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Abstract: We give a unified, non-iterative formulation for wavelet estimators that
can be applied in density estimation, regression on a regular grid and regression

with a random design. This formulation allows us to better understand the bias due
to a given method of coefficients estimation at high resolution. We also introduce

functional representations for estimators of interest. The proposed formulation is

well suited for the study of estimation bias and sensitivity analysis and, in the
second part, we compute the influence function of various wavelet estimators. This

tool allows us to see how the influence of observations can differ strongly depend-

ing on their locations. The lack of shift-invariance can be investigated and the
influence function can be used to compare different approximation schemes for

the wavelet estimator. We show that a local linear regression-type approximation
for the higher resolution coefficients induces more extreme and variable influence

of the observations on the final estimator than does the standard approximation.

New approximation schemes are proposed.

Key words and phrases: Approximation kernel, influence function, irregular design,

functional, sensitivity to the design, shift invariance.

1. Introduction

Wavelet methods have been used in statistics for a few years now and are
quite powerful in estimating objects of unknown smoothness, see Vidakovic
(1999). The majority of papers deal with regression estimation based on an eq-
uispaced design and estimation only at these equispaced points. Moreover, the
methods presented often rely on a first approximation of the coefficients at the
highest frequency. Although important in moderate samples, the difference be-
tween this approximation scheme and an unbiased estimator is often negligible
for large samples.

Larger errors arise when we use the same kind of approximation for regression
based on a random design or for density estimation. Here, additional sources of
variation are induced by the design, by the choice of the origin, and the choice
of the initial scale of the wavelet basis.

In Section 2 we define the different estimators for both regression and den-
sity estimation. In Section 3, a direct formula for the linear wavelet estimators
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is given. This allows us to capture their basic properties. The formula has an
interesting link with an algorithm to obtain a numerical approximation of the
wavelet and the scaling function. In Section 4 we compute the influence func-
tion of an arbitrary approximation kernel, including the linear wavelet density
estimators, of the regression estimators and their thresholded counterparts. This
can be used to better understand wavelet estimators, and to compare different
methods of estimation. In Section 4.3, we compare the standard regression esti-
mator with a more involved local linear regression type of approximation for the
coefficients at the highest frequency and we propose new estimators.

2. Wavelets and Estimation

We provide here the basic definitions and theorems of the wavelet theory
in statistics. For a complete coverage, see Vidakovic (1999). A wavelet basis
allows us to expand any function f ∈ L2 on the orthonormal basis consisting of
ϕjk(x) = 2j/2ϕ(2jx− k) and ψjk(x) = 2j/2ψ(2jx− k):

f(x) =
∑
k∈Z

α[j0, k] ϕj0k(x) +
∞∑

j=j0

∑
k∈Z

β[j, k] ψjk(x), (1)

where α[j, k] = 〈f ;ϕjk〉 and β[j, k] = 〈f ;ψjk〉. Here 〈·; ·〉 stands for the L2 inner
product. The above properties demand a special form to the functions ϕ and ψ,
known as the 2-scale equations: for any j and k,

ϕjk(x) =
∑
m∈Z

h[m− 2k] ϕj+1 m(x), ψjk(x) =
∑
m∈Z

g[m− 2k] ϕj+1 m(x), (2)

where h and g are (discrete) filters with a finite �2-norm. Under very mild
conditions, this implies the following links between the coefficients:

α[j, k] =
∑

m∈Z

h[m− 2k] α[j +1,m], β[j, k] =
∑

m∈Z

g[m− 2k] α[j +1,m], (3)

α[j + 1, k] =
∑
l∈Z

h[k − 2l] α[j, l] +
∑
l∈Z

g[k − 2l] β[j, l], (4)

known as the cascade algorithm. For density or regression estimation, the wavelet
estimator of f will be a truncation of (1) of the form:

f̂(x) =
∑
k∈Z

α̂[j0, k] ϕj0k(x) +
J−1∑
j=j0

∑
k∈Z

β̂[j, k] ψjk(x). (5)

Usually, one first computes a raw estimator (subscript r) α̂r[J, k] of the coeffi-
cients at some high resolution level J and then, by means of (3), obtains the coeffi-
cients α̂r[j0, k] and β̂r[j, k]. In this process, no real noise reduction has been made,



