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Abstract: Tang and Deng (1999) proposed a generalized minimum aberration cri-

terion (GMA) as a natural extension of the minimum aberration criterion (MA)

from regular to nonregular designs. While MA was defined for regular designs only,

GMA applies to both regular and nonregular designs. In this paper, we investigate

the relationship between GMA and some model-dependent efficiency criteria, and

show that GMA is supported by these criteria. An extensive evaluation of designs

with 20 runs and 5 factors shows that the GMA criterion can be used to classify

and rank-order these designs. Empirical studies also demonstrate that the GMA

ranking is consistent with those obtained by using other model-dependent efficiency

criteria.
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1. Introduction

The most commonly used designs for factorial experiments are two-level
regular fractional factorial designs. Under the hierarchical assumption that lower-
order effects are more important than higher-order effects and that effects of
the same order are equally important, a minimum aberration (MA) design is
preferred (Fries and Hunter (1980)). One drawback of using a regular two-level
design is that its run size must be a power of 2. On the other hand, nonregular
designs are much more abundant. For example, Hadamard matrices of order n

can be used to construct orthogonal main-effect plans of size n. Recall that a
Hadamard matrix H of order n is a square matrix with ±1 entries such that
H′H = nI. Such a matrix can be normalized so that all the entries in the first
column are equal to 1. Taking any m columns other than the first, one obtains
an n-run orthogonal main-effect plan for m factors.

Deng and Tang (1999) proposed a generalized minimum aberration criterion,
a natural extension of MA from regular to nonregular designs. A simpler version,
called minimum G2 aberration, was proposed by Tang and Deng (1999). When
applied to regular designs, both versions are the same as MA. Cheng, Steinberg
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and Sun (1999) justified the MA criterion by showing that it is a good surrogate
for model-robustness. In this paper, a similar study is carried out for generalized
minimum aberration. By drawing a connection with some traditional design effi-
ciency criteria, one can show that generalized minimum aberration is supported
by these model-dependent criteria. For simplicity, we concentrate on the study
of minimum G2 aberration. In the rest of the paper, by generalized minimum
aberration (GMA) we mean minimum G2 aberration.

In Section 2, we review and comment on the GMA criterion. A connection
with partial aliasing is discussed. In Section 3, a heuristic argument is given to
show that GMA is a good surrogate for some classical design efficiency criteria.
In Section 4, we perform an empirical study of designs with 20 runs and 5 factors
constructed from Hadamard matrices. The empirical study demonstrates that
the GMA ranking is very consistent with those obtained by using other model-
dependent efficiency criteria.

2. Generalized Minimum Aberration

An n-run design d for m two-level factors can be represented by an n ×
m matrix of 1’s and −1’s, where each column corresponds to a factor (or its
main effect) and each row represents a factor-level combination. We denote such
a matrix by X(d). The interactions are then represented by componentwise
products of columns of X(d). Specifically, for 1 ≤ s ≤ m and any s-subset
S = {j1, . . . , js} of {1, . . . ,m}, let xS(d) be the componentwise product of the
j1th, . . . , and jsth columns of X(d). Then xS(d) represents a main effect when
s = 1 and the interaction of factors j1, . . . , js if s ≥ 2. For a subset S of
{1, . . . ,m}, we denote the cardinality of S by |S| .

Define jS(d) as the sum of all the entries of xS(d), and denote |jS(d)| by
JS(d): jS(d) =

∑n
i=1 xij1(d), . . . , xijs(d), JS(d) = |jS(d)|, where xij(d) is the

(i, j)th entry of X(d). LetBs(d) = n−2∑
S:|S|=s[jS(d)]2. The GMA criterion

proposed by Tang and Deng (1999) is to sequentially minimize B1(d), B2(d), . . .,
Bm(d).

Recently, Tang (2001) showed that a design d is uniquely determined by the
jS(d) values. A key identity derived in his paper implies that

n−11n =
∑

S:S⊂{1,...,m}
[n−1jS(d)][2−mxS(d)], (2.1)

where 1n is the n× 1 vector of ones. Then for any T ⊂ {1, . . . ,m}, by taking the
componentwise product of xT (d) with both sides of (2.1), we obtain

n−1xT (d) =
∑

S:S⊂{1,...,m}
[n−1jS(d)][2−mxS(d)
 xT (d)],
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where xS(d)
xT (d) is the componentwise product of xS(d) and xT (d). It is easy
to see that for any two subsets S and T of {1, . . . ,m}, xS(d)
xT (d) = xS�T (d),
where S � T = (S ∪ T ) \ (S ∩ T ), with x∅(d) being the vector of ones. Therefore

n−1xT (d) =
∑

S:S⊂{1,...,m}
[n−1jS(d)][2−mxS�T (d)]. (2.2)

