diverges to infinity, it becomes
E-optimality (which is to minimize the largest eigenvalue of Var (β̂)).

As a single criterion, D-, A- and E-optimality are popular. However, there
is also interest in multiple-objective optimal designs (Huang and Wong (1998)),
which include compound optimal designs (Cook and Wong (1994)) and con-
strained optimal designs (Stigler (1971), Studden (1982), and Lee (1987, 1988)).
A design is “good” if it performs well under a range of criteria. Robustness to
the choice of criteria is desirable under certain circumstances. In this paper, we
not only derive an Lp-optimal design for any specific p, but also provide suffi-
cient insights to achieve a design that performs “well” under all Lp-criteria, as
demonstrated by the example in Section 3.

To show how the regression setting arises in dynamic systems, consider a
simple example from Levadi (1966) and Mehra (1974).
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Example. Consider a continuous time system dx(t)/dt = −x(t) + bu(t), where
t denotes time in [0, τ ], x(t) is a scalar state variable, u(t) is a scalar input,
and b is an unknown parameter. The output variable ψ(t) is the x(t) observed
with noise, i.e., ψ(t) = x(t) + v(t), where v(t) is a colored noise process with
known autocovariance function. The initial state x(0) = 0. We observe ψ(t) at
discrete times, say t1, . . . , tm. The input function, u(t), is subject to an energy
constraint

∫ τ
0 u2(t) dt ≤ c2 and ψ(t) can be expressed in terms of u(t) as ψ(t) =

b exp(−t) ∫ t
0 exp(s)u(s)ds + v(t). Suppose that u(t) belongs to a function space

spanned by n orthonormal functions gi(t), i = 1, . . . , n, n ≤ m, in [0, τ ]. (This
assumption imposes modest restrictions on u(t), as n can be any positive integer
less than m and we are free to choose the gi(t)’s.) Write u(t) =

∑n
i=1 αigi(t). The

energy constraint becomes
∑n

i=1 α
2
i ≤ c2. The model can be expressed as ψ(t) =

b
∑n

i=1 αihi(t) + v(t), where hi(t) = exp(−t) ∫ t
0 exp(s)gi(s)ds for i = 1, . . . , n.

Let A = [α1, . . . , αn]′, L be the m × n matrix with hi(tj) as its (j, i)th
element, Ψ = [ψ(t1), . . . , ψ(tm)]′, and V = [v(t1), . . . , v(tm)]′; then Ψ = LAb+V.

Further, let Γ be the covariance matrix of V . The GLSE of b is then identical to
that for model (1) with X = A, y = (L′Γ−1L)−1L′Γ−1Ψ, and Λ = (L′Γ−1L)−1.
The restriction on the design matrix X (= A) is that the sum of squares of its
elements is bounded above by c2. Therefore, we arrive at a design setting for (1)
in the desired experimental region.

For OLSE, the A-optimality problem under the experimental region H was
considered by Chan (1982, 1987). A general and concise construction method
of an A-optimal design had been suggested in Chan and Li (1989) and Li and
Chan (1989), whilst Li, Chan and Wong (1998) provided an efficient algorithm
for deriving an E-optimal design matrix. These results are special cases of the
construction theorem in Section 2, where an exact Lp-optimal design matrix is
given in closed form. It will be shown that the specified design matrix is Lp-
optimal for both GLSE and OLSE. In Section 3, a linear systems example is
used to demonstrate how the theorem can be used to derive a design which has
high efficiency in the Lp-optimality family.

2. An Exact Lp-Optimal Design Matrix

Given two ordered vectors of dimension r, say [ai] ≡ [a1, . . . , ar] and [bi] ≡
[b1, . . . , br] with a1 ≤ · · · ≤ ar and b1 ≤ · · · ≤ br, the vector [ai] is said to
majorize [bi], written as [ai] 
 [bi], if

∑i
j=1 aj ≤ ∑i

j=1 bj , i = 1, . . . , r − 1,
and

∑r
j=1 aj =

∑r
j=1 bj ; see, for example, Marshall and Olkin (1979, p.5). Let

Dr = {[di] ≡ [d1, . . . , dr] : 0 ≤ d1 ≤ · · · ≤ dr}, and let Dr+ be the subset of Dr

with d1 > 0.
In studying A-optimality in the experimental region H, Chan and Li (1989)

defined a CL sequence, also referred to as a CL vector, and an algorithm was



1018 KIM-HUNG LI AND NAI N. CHAN

proposed for its construction. Li, Chan and Wong (1998) suggested an alternative
and yet more efficient algorithm, which is used here to define the CL vector in a
recursive manner.