PROPERTIES OF WAVELET REGRESSION 1277

and the function f̂ has to be regularised. The simplest approach is a projection
that sets all the β to zero. The linear wavelet estimator (subscript l) is then de-
fined by setting α̂l[j0, k] = α̂r[j0, k] and β̂l[j, k] = 0. A regularisation that shrinks
some of the β̂r[j, k] towards zero leads to the thresholded wavelet estimator (sub-
script t). The coefficients are α̂t[j0, k] = α̂r[j0, k], and β̂t[j, k] = ξλ

(
β̂r[j, k]

)
.

The two basic choices for the shrinkage rule are ξλ(u) = u I(|u| > λ) for hard
thresholding and ξλ(u) = sgn(u) (|u| − λ)+ for soft thresholding, where (v)+ de-
notes the positive part of v. The parameter λ has to be selected, and regulates
the trade-off between the bias and variance of the estimator. Once the regu-
larisation has been done, one can compute the estimator f̂t either by (5) or by
approximation, obtaining α̂t[J, k] using (4) and setting f̂t(k/2J ) = 2J/2 α̂t[J, k].
The advantage of the latter is that it does not require an explicit form for ϕ or ψ.

Finally we discuss how to obtain an estimator of the raw coefficients at high
resolution α̂r[J, k] from the data. Different solutions are possible with different
properties (biased or not) and different computational complexities. They are
defined in the following subsections. The impact of this choice on the quality of
the final estimator is investigated in the remaining sections.

2.1. Density estimation

Let X1, . . . ,XN be independent and identically distributed observations with
distribution F and density f ∈ L2. Since α[J, k] = E (ϕJk(X)), the empirical
moment (subscript m) gives us the raw estimators of the coefficients:

α̂r,m[J, k] =
∫

ϕJk(y) dFN (y) =
1
N

∑
n

ϕJk(Xn), (6)

where FN is the empirical distribution function. Note that a good approximation
of the scaling function is needed, see Section 3. A faster way to compute the
coefficients that avoids using ϕ gives the (biased) estimator (the subscript b
stands for box)

α̂r,b[J, k] =
2J/2

N

∑
n

I(Xn ∈ BJk = [k/2J , (k + 1)/2J ]). (7)

The other estimator we use is the Rosenblatt–Parsen kernel or convolution

kernel density estimator defined as f̂k(x) = (Nh)−1 ∑
nK((x − Xn)/h), where

the kernel K integrates to 1 and is symmetric around 0.
Both the linear wavelet density estimator and the convolution kernel can be

viewed as operators associated with approximation kernels, defined as follows.

Definition 1. For a distribution F , the operator associated with a kernel
K(x, y) is defined by Kx(F ) =

∫
K(x, y) dF (y). The convolution kernel has
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K(x, y) = K(x − y). The kernel associated to a wavelet basis is given by
K(x, y) =

∑
k∈Z ϕ(x − k) ϕ(y − k), and Kj(x, y) = 2jK(2jx, 2jy) and Kx

j (F )
are defined accordingly.

2.2. Regression

Let (X1, Y1), . . . , (XN , YN ) be independent and identically distributed obser-
vations with X-marginal distribution G and with the conditional distribution of
Y |X = x centered at f(x), our estimand. Let P (x, y) denote the induced joint
distribution. One usually sets α̂r,d0[J, k] to be 2−J/2 times the average of the Y ’s
in the interval BJk = [k/2J , (k + 1)/2J ], compare with (7). The subscript d0
stands for 0-degree polynomial (i.e., average). Kovac and Silverman (2000) com-
pute a linear regression with the observations in this interval and set α̂r,d1[J, k]
to be 2−J/2 times value of the regression at the middle point. They utilize known
covariance structure of these coefficients to define an improved thresholding rule.

Both of these methods simplify to α̂r[J, k] = 2−J/2Yk if the observations lie
on a regular grid of dyadic points.