Equation (2.2) shows how a given factorial effect is aliased with other effects
under design d. For regular designs, each n−1jS(d) is 1, −1 or 0; so (2.2) is the
usual method of determining the aliasing structure from the defining relation of
the design. For nonregular designs,

∣∣n−1jS(d)
∣∣ can be strictly between 0 and 1,

leading to so-called partial aliasing. The quantities n−1jS(d) are the coefficients
in this partial aliasing. GMA is consistent with the belief that aliasing among
lower-order effects is less desirable.

The GMA criterion was originally proposed for designs constructed from
Hadamard matrices, but clearly this criterion applies to all designs, orthogonal
or not. We also point out that GMA can be used to discriminate among super-
saturated designs. When applied to supersaturated designs, B2(d) is equivalent
to the E(s2)-criterion proposed by Booth and Cox (1962). One can apply the
GMA criterion to supersaturated designs as a refinement of the E(s2)-criterion.
This approach provides a nice unification covering regular, nonregular, and su-
persaturated designs under a single umbrella.

In fact, B2 is related to the so-called (M.S)-criterion (Eccleston and Hedayat
(1974)), which has long been advocated in the optimal design literature as a
good surrogate for such traditional optimality criteria as the D- and A-criteria.
For example, consider a simple linear model y = Xθ + ε, where θ is a vector of
unknown parameters, ε is a vector of uncorrelated and homoscedastic random
errors, and the design matrix X is at the experimenter’s disposal. A design is
called D-optimal if it maximizes det(X′X), and is (M.S)-optimal if it maximizes
tr(X′X) and minimizes tr[(X′X)2] among those which maximize tr(X′X). The
(M.S)-criterion is much easier to deal with computationally, and is known to
produce highly efficient, if not optimal, designs under many optimality criteria
including the D-criterion; see Cheng (1996). When tr(X′X) is a constant, as in
applications to two-level factorial designs where all the entries of X are 1 or −1,
the (M.S)-criterion reduces to the minimization of tr[(X′X)2]. For main-effect
plans, this is the same as to minimize B2. That minimizing tr[(X′X)2] leads
to efficient main-effect plans has been well documented in the optimal design
literature. The GMA criterion can be viewed as an extension to situations where
some interactions are present, as will be discussed in the next section.

In the rest of the paper, we shall assume that the two levels are equireplicated
for each factor (so the run size is even). This implies that B1(d) is equal to zero.
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3. Design Efficiency and GMA

Cheng, Steinberg and Sun (1999) provided some insight into minimum aber-
ration and justified this criterion by demonstrating that it is a good surrogate
for some model-robustness criteria. It is natural to investigate the relationship
of GMA to “model robustness” of nonregular designs in the spirit of Cheng,
Steinberg and Sun (1999). For simplicity, let us restrict to the situation where
(i) the main effects are of primary interest and their estimates are required and
(ii), the experimenter would like to have as much information about two-factor
interactions as possible, under the assumption that three-factor and higher-order
interactions are negligible.

One model-robustness criterion considered in Cheng, Steinberg and Sun
(1999) is estimation capacity. For any 1 ≤ f ≤ (m

2

)
, define the estimation

capacity Ef (d) of a regular 2m−q design d as the total number of models con-
taining all the main effects and f two-factor interactions that can be entertained
by d. It is desirable to have Ef (d) as large as possible (here one can think of
f as the number of active two-factor interactions). Cheng, Steinberg and Sun
(1999) showed that the minimum aberration criterion tends to produce designs
with maximum Ef (d), especially for small f ’s.

One important difference between regular and nonregular designs is that un-
der a regular design, as long as the factorial effects are estimable, full efficiency
is achieved, but for nonregular designs, in addition to estimability, efficiency is
also an issue due to complicated partial aliasing. In Cheng, Steinberg and Sun
(1999), it is enough to consider the maximization of the number of estimable
models. Their definition of maximum estimation capacity can be carried over to
nonregular designs without modification, but will not be adequate since efficien-
cies are not addressed.