Definition. Given [ai] and [bi] in Dr+ , let h = max{∑i
j=1 aj/

∑i
j=1 bj : i =

1, . . . , r}, and k (1 ≤ k ≤ r) be the smallest integer such that
∑k

j=1 aj/
∑k

j=1 bj =
h. We call [d1, . . . , dr] the CL vector of the pair ([ai], [bi]) if di = ai/h, i = 1, . . . , k,
and in the case k < r, [dk+1, . . . , dr] is the CL vector of the pair ([ak+1, . . . , ar],
[bk+1, . . . , br]) of vectors in D(r−k)+.

When r = 1, the CL vector of ([a1], [b1]) is [b1]. For general r, the definition
above either gives the CL vector directly (when k = r), or describes how it can be
found based on CL vectors of smaller dimension. By induction, this defines the
CL vector for all r. The definition can easily be used to find the CL vector of any
pair of vectors in Dr+ in a finite number of steps. For example, to find the CL
vector [d1, . . . , d6] of ([1, 1, 3, 4, 6, 6], [1, 1, 2, 5, 5, 7]), we have h = 5/4 and
k = 3, and so d1 = a1/h = 0.8, d2 = a2/h = 0.8, d3 = a3/h = 2.4, and [d4, d5, d6]
is the CL vector of ([4, 6, 6], [5, 5, 7]). Then for the pair ([4, 6, 6], [5, 5, 7]), we
have by definition that h = 1, and k = 2, and so d4 = 4/h = 4 and d5 = 6/h = 6.
As [d6] is the CL vector of ([6], [7]), d6 = 7. Thus the desired CL vector is
[di] = [0.8, 0.8, 2.4, 4, 6, 7]. The pseudocode of an algorithm for finding the
CL vector of a pair [ai] and [bi] in Dr+ is given in Appendix 1.

As the CL vector is defined by a deterministic recursive algorithm, it must
be unique. Furthermore, if [di] is the CL vector of ([ai], [bi]), then [di] 
 [bi].
This important property can be easily proved by induction using the facts that
(a) for the integer k in the definition, [d1, . . . , dk] 
 [b1, . . . , bk], and (b) if k < r,
dk ≤ dk+1 (= ak+1/max{∑i

j=k+1 aj/
∑i

j=k+1 bj : i = k + 1, . . . , r}). Also, [di] ∈
Dr+, and k is the smallest integer j such that

∑j
i=1 di =

∑j
i=1 bi.

Denote the r × r diagonal matrix with ith diagonal element qi, i = 1, . . . , r,
by diag[q1, . . . , qr]. Let 0 < λ1 ≤ · · · ≤ λr ≤ · · · ≤ λn be the eigenvalues of
the matrix Λ arranged in ascending order of magnitude. For any p > 0, let
[dp,i] ≡ [dp,1, . . . , dp,r] be the CL vector of ([λp/(p+1)

1 , . . . , λ
p/(p+1)
r ], [c21, . . . , c

2
r ]),

where the ci’s are defined in Section 1.

Theorem. In the regression setting with the experimental region H given in
Section 1 and an n× r design matrix Z, the following are equivalent:
(i) Z is Lp-optimal for the GLSE;
(ii) Z is Lp-optimal for the OLSE;
(iii)The matrix Σ for the design matrix Z has eigenvalues λi/dp,i, i = 1, . . . , r.

(iv) Z = P diag[
√
dp,1, . . . ,

√
dp,r]Q′, (2)
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where P is an n×r matrix of which the columns are orthonormal eigenvectors
of Λ such that ΛP = P diag[λ1, . . . , λr], and Q is an r× r orthogonal matrix
such that the ith diagonal element

(Qdiag[dp,1, . . . , dp,r]Q′)ii = c2i , i = 1, . . . , r. (3)

Statement (iv) of the Theorem provides a neat and efficient method for
constructing an exact Lp-optimal design matrix. The existence of a matrix Q

satisfying (3) follows from the fact that [dp,i] 
 [c21, . . . , c
2
r ]. A Fortran subroutine

for the construction of Q in finite steps is given in Chan and Li (1983). As
matrices P and Q in (2) are not necessarily unique, there may be more than one
optimal design.