3. Unified Formulation of the Estimators and Interval Based
Approximation

It can be readily shown that for any j0 ≤ J , the linear density estimator
with the empirical moment (6) can be written as

f̂(x) =
∑
k∈Z

1
N

N∑
n=1

ϕj0k(Xn) ϕj0k(x) = Kx
j0(FN ). (8)

Theorem 1 shows that most wavelet density and regression estimators have
a similar representation for all points x of interest.

Let us first note that for density and for regression, using the box approx-
imation in the first step to compute the α̂r[J, k] is equivalent to computing the
coefficients by the moment method using the Haar basis. Thus it is as if one uses
the Haar basis at this first step, and then possibly another wavelet basis for the
cascade and the inverse cascade. Likewise, using the approximation at the last
step to obtain f̂(k/2J ) is equivalent to using the exact estimator of (5), but with
the Haar basis. Such interpretation of these two approximations will turn out to
be useful for the understanding of Theorem 1 and of the influence function.

A closely related topic is a particular method for the construction (approxi-
mation) of the scaling function ϕ, due to Daubechies (1988), it consists of iter-
ating the two-scale equation

ϕ{i}(x) =
∑

m∈Z

h[m]
√
2ϕ{i−1}(2x−m) (9)
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with the indicator function (i.e., the Haar scaling function) ϕ{0}(x) = I(0 ≤ x <
1) as starting point. The next theorem is the central part of this section. It gives
a simple form for wavelet based estimators and it is computationally economic
for fixed and random designs regardless of the design being dyadic or not. This
formulation is first useful to obtain the wavelet-based estimators on all points
and not only at points of the form k/2J . It also permits a common form for all
interval-based density and regression estimators. In addition, it shows directly
the impact and bias of different approximation schemes in the final estimators.

Theorem 1. Suppose the raw coefficients at level J can be written as

α̂r[J, k] =
N∑

n=1

Unϕ{0}
Jk (Xn), (10)

where ϕ{0}
Jk (x) = 2J/2I(x ∈ BJk = [k/2J , (k+1)/2J ]) is the Haar scaling function,

and where Un can depend on anything except k. Then for any j < J ,

α̂r[j, k] =
N∑

n=1

Unϕ{J−j}
jk (Xn), β̂r[j, k] =

N∑
n=1

Unψ
{J−j}
jk (Xn),

where ϕ{J−j} and ψ{J−j} are Daubechies approximation as in (9). With the above
coefficients, the linear estimator at level j0 has a hybrid form

f̂(x) =
∑
k∈Z

N∑
n=1

Unϕ{J−j0}
j0k (Xn) ϕj0k(x). (11)

If the Haar approximation is applied also at the final step, the linear estimator
at level j0 is instead

f̂(x) =
∑
k∈Z

N∑
n=1

Unϕ{J−j0}
j0k (Xn) ϕ{J−j0}

j0k (x). (12)

The proof is given in the appendix. As the next subsections show, most
wavelet estimators have the form required by this theorem. It is also useful in
practice, since the functions ϕ{i} and ψ{i} can be computed with the fast cascade
algorithm. It is also the key to computing properties like the influence function
in Section 4.

3.1. Density case

Theorem 1 trivially applies to the linear density estimator based on the box
approximation (7) with Un = N−1. It follows that the difference between the
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moment estimator (6) and the box approximation (7) is given by the difference
between ϕ and ϕ{J−j0}. As J − j0 tends to infinity, estimators given in (11)
and (12) converge to the moment estimator given in (8). However, for the level
computed in practice, this difference can be large. In Section 4, we see the impact
of this difference through the influence function.

Note that the estimators given in (11) or (12) are still associated with ap-
proximation kernels, which can easily be deduced. The kernels are essentially
approximation of the kernel associated to a wavelet basis given in Definition 1.
However, the kernels from (11) and (12) vary with the level considered.