As in the original formulation of maximum estimation capacity, suppose
there are f active two-factor interactions. Let P consist of all the

(m
2

)
subsets of

size two of {1, . . . ,m}. Then the f active two-factor interactions correspond to
an f -subset of P, say F . Under a two-level design d with m factors and n runs,
we have the following linear model:

y = µ1n +X(d)β1 +YF (d)β2 + ε,

where y is the n×1 vector of observations, µ is an unknown parameter represent-
ing the general mean, X(d) is as defined in Section 2, β1 is the m × 1 vector of
main effects, YF (d) is an n× f matrix consisting of the f columns xS(d), where
S ∈ F , β2 is the f × 1 vector of active two-factor interactions, and ε is an n × 1
random vector such that E(ε) = 0 and cov(ε)= σ2In. Let XF (d) = [1n

...X(d)
...
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YF (d)]. Then the information matrix per observation of d is

MF (d)=
1
n
XF (d)′XF (d)=




1 0 1
n1

′
nYF (d)

0 1
nX(d)

′X(d) 1
nX(d)

′YF (d)
1
nYF (d)′1n

1
nYF (d)′X(d) 1

nYF (d)′YF (d)


 . (3.1)

The usual D-criterion seeks to maximize det(MF (d)). When it is unknown which
f two-factor interactions are active, to evaluate a design, one may consider its
average performance over all possible models with f two-factor interactions. This
suggests the maximization of the average of det(MF (d)) over all

(F
f

)
f -subsets

F of P, where F =
(m

2

)
. We denote this average D-criterion by Df .

It is convenient to think of F as a random sample of size f from P. Then we
may write Df as Df (d) = EF [det(MF (d))], where EF denotes the expectation
with respect to the random sampling of F from P.

However, Df (d) is difficult to calculate. Since minimizing tr[(MF (d))2] is a
good surrogate for maximizing det(MF (d)), we expect a design that minimizes
EF{tr[(MF (d))2]} to perform very well under the Df -criterion. The calculation
of EF{tr[(MF (d))2]} is considerably easier, thus providing a simple and good
surrogate for the Df -criterion. Since all the diagonal entries of MF (d) are equal
to 1, minimizing EF{tr[(MF (d))2]} is the same as minimizing EF{sum of squares
of all off-diagonal entries ofMF (d)}. For simplicity, we denote this last quantity
as S2

f (d).
The following proposition shows that S2

f (d) is a linear combination of B2(d),
B3(d) and B4(d) with decreasing weights.

Proposition 1. Let d be an n-run design for m two-level factors such that the
two levels are equireplicated for each factor. Let F =

(m
2

)
and f be any positive

integer such that f ≤ F . Then we have S2
f (d) = α2B2(d) + α3B3(d) + α4B4(d),

where α2 = 2
[
1 + f

F +
f(f−1)
F (F−1)(m − 2)

]
, α3 = 6 f

F and α4 = 6
f(f−1)
F (F−1) .

The proof of Proposition 1 can be found in the Appendix. Proposition 1
shows that S2

f (d) depends only on m, f , B2(d), B3(d) and B4(d). Comparing α2,
α3 and α4, we see that if f is small relative to F (i.e., only a small number of two-
factor interactions are expected to be active), then B2(d) carries a heavier weight
than B3(d), which in turn has more influence on S2

f (d) than B4(d). Thus for small
f , we expect the ranking of designs based on GMA to be quite consistent with
that based on S2

f (d). The GMA criterion thus provides a good surrogate for Df .
The degree of consistency depends on f , the number of two-factor interactions
entertained.

The above discussion provides a justification of GMA from a model robust-
ness and efficiency point of view. Notice that Bs(d) provides a kind of overall
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measure of the partial aliasing and correlation among factorial effects, and so
indirectly takes efficiencies into account. The conclusion we draw here is also
supported by extensive empirical studies, some of which will be reported in the
next section.

Remark 1. It can be seen that for orthogonal main-effect plans (e.g., those
constructed from Hadamard matrices), if f = 1, then both D1(d) and S2

1(d)
depend only on B3(d): D1(d) = 1 − 3B3(d)/

(m
2

)
and S2

1(d) = 6B3(d)/
(m

2

)
. In

this case, maximizing D1(d), minimizing S2
1(d) and minimizing B3(d) are all

equivalent.

4. Empirical Study for 20-run Designs

We consider the ten designs of twenty runs and five factors found by Lin and
Draper (1992) and further studied by Wang and Wu (1995). These designs are
labeled as 5.1, 5.2, . . ., 5.10 in Deng, Li and Tang (2000), with the meaning that
design 5.i is the ith best among the ten designs according to GMA. Table 1 gives
the Df values for the ten designs, f = 1, . . . ,10. Consistency between the GMA
ranking and the Df ranking is evident.