The theorem yields the A- and E-optimal designs suggested in Chan and Li
(1989), and in Li, Chan and Wong (1998), by simply setting p = 1 and by letting
p diverge to infinity, respectively. When p diverges to infinity, [dp,i] converges to
the CL vector of ([λ1, . . . , λr], [c21, . . . , c

2
r ]).

There are two particular cases of interest. One is when the r smallest eigen-
values of Λ are identical, and the other is when all ci’s are equal. These two
cases are considered in (a) and (b) of the following Corollary. Case (a) of the
Corollary also applies when p tends to zero (corresponding to D-optimality) be-
cause λ

p/(p+1)
i /c2i tends to 1/c2i , non-increasing as the ci’s are arranged in non-

descending order.

Corollary. Under the same regression setting and notations of the theorem, we
have

(a) If λp/(p+1)
i /c2i is non-increasing in i = 1, . . . , r (in particular, if λ1 = · · · = λr),

the exact Lp-optimal design is Z = P diag[c1, . . . , cr].
(b) If c1 = · · · = cr = c, and a Hadamard matrix G of order r exists, then the

exact Lp-optimal design is

Z =

[
c/(

r∑
i=1

λ
p/(p+1)
i )1/2

]
P diag[λp/[2(p+1)]

1 , . . . , λp/[2(p+1)]
r ]G.

3. An Example

As considered by Dorogovcev (1971) (see also Chang (1979), Chang and
Wong (1981), and Li, Chan and Wong (1998)), suppose there is a continuous
time output process z(t) which depends on two user-supplied input functions
f1(t) and f2(t) through the following equation:

z(t) = β1f1(t) + β2f2(t) + ξ(t). (4)

Here ξ(t) is a Gaussian process with E(ξ(t)) = 0, and E(ξ(t1)ξ(t2)) = [α +
min(t1, t2)]σ2 for a positive constant α, and any non-negative values t, t1, and
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t2. We are going to observe the output z(t) for a period of time, say from time
0 to 1. The input functions are subject to energy constraints

∫ 1
0 f

2
1 (t)dt ≤ c21

and
∫ 1
0 f

2
2 (t)dt ≤ c22, where 0 < c1 ≤ c2. The problem is to choose appropriate

input functions that produce the “best” estimators of β1 and β2 based on the
observed output. If we impose no further restrictions, then f1(t) and f2(t) can
be chosen to make our estimates of β1 and β2 as precise as we want. To see this,
take orthogonal inputs f1(t) =

√
2c1 cos(mπt) and f2(t) =

√
2c2 cos((m + 1)πt)

for a positive integer m. From (4),
∫ 1
0 z(t)f1(t)dt = c21β1 +

∫ 1
0 ξ(t)f1(t)dt. As∫ 1

0 ξ(t)f1(t)dt has mean zero and variance πc21σ
2/m2, β̂1 ≡ ∫ 1

0 z(t)f1(t)dt/c21 is an
unbiased estimator of β1 with standard error approaching zero as m increases.
Similarly β̂2 ≡ ∫ 1

0 z(t)f2(t)dt/c22 converges to β2 by increasing m.
Suppose we restrict both f1(t) and f2(t) to be quadratic functions of t. We

can then express the input functions as linear combinations of the orthonormal
functions g1(t) = 1, g2(t) =

√
12(t−1/2) and g3(t) =

√
180(t2−t+1/6) for 0 ≤ t ≤

1. For a given 3×2 matrix X, let (f1(t), f2(t)) = (g1(t), g2(t), g3(t))X. The OLSE
of β = (β1, β2)′ under (4) (Dorogovcev (1971)) is T−1

∫ 1
0 z(t)(f1(t), f2(t))′dt,

where T = [Tij ] is a 2× 2 matrix with Tij =
∫ 1
0 fi(t)fj(t)dt. It is easy to see that

this estimator is identical to the OLSE in (1) with X defined above,

y =
[∫ 1

0
z(t)g1(t)dt,

∫ 1

0
z(t)g2(t)dt,

∫ 1

0
z(t)g3(t)dt

]′
,

e =
[∫ 1

0
ξ(t)g1(t)dt,

∫ 1

0
ξ(t)g2(t)dt,

∫ 1

0
ξ(t)g3(t)dt

]′
.