3.2. Regression case

The standard definition of the estimators does not satisfy the condition
in (10). For instance, the estimator based on average has the form Un =
2−JYn/

∑
m I(Xm ∈ BJk). It depends on k, as it counts the observations in

the interval BJk.
However since in (10) Un is multiplied by 0 for all Xn not in BJk, instead of

counting the observations in the box BJk, we can count the observations in the
same box as Xn and remove the dependency on k. Thus we can write

α̂r,d0[J, k] =
N∑

n=1

2−JYn
1∑

t∈Z

∑
m I(Xm ∈ BJt)I(Xn ∈ BJt)

ϕ{0}
Jk (Xn)

=
N∑

n=1

2−JYn

∑
t∈Z

I(Xn ∈ BJt)∑
m I(Xm ∈ BJt)

ϕ{0}
Jk (Xn), (13)

which is the form required by (10). By Theorem 1, we replace ϕ{0}
Jk by ϕ{J−j0}

j0k

to obtain the value of α̂r,d0[j0, k]. The functional form for the estimator at x
becomes

Rx
d0(P ) = 2−J

∑
t∈Z

p−1
t

∑
k∈Z

ϕ{J−j0}
j0k (x)

∫
f(v)ϕ{J−j0}

j0k (v)I(v ∈ BJt) dG(v), (14)

where pt =
∫
I(v ∈ BJt) dG(v), and G is the marginal distribution of X. For the

estimator based on a local linear regression, the coefficient α̂r,d1[j0, k] is

α̂r,d0[j0, k] +
N∑

n=1

2−JYn

∑
t∈Z

(at − Ct)(Xn − Ct)I(Xn ∈ BJt)∑
m(Xm − Ct)2I(Xm ∈ BJt)

ϕ{J−j0}
j0k (Xn), (15)

where at = (t + 1/2)/2J is the center of BJt and Ct =
∑

mXmI(Xm ∈ BJt)/∑
m I(Xm ∈ BJt) is the center of gravity of BJt with respect to the empirical

distribution of X. The functional form of the estimator follows easily.
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This new representation adds two summation signs at the high resolution
level. However, it allows a non-iterative and unified formulation for the esti-
mator at any level, that is similar to the high resolution level. The form is very
convenient both for computational and theoretical reasons, as will be exemplified
in the next section.

4. Influence Functions

We discuss some properties of the regression and the density estimators de-
fined in Section 2. We consider the sensitivity of the estimator to the design, to
the choice of the origin of the wavelet basis, and to the method for the raw esti-
mation of the coefficients. A fundamental tool for this purpose is the influence
function.

Definition 2. Suppose T (FN ) is the estimator of T (F ), where FN and F are
the empirical and the underlying distribution functions, respectively. Then, if it
exists, the influence function of T at F at a point z = (z1, . . . , zq)′ is

IF(z;T , F ) = lim
ε↘0

T (Fε,z)− T (F )
ε

,

with Fε,z = (1− ε)F + ε∆z, where ∆z is the point-mass distribution at z.

The influence function is usually designed for a parametric model with a
finite dimensional parameter, but interpret our case as having to compute one IF
for each x where we estimate f(x). It is used generally to assess the robustness
properties of estimators, see Hampel, Ronchetti, Rousseeuw and Stahel (1986).
Here we are rather interested in sensitivity in a broad sense. The general shape of
the influence function reveals the behavior of the estimator. Two global proper-
ties of the IF give a first insight into its sensitivity. The first one is boundedness.
Indeed, this ensures that a single observation cannot have immoderate conse-
quences on the estimator. A second is a finite local-shift sensitivity, defined as
supz�=y |IF(y;T , F )− IF(z;T , F )|/‖y−z‖. It detects the (standardised) maximal
change in the estimator due to a wiggling of the sample. Different approximations
for the wavelet estimator will be quite different as regards local-shift sensitivity.

In Section 4.1, we treat the case of density estimation, which displays phe-
nomena also present in the regression case. The thresholded wavelet density
estimator is treated in Section 4.2, and finally, the regression case is discussed in
Section 4.3.

4.1. Approximation kernels

We give the influence function for any estimator associated with an approx-
imation kernel.
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Theorem 2. Let Kj(x, y) be an approximation kernel and Kx
j (F ) its associated

operator evaluated at a point x and distribution F . Then the influence function
of Kx

j is IF(z;Kx
j , F ) = Kj(x, z)−Kx

j (F ).