Table 1. List of Df for 1 ≤ f ≤ 10.
design D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

5.1 0.8800 0.7573 0.6369 0.5233 0.4199 0.3293 0.2525 0.1894 0.1392 0.1002
5.2 0.8800 0.7589 0.6403 0.5277 0.4239 0.3311 0.2509 0.1838 0.1297 0.0880
5.3 0.8800 0.7391 0.5889 0.4416 0.3086 0.1984 0.1155 0.0597 0.0267 0.0099
5.4 0.8800 0.7418 0.5946 0.4486 0.3138 0.1992 0.1106 0.0502 0.0157 0.0000
5.5 0.7840 0.5952 0.4362 0.3075 0.2075 0.1333 0.0807 0.0453 0.0230 0.0099
5.6 0.7840 0.5956 0.4366 0.3069 0.2051 0.1284 0.0734 0.0363 0.0131 0.0000
5.7 0.7840 0.5770 0.3948 0.2480 0.1405 0.0699 0.0293 0.0096 0.0019 0.0000
5.8 0.6880 0.4535 0.2847 0.1687 0.0932 0.0471 0.0211 0.0078 0.0019 0.0000
5.9 0.6880 0.4353 0.2499 0.1273 0.0552 0.0187 0.0039 0.0000 0.0000 0.0000
5.10 0.6880 0.4358 0.2496 0.1257 0.0531 0.0171 0.0032 0.0000 0.0000 0.0000

Table 2 lists the values of S2
f (d) for the ten designs. By Proposition 1, we

expect to see consistency between the GMA ranking and the S2
f ranking when f is

relatively small. As it turns out, the S2
f ranking is the same as the GMA ranking

for all f ≤ F (= 10). To quantify the degree of consistency between the Df -
criterion and the S2

f -criterion, we calculate the correlation coefficient ρ(Df , S2
f )

between Df and S2
f . The values of

∣∣∣ρ(Df , S2
f )

∣∣∣ are given in Table 2. When f ≤ 6,∣∣∣ρ(Df , S2
f )

∣∣∣ ≥ 0.95. Of course, as mentioned in Remark 1, when f = 1, D1 and S2
1
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are equivalent and
∣∣ρ(D1, S

2
1)

∣∣ = 1. The correlation (and hence the consistency)
between Df and S2

f is very high, especially when f is relatively small.

Table 2. List of S2
f and

∣∣∣ρ(Df , S2
f )

∣∣∣ for 1 ≤ f ≤ 10.

design S2
1 S2

2 S2
3 S2

4 S2
5 S2

6 S2
7 S2

8 S2
9 S2

10

5.1 0.24 0.51 0.80 1.12 1.47 1.84 2.24 2.67 3.12 3.60
5.2 0.24 0.51 0.80 1.12 1.47 1.84 2.24 2.67 3.12 3.60
5.3 0.24 0.55 0.93 1.38 1.89 2.48 3.14 3.86 4.65 5.52
5.4 0.24 0.55 0.93 1.38 1.89 2.48 3.14 3.86 4.65 5.52
5.5 0.43 0.89 1.38 1.89 2.43 2.99 3.58 4.20 4.85 5.52
5.6 0.43 0.89 1.38 1.89 2.43 2.99 3.58 4.20 4.85 5.52
5.7 0.43 0.93 1.50 2.14 2.85 3.63 4.48 5.40 6.38 7.44
5.8 0.62 1.27 1.95 2.66 3.39 4.14 4.93 5.74 6.57 7.44
5.9 0.62 1.32 2.08 2.91 3.81 4.79 5.82 6.93 8.11 9.36
5.10 0.62 1.32 2.08 2.91 3.81 4.79 5.82 6.93 8.11 9.36∣∣∣ρ(Df , S2

f )
∣∣∣ 1.0000 0.9993 0.9967 0.9908 0.9784 0.9544 0.9128 0.8526 0.7827 0.7198

Another important criterion to be considered is the estimation capacity de-
fined in Cheng, Steinberg and Sun (1999). As mentioned in Section 3, the defi-
nition of estimation capacity can be carried over to nonregular designs without
change: for any 1 ≤ f ≤ F , Ef (d) is the number of models with all the main
effects and f two-factor interactions that can be estimated under d. In Table 3,
we tabulate

(F
f

)−Ef (d), the number of non-estimable models of the
(F
f

)
possible

models.