The energy constraints amount to restricting the first and second columns of the
design matrix X to have Euclidean norms not exceeding c1 and c2 respectively.
Now, consider the Lp-optimality criterion. From the autocovariance structure of
ξ(t), the matrix Λ for the linear model does not depend on the parameter α and
is equal to

Λ =

 1/3
√

3/12 −√
5/60√

3/12 1/10 0
−√

5/60 0 1/42

 .

The two smallest eigenvalues of Λ are λ1 = 0.00916246 and λ2 = 0.042751. Their
corresponding normalized eigenvectors form the matrix

P =

 0.31625 0.29844
−0.50251 −0.75243
0.80466 −0.58718

 . (5)

By the definition of the CL vector, [dp,1, dp,2] takes one of the following forms:

Case 1. When (λ1/λ2)p/(p+1)<(c1/c2)2, we have dp,1 =λ
p/(p+1)
1 (c21+c22)/(λp/(p+1)

1

+λp/(p+1)
2 ) and dp,2 = λ

p/(p+1)
2 (c21 + c22)/(λp/(p+1)

1 + λ
p/(p+1)
2 ). Optimal input
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functions, which depend on the value of p, can be found by first computing the
matrix Z in (2) and then converting it back to the input functions.

Case 2. When (λ1/λ2)p/(p+1) ≥ (c1/c2)2, we have dp,1 = c21 and dp,2 = c22 so
that Q in the theorem is the identity matrix. The matrix Z in (2) becomes
Z = P diag[c1, c2]. For the matrix P in (5), the optimal input functions are

f1(t) = c1[0.31625g1(t) − 0.50251g2(t) + 0.80466g3(t)]
= c1(2.98589 − 12.53636t + 10.79562t2), (6)

f2(t) = c2[0.29844g1(t) − 0.75243g2(t) − 0.58718g3(t)]
= c2(0.28911 + 5.26894t − 7.87543t2). (7)

Given c1, c2, and p, we compute (λ1/λ2)p/(p+1)(= 0.21432p/(p+1)), and com-
pare it to (c1/c2)2 to determine whether Case 1 or Case 2 applies. Lp-optimal
inputs can then be easily found.

If (c1/c2)2 ≤ λ1/λ2, Case 2 holds for all p, and the input functions in (6)
and (7) are optimal for all Lp-criteria. When (c1/c2)2 > λ1/λ2, the optimal
inputs depend on the choice of p. If we have no definite p in mind, a natu-
ral approach is to choose inputs which are optimal for a certain Lp-criterion
and at the same time perform well under other Lp-criteria. Let νp,q be the effi-
ciency of the Lp-optimal inputs in the Lq-criterion. From (iii) of the Theorem,
νp,q = {[

∑r
i=1(λi/dq,i)q]/[

∑r
i=1(λi/dp,i)q]}1/q. We wish to find p so as to maximize

minq≥0 νp,q.
Let γ be such that (λ1/λ2)γ/(γ+1) = (c1/c2)2. As the matrix Z in (2) is

invariant for all p ≤ γ, we need only consider p larger than or equal to γ. Since
(1 + xw)1/w/

√
x is non-decreasing in x ≥ 1 for any positive w, it can be shown

that for p ≥ γ,

min
q≥0

νp,q = min{νp,0, νp,∞}

= min{(c21 + c22)λp/[2(p+1)]
1 λ

p/[2(p+1)]
2 /[c1c2(λp/(p+1)

1 + λ
p/(p+1)
2 )],

(λ1 + λ2)/[λ1/(p+1)
2 (λp/(p+1)

1 + λ
p/(p+1)
2 )]}.

The first component in the bracket is decreasing with respect to p, while the
second component is increasing as p increases. The maximum of minq≥0 νp,q

is attained when the two quantities in the bracket are equal. In other words,
the optimal choice of p is the root of the equation (λ1/λ2)p/[2(p+1)] = (1 +
λ1/λ2)c1c2/(c21 + c22). The minimum efficiency, minq≥0 νp,q, for this p is λ2(λ1 +
λ2)(c21 + c22)2/[λ2

2(c21 + c22)2 + (λ1 + λ2)2c21c
2
2].

As an example, suppose c1 = 1 and c2 = 2. The optimal choice of p is
15.0333. We have dp,1 = 0.9545 and dp,2 = 4.0455. By choosing

Q =

(
0.9926 0.1214
0.1214 −0.9926

)
,
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the matrix Z in (2) is

Z =

 0.3796 −0.5583
−0.6710 1.4426
0.6369 1.2677

 .