The proof is straightforward, since the estimator is linear with respect to
the distribution F . Note that the first term does not depend on F and the
second term does not depend on z. For convolution kernels, K(x, z) = K(x− z),
which depends only on the distance between the perturbation point z and the
estimation point x. Up to a translation all influence functions are the same
for different values of x, and the influence function is bounded. Most of the
convolution kernels have a bounded local-shift sensitivity, the same for all values
of x and independent of F . Figure 1(a) provides an example with a Gaussian
kernel K. The distribution F is N (0.5, (0.15)2) and the IF is evaluated for 8
estimation points x ranging from 0.375 to 0.5.
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Figure 1. (a) Influence functions for the Gaussian convolution kernel for x
values between 0.375 and 0.5 where f̂ is evaluated. The distribution F is
N (0.5, (0.15)2). (b) Influence functions for the same settings as in (a), but
for the Daub2 linear wavelet estimator with the box approximation.

For the linear wavelet estimator, the first term of its influence function de-
pends also on the location of x and z with respect to the dyadic grid. Figure 2(a)
shows the influence function for the same setting as Figure 1(a) but with the lin-
ear density estimator. Here the Daub2 basis has been used and the level j is 3.
All the influence functions are bounded. However, influence functions may have
high local-shift sensitivity. The differences between the influence functions show
that, depending on the location of an observation with respect to the dyadic
grid, its influence on the general bearing of the curve is quite different. Some
observations will have important positive and negative influence on parts of the
curve, much like a second or higher order convolution kernel, whereas others will
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have an influence closer to the first order kernel. Note however that the global
influence, if measured as

∫
IF(z;Kx, F ) dx, is equal to zero for all approximation

kernels.
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Figure 2. (a) Same as Figure 1(a), but for the Daub2 linear wavelet estimator.
(b) Influence functions as a function of x and z for the same settings as in (a).

In Figure 2(b), influence functions are plotted as a function of two argu-
ments z and x. Each individual curve corresponds to the IF evaluated at a given
x. Although the influence functions are different from one another, the plot in
Figure 2(b) shows that they depend continuously on x, provided that the scaling
function and the density are continuous. Note that the spikes in Figure 2 are
due to the Daub2 wavelet basis. For a smoother basis, the peaks will be replaced
by smooth bumps.

It is worthwhile to look at the Haar basis as well. In this case, the influence
function is IF(z;Kx, F ) = I(�x� ≤ z < �x�+1)− (F (�x�+1)−F (�x�)), constant
over z in intervals. However, this does not mean that the estimation is more
stable. On the contrary, the local-shift sensitivity is infinite and it may happen
that an observation arbitrarily close to a point x has as little influence on the
estimator as observations far away. Moreover, the IF of two neighboring points
can be very different. Finally, the influence function is not continuously varying
with x, since abrupt changes happen at integers. This is a well-known problem,
since this estimator is actually equivalent to a histogram.

As the estimator in (6) is often replaced in practice by the box approximation
in (7), it is instructive to check this case as well. As seen in Section 3.1, the
estimator in (7) is associated with a kernel that is an approximation of the kernel
of the wavelet basis. By Theorem 2, its influence function is an approximation of
the discussed IF. As an example, in Figure 1(b), the IF of the box approximation
is shown for the same setting as Figure 2(a). The approximate estimator inherits
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both the shortcomings of the Haar basis and the shortcomings of the wavelet
basis defined by ϕ. Indeed, the influence functions are piecewise constant, hence
the local-shift sensitivity is infinite, and not continuous in x or in z. Moreover,
the influence functions are constant approximations of the influence functions in
Figure 2 and are quite different depending on the location of z with respect to
the dyadic grid.

One may believe that the approximation of the coefficients by (7) acts as a
stabilisation of the moment, since ϕJk(Xn) varies rapidly, inducing a significant
variance. The above study shows that this is not the case, and that the estimator
is in fact less stable: its IF is not continuous, indicating that jittering or rounding
points can change the estimator in a significant way. It has been found in Renaud
(1999) that the box approximation is much more sensitive to the choice of the
origin of the wavelet basis than the moment estimator. The IF explains this
phenomenon.