Table 3.
(
F
f

) − Ef (d), number of non-estimable models with f two-factor
interactions.

Design f ≤ 3 f = 4 f = 5 f = 6 f = 7 f = 8 f = 9 f = 10
5.1 0 0 0 0 0 0 0 0
5.2 0 0 0 0 0 0 0 0
5.3 0 0 0 0 0 0 0 0
5.4 0 0 0 1 4 6 4 1
5.5 0 0 0 0 0 0 0 0
5.6 0 0 0 0 1 3 3 1
5.7 0 0 0 0 0 1 2 1
5.8 0 0 0 0 0 1 2 1
5.9 0 4 24 58 72 45 10 1
5.10 0 5 30 73 84 45 10 1(

F
f

) − 210 252 210 120 45 10 1
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While the GMA ranking is quite consistent with the rankings based on Df

and S2
f , the consistency between the GMA criterion and the estimation capacity

criterion is only moderate. This may be because the estimation capacity criterion
does not take efficiencies into consideration. Nevertheless, the top designs under
the GMA criterion perform the best with respect to the estimation capacity
criterion.

Appendix. Proof of Proposition 1.

We need to calculate the sum of squares of all the off-diagonal entries of
MF (d). The blocks in the partitioned matrix (3.1) will be considered separately.

First of all, the f entries of 1′nYF (d) are the jS(d)’s for S ∈ F . Thus the
sum of squares of all the entries of 1

n1
′
nYF (d) is equal to 1

n2

∑
S∈F [jS(d)]2. Also,

since each off-diagonal entry of X(d)′X(d) is a jS(d) for some S ∈ P, the sum of
squares of all the off-diagonal entries of 1

nX(d)
′X(d) is equal to 2 1

n2

∑
S∈P [jS(d)]2

= 2B2(d).
Each entry of X(d)′YF (d) is ji�S(d), for some i ∈ {1, . . . ,m} and S ∈ F .

Therefore the sum of squares of all the entries of 1
nX(d)

′YF (d) is equal to
1
n2

∑m
i=1

∑
S∈F [j{i}�S(d)]2. Similarly, the sum of squares of all off-diagonal

entries of 1
nYF (d)′YF (d) is 1

n2

∑ ∑
S,T∈F ,S �=T [jS�T (d)]2. Therefore the sum of

squares of all off-diagonal entries of MF (d) is

2B2(d)+
1
n2

{
2

∑
S∈F

[jS(d)]2+2
m∑

i=1

∑
S∈F

[j{i}�S(d)]
2+

∑ ∑
S,T∈F ,S �=T

[jS�T (d)]2
}

. (A.1)

By an elementary property of simple random sampling,

EF
{ ∑

S∈F
[jS(d)]2

}
=

f

F

∑
S∈P

[jS(d)]2 =
f

F
n2B2(d), (A.2)

EF
{ m∑

i=1

∑
S∈F

[j{i}�S(d)]
2
}
=

f

F

m∑
i=1

∑
S∈P

[j{i}�S(d)]
2, (A.3)

EF
{∑∑

S,T∈F ,S �=T
[ jS�T (d)]2

}
=

f(f−1)
F (F−1)

∑∑
S,T∈P,S �=T

[ jS�T (d)]2. (A.4)

If i ∈ {j, k}, say i = j, then {i} � {j, k} = {k}; in this case j{i}�{j,k}(d) is
zero. On the other hand, if i /∈ {j, k}, then {i} � {j, k} = {i, j, k}, and so
j{i}�{j,k}(d) = j{i,j,k}(d). Counting all possible {i}’s and {j, k}’s, we see that∑m

i=1

∑
S∈P [j{i}�S(d)]2 = 3n2B3(d). Therefore by (A.3),

EF
{ m∑

i=1

∑
S∈F

[j{i}�S(d)]
2
}
= 3

f

F
n2B3(d). (A.6)
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Similarly, for S = {i, j} and T = {k, l}, if S and T are disjoint, then S � T =
{i, j, k, l}; if S and T has exactly one element in common, say i = k, then S �
T = {j, l}. By simple counting, we have ∑ ∑

S,T∈P,S �=T [jS�T (d)]2 = n2[6B4(d)
+2(m − 2)B2(d)].
By (A.1), (A.2), (A.4) and (A.6),

S2
f (d) = 2

[
1 +

f

F
+

f(f − 1)
F (F − 1)(m − 2)

]
B2(d) + 6

f

F
B3(d) + 6

f(f − 1)
F (F − 1)B4(d).
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