The optimal choice of input functions is

f1(t) = 0.3796g1(t) − 0.6710g2(t) + 0.6369g3(t)

= 2.9660 − 10.8699t + 8.5454t2,

f2(t) = −0.5583g1(t) + 1.4426g2(t) + 1.2677g3(t)

= −0.2222 − 12.0111t + 17.0084t2.

For this choice of inputs, the minimum efficiency under all Lq-criteria is 0.9825.
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Appendix 1. Pseudocode of an algorithm for finding the CL vector

Integer : t, r, i, k;
Real : [ai] ≡ [a1, . . . , ar], [bi] ≡ [b1, . . . , br], [di] ≡ [d1, . . . , dr], h, u, v;
Input : r (the dimension), [ai] and [bi] in Dr+;
Output : [di] is the CL vector of ([ai], [bi]);

Set t = 1;
Do while t ≤ r,

begin

Set h = 0, u = 0, and v = 0;
For i = t, . . . , r, do

begin
Add ai to u, and add bi to v;
If u/v > h then begin h = u/v and k = i end;

end;
For i = t, . . . , k, do di = ai/h;
Set t = k + 1;

end;

Appendix 2. A proof of the theorem

To prove the theorem in Section 2, we need two lemmas. Lemma 1 can be
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easily verified by exchanging elements not in an ascending order. Lemma 2 is a
generalization of Theorem 1 in Chan and Li (1989).

Lemma 1. Given p > 0, [si] ∈ Dr+ and qi > 0 for i = 1, . . . , r, it holds that∑r
i=1(si/qi)p ≥ ∑r

i=1(si/q(i))p, where q(i), i = 1, . . . , r, is the ith smallest value
of {q1, . . . , qr}.
Lemma 2. Given p > 0 and [si], [bi] ∈ Dr+, the minimum of

∑r
i=1(si/qi)p in

the set {[qi] ∈ Dr : [qi] 
 [bi]} is attained at [qi] = [ti] if and only if [ti] is the CL
vector of ([sp/(p+1)

1 , . . . , s
p/(p+1)
r ], [bi]).

Proof. Write φ([qi]) =
∑r

i=1(si/qi)p. As φ([qi]) is a positive continuous function
of [qi] and the domain {[qi] ∈ Dr : [qi] 
 [bi]} is compact, there is at least
one vector, [ti] say, in the domain at which the function attains its minimum.
Obviously [ti] ∈ Dr+. The sufficiency part is a consequence of the necessity part
and the uniqueness of the CL vector. We need only to prove the necessity part.

We prove the lemma by induction on r. Clearly the result holds when r = 1.
Suppose it holds when the dimension of the vectors is less than r for any fixed
r ≥ 2. Write ai = s

p/(p+1)
i , i = 1, . . . , r. Let v be the smallest integer such that∑v

j=1 tj =
∑v

j=1 bj (v must exist as the equality holds at least for v = r). We
have two cases.

Case 1. v = r. As there is a total equality constraint on the qi’s, φ([qi])
can be considered as a function of q1, . . . , qr−1. Let ζ, ζ > 0, be the minimum
{t1, b1 − t1, . . . ,

∑r−1
i=1 (bi − ti)}. It can be shown that φ([qi]) attains its minimum

at [ti] in the domain {[q1, . . . , qr−1] : ti − ζ/(r − 1) < qi < ti + ζ/(r − 1), for i =
1, . . . , r − 1} by Lemma 1 and the fact that after rearranging the qi’s in non-
descending order, the resulting vector majorizes [bi]. As [ti] is in the interior
of the above domain, the derivative must vanish at [ti]. It follows that ti =
ai
∑r

j=1 bj/
∑r

j=1 aj , i = 1, . . . , r. As [ti] 
 [bi], the value k in the definition must
be r. Thus [ti] is the CL vector of ([ai], [bi]).