4.2. Thresholded density estimator

The functional form of the thresholded estimator at x is

T x
λ (F ) = ft(x) =

∑
k

α[j0, k] ϕj0k(x) +
J−1∑
j=j0

∑
k

ξλ(β[j, k]) ψjk(x)

= Kx
j0(F ) +

J−1∑
j=j0

∑
k

ξλ

(∫
ψjk(y) dF (y)

)
ψjk(x).

For hard thresholding, it corresponds to the linear estimator plus the projection
of the true density on a subspace adaptively selected for F .

Theorem 3. For a given distribution F and a fixed value of the threshold λ,
the influence function for the hard thresholded density estimator at a point x is
given by

IF(z;T x
λ , F ) = Kj0(x, z) +

J−1∑
j=j0

∑
k

ψjk(x) ψjk(z)I(|β[j, k]| > λ)− T x
λ (F ).

For soft thresholding, ψjk(z)I(|β[j, k]| > λ) is replaced by (ψjk(z)− λ)I(β[j, k] >
λ) + (ψjk(z) + λ)I(β[j, k] < −λ). The hard thresholding is required to satisfy the
additional condition that no coefficient β[j, k] is +λ or −λ, since the discontinuity
of this thresholding implies that the functional is not Gâteaux differentiable for
those F .

The proof is provided in the appendix. For hard thresholding, if all the
β[j, k] are greater than λ in absolute value, the influence function would equal
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the IF of the linear estimator at the higher resolution level J . The IF depends
on coefficients β[j, k] that are kept in the estimator. This dependence relies on
F , not on z. The influence function is thus equal to the linear kernel Kj0(x, z)
at the low resolution j0, plus terms that are part of a kernel based on ψ, but
that are selected depending on the distribution F . The influence function will
be bounded, but if the underlying density is irregular, it may have sharp edges.
Note that this is what we expect from thresholding. This can be illustrated in
the following special case.

For the Haar basis, apart from T x
λ , the influence function is restricted to

an interval of the form B = [m/2j0 ; (m + 1)/2j0 ] and is piecewise constant with
knots at points of the form k/2J . If the underlying density f is almost flat in the
given interval and the threshold is suitably chosen, the coefficients β[j, k] will be
smaller than the threshold and consequently the IF will be proportional to the
indicator function of the interval B for any z in this interval. This shows that
when the underlying function is very smooth, the thresholding procedure takes
advantage of all the observations in the interval to estimate the average value of
f on this interval with greater precision. On the other hand, if an abrupt change
in the density happens somewhere in the interval, some β[j, k] are large. As a
result, the influence function becomes important only locally, in a neighboring
region, and is smaller in other regions of the interval. As an example, suppose
that in the given interval, f(x) = a for x < (m + 1/2)/2j0 and f(x) = b for
x ≥ (m + 1/2)/2j0 , a, b ≥ 0. If λ > |a − b|2−j0 , the only non-zero term in the
sum of Theorem 3 is ψj0m(x) ψj0m(z). As a result, if x and z are in the same
subinterval, apart from T x

λ , the IF is equal to 2j0+1, and the IF is reduced to 0
when x and z are not in the same subinterval. Informally, the procedure detects
two different regimes and therefore completely separates the groups.

In summary, from the influence function point of view, the convolution kernel
is better than the linear wavelet estimator, the latter being more variable and
lacking shift-invariance. However, the weakness of the latter is the necessary price
to pay for adaptivity of the thresholded procedure. A way to circumvent the lack
of shift-invariance and to lower the variance of the estimator, while preserving
adaptivity, is shown in Renaud (1999).

For the computation of the influence function, the threshold has been sup-
posed fixed. The influence function with a data-based threshold cannot be com-
puted since the threshold cannot be represented in a functional form. One of
the reasons is that λ has to go to 0 for increasing values of N . Nevertheless the
influence function with a fixed threshold still makes sense as, for standard pro-
cedures, one observation can only have a bounded influence on the data-driven
choice of the threshold.