Case 2. v < r. For any vector [ui], define [u�:j] = [u�, . . . , uj ], where 6 ≤ j. Fur-
thermore, for any [ui] ∈ Dj, define K([ui]) = {[wi] ∈ Dj : [wi] 
 [ui]}. Clearly
φ([ti]) ≥ min[q1:v]∈K([b1:v])

∑v
i=1(si/qi)p+min[qv+1:r]∈K([bv+1:r])

∑r
i=v+1(si/qi)p. Let

[q∗1:v] and [q∗v+1:r] be the CL vectors of ([a1:v ], [b1:v]) and ([av+1:r], [bv+1:r]) respec-
tively. Define wi to be the ith smallest value of {q∗1 , . . . , q∗r}. Then, from the
above inequality,

φ([ti]) ≥ φ([q∗i ]) ≥ φ([wi]) ≥ φ([ti]). (A.1)

The first inequality in (A.1) follows from the inductive assumption, the second
inequality follows from Lemma 1, and the last inequality is true because [wi] 

[bi]. Therefore, the first inequality above must become equality, implying ti = q∗i
for i = 1, . . . , r. From the definition of v, we can prove that the value k in the
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definition of the CL vector of ([ai], [bi]) is v, implying that [ti] is the CL vector
of ([ai], [bi]).

Proof of the theorem. The proof proceeds by first showing that statements
(i), (iii) and (iv) are equivalent, and then by showing that (iv) implies (ii), and
(ii) implies (i).

To show (iv) implies (iii), we observe that the matrix Z in (2) is in H in
view of (3). Moreover, Σ = {Qdiag[dp,1/λ1, . . . , dp,r/λr]Q′}−1, showing that Σ
has eigenvalues λi/dp,i, i = 1, . . . , r.

Next we prove that (iii) implies (i). By the singular value decomposition
of a real matrix X ∈ H, we may write X = AV B′, where A is an n × r real
matrix with orthonormal columns, V = diag[v1, . . . , vr], with 0 < v1 ≤ · · · ≤ vr,
and B is an r × r orthogonal matrix. It can be easily shown that for the matrix
Σ in Section 1, the minimum of tr(Σp) always occurs at an X ∈ H such that
the ith diagonal element (X ′X)ii of X ′X is equal to c2i , i.e., (BV 2B′)ii = c2i
, i = 1, . . . , r. Therefore, we can assume that the above equalities hold. This
implies that [v2

1 , . . . , v
2
r ] 
 [c21, . . . , c

2
r ]. As tr(Σp) = tr[{V −1(A′Λ−1A)−1V −1}p],

we have by Theorem 6 (iv) and (v) in Wang and Gong (1993) that it is greater
than or equal to

r∑
i=1

[the ith smallest eigenvalue of (A′Λ−1A)−1]p/v2p
i . (A.2)

By the Poincaré Separation Theorem (see, for example, Rao (1973, p.64)), the
quantity in (A.2) is greater than or equal to

r∑
i=1

(λi/v
2
i )p. (A.3)

As [v2
i ] 
 [c2i ], it follows from Lemma 2 that

tr(Σp) ≥
r∑

i=1

(λi/dp,i)p, (A.4)

providing a lower bound for tr(Σp) in the case of the GLSE. This lower bound
is attained by any matrix Z in (iii), showing that (iii) implies (i).

To show that (i) implies (iv), let X be an exact Lp-optimal design matrix
for the GLSE, and decompose X by the singular value decomposition AV B′. As
the lower bound in (A.4) is attainable at any matrix Z in (2), it must also be
attainable at any Lp-optimal design matrix X. Therefore, the quantity in (A.2)
should be equal to that in (A.3), implying that the matrix A must be one of
the matrices P given in (iv). Also, the quantity in (A.3) should be equal to the
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greatest lower bound and hence, by Lemma 2, [v2
i ] = [dp,i]. Clearly, (X ′X)ii = c2i

for all i, and therefore the corresponding B must be one of the matrices Q that
satisfies (3). This completes the proof of (i) implying (iv).

For any matrix Z in (iv), Z is Lp-optimal for the GLSE. By Theorem 3.6 in
Seber (1977, p.63), the GLSE and the OLSE of β for Z are identical. Therefore,
by the optimality property of GLSE, we have (iv) implies (ii).

Finally, to show that (ii) implies (i), let X be an exact Lp-optimal design
matrix in the OLSE case, and β̂0 and β̂g be the OLSE and the GLSE, respectively,
based on X. We have that

σ2p
r∑

i=1

(λi/dp,i)p = tr(Var (β̂0)p) ≥ tr(Var (β̂g)p) ≥ σ2p
r∑

i=1

(λi/dp,i)p,

where the first equality holds because (iv) implies (ii), and the last inequality
follows from (A.4). Therefore, tr(Var (β̂g)p) = σ2p∑r

i=1(λi/dp,i)p, implying that
X is also an exact Lp-optimal design matrix for the GLSE.
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