4.3. Regression

The regression case is more complicated but often of more interest.
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Theorem 4. With the same notation as in Sections 2.2 and 3.2, let Rx
d0(P ) and

Rx
d1(P ) be the functional forms of the regression estimator that do an average,
respectively a linear regression, to obtain the starting points. Then, the influence
functions of the estimators at a point x, with a perturbation z = (z1, z2)′ are
given, respectively, by

IF(z;Rx
d0, P ) = 2−J

∑
t∈Z

p−2
t I(z1 ∈ BJt)

∑
k∈Z

ϕ{J−j0}
j0k (x)

∫ (
z2ϕ

{J−j0}
j0k (z1)− f(v)ϕ{J−j0}

j0k (v)
)
I(v ∈ BJt) dG(v), (16)

IF(z;Rx
d1, P )

= IF(z;Rx
d0, P ) + 2−J

∑
t∈Z

q−1
t (z1 − ct)I(z1 ∈ BJt)

∑
k∈Z

ϕ{J−j0}
j0k (x)

(
z2(at−ct)ϕ{J−j0}

j0k (z1)−p−1
t

∫
f(v)((v−ct)+(at−ct))ϕ{J−j0}

j0k (v)I(v∈BJt)dG(v)

−q−1
t (z1 − ct)(at − ct)

∫
f(v)(v − ct)ϕ{J−j0}

j0k (v)I(v ∈ BJt) dG(v)
)
, (17)

where ct = p−1
t

∫
vI(v ∈ BJt) dG(v) and qt =

∫
(v − ct)2I(v ∈ BJt) dG(v).

The proofs of both results are not displayed here as they are long and tech-
nical, but they are similar to those of previous theorems. We note from the
theorem that both estimators are not robust with respect to the response vari-
able, since both IF are linear in z2 and unbounded with increasing values of z2.
The thresholded versions also have unbounded IF with respect to z2. This comes
as no surprise, since the linear and thresholded wavelet estimators can be repre-
sented as the solution of a least-squares, respectively a penalized least-squares,
problem. If the sample is at risk concerning outliers, one should avoid them. To
circumvent this problem, Sardy (1998) proposes a robust thresholding. Kovac
and Silverman (2000) propose an ad-hoc outlier detection method.

Note that for a given point of interest x, both IF are zero, except in an
interval, if ϕ{J−j0}

j0k (x) is bounded. Thanks to the similarity with the IF of the
density estimator, all remarks on density estimation apply to regression as well.
In particular, the IF depends on the piecewise constant function ϕ{J−j0}. Figure 3
demonstrates the similarities. Thresholding also produces similar result on the
IF for density and regression.

As an example, Figure 3(a) gives the influence function IF(z;Rx
d0, P ) for box

estimation and Figure 3(b) displays IF(z;Rx
d1, P ) for the local linear regression

approximation. Here the Daub2 wavelet basis is used, the density of X is trian-
gular between 0 and 1 (g(x) = 2x), and the expectation of Y given X = x is
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1 − x − I(x < 0.55). The first IF is piecewise constant. One could expect that
the second estimator would correct this toward an IF that has smaller gaps. In
fact, the contrary happens: the influence of an observation at a point z is more
extreme than in the simple case. First, the maximal value of the IF is larger and
second, some gaps are even more important than in the simple case. The general
shape of the IF is surprising. The local linear regression lowers the stability of the
estimator and increases its variability by letting some points inside an interval
have much greater influence than others.
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Figure 3. (a) Influence functions for the standard linear wavelet regression
estimator. (b) Influence function for the linear wavelet regression estima-
tor with a local linear approximaiton. Note how the gaps are sometimes
accentuated.

To increase stability, instead of or in addition to taking a local lin-
ear fit, it seems more important to replace the box kernel of both (13) and
(15) by a smoother kernel, which gives α̂[J, k] = 2−J ∑

n YnK(2JXn − (k +
1/2))/

∑
nK(2JXn − (k + 1/2)), with the constraint that

∑
kK(x − k) is con-

stant for all x. For instance, the trapezoidal kernel is given by K(x) = 1 for
x ∈ [−0.5; 0.5], x + 1.5 for x ∈ [−1.5;−0.5], −x + 1.5 for x ∈ [0.5; 1.5] and zero
otherwise. Figure 4 shows how the influence function becomes smooth when us-
ing this kernel for the same setting as Figure 3. Another possibility is to use the
empirical moment α̂[J, k] = 2−J/2 ∑

n YnϕJk(Xn)/
∑

n ϕJk(Xn). In both cases,
we can use the idea of Kovac and Silverman (2000) to assess the covariance struc-
ture of the coefficients at other levels, which leads to an improved thresholding
policy.

We did not treat non-interval-based wavelet regression estimators for ran-
dom design, as they do not fit in the present framework. They have interesting
properties, as shown in Cai and Brown (1998) and Sardy, Percival, Bruce, Gao
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and Stuetzle (1999). However, from their construction, they are much more sen-
sitive to small changes in the design and their influence functions, if computable,
would be very large.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.4
0.45

0.5
0.55

0.6
0.65

0.7-2

0

2

4

6

8

10

12

14

estimation point xperturbation point z

In
fl
u
e
n
c
e

F
u
n
c
ti

o
n
s

Figure 4. Influence functions for the linear wavelet regression estimator with
a kernel-type of approximation with the trapezoidal kernel.
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A. Proofs

A.1. Proof of Theorem 1.

The proof of the first assertion is by induction on i = J − j. It is true for
i = 0. Suppose it is true for i− 1. We have

α̂r[J − i, k] =
∑
m∈Z

h[m− 2k] α̂r[J − i+ 1,m]

=
∑
m∈Z

h[m− 2k]
N∑

n=1

Unϕ{i−1}
J−i+1 m(Xn)

=
N∑

n=1

Un2(J−i)/2
∑
m∈Z

h[m]
√
2ϕ{i−1} (

2(2J−iXn)− (m+ 2k)
)

=
N∑

n=1

Unϕ{i}
J−i k(Xn),
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which shows the result. The same applies for β̂r[J − i, k] by replacing h by g.
The proof of (12) involves an iterative use of (4) and (9). Since the β̂[j, k] have
been set to 0, we have

f̂(x) =
∑
k

α̂[J, k] ϕ{0}
Jk (x) =

∑
k

∑
l

h[k − 2l] α̂[J − 1, l] ϕ{0}
Jk (x)

=
∑

l

α̂[J − 1, l] ϕ{1}
J−1 l(x) = · · · =

∑
k

α̂[j0, k] ϕ
{J−j0}
j0k (x),

which, given the first part of the theorem, shows the result. Equation (11) can
be proved in the same way, using (2) instead of (9).

A.2. Proof of Theorem 3

We first note that βε,z[j, k] =
∫
ψjk(y) dFε,z(y) = (1 − ε)β[j, k] + εψjk(z),

which is therefore continuous in ε. This implies that for each couple {j; k} there
exists an εjk such that, for any 0 ≤ ε ≤ εjk, β[j, k] and βε,z[j, k] are either both
greater than λ or both smaller than −λ or both between. As f ∈ L2, there are
only finitely many β[j, k] such that |β[j, k]| > λ/2. We can therefore find an ε∗

for which the above properties hold for all {j; k} and for every 0 ≤ ε ≤ ε∗. For
such an ε, hard thresholding gives

ξλ(βε,z[j, k]) = βε,z[j, k] I(|βε,z[j, k]| > λ) = βε,z[j, k] I(|β[j, k]| > λ)
= (1− ε)ξλ(β[j, k]) + εψjk(z) I(|β[j, k]| > λ).

For the functional T x
λ (F ) and for an ε such that 0 ≤ ε ≤ ε∗, the influence function

numerator is

numε = Kx
j0(Fε,z) +

∑
j, k

ξλ(βε,z[j, k]) ψjk(x)−Kx
j0(F )−

∑
j, k

ξλ(β[j, k]) ψjk(x)

= ε
{
Kj0(x, z)−Kx

j0(F )
}
+ε

∑
j, k

{
ψjk(z) I(|β[j, k]|>λ)−ξλ(β[j, k])

}
ψjk(x)

= ε


Kj0(x, z) +

∑
j, k

ψjk(x) ψjk(z)I(|β[j, k]| > λ)− T x
λ (F )


 .

The result follows. Similar computations can be done for soft thresholding.
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