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Abstract: Sammel and Ryan (1996) developed a latent variable model that allows

for covariate effects on multiple continuous outcomes. While the approach provides

an effective tool for data reduction and global test for covariate effects, it makes

strong assumptions about the covariance among the outcomes. In addition, some

parameters are common to both the mean and variance suggesting that robustness

could be a problem. This manuscript evaluates model misspecification on tests

of exposure effects derived from the latent variable model. We develop a robust

score test which is valid under misspecified variance assumptions and compare

it to one based on Generalized Estimating Equations (GEE) (Liang and Zeger

(1986)), under varying assumptions on the true model. Both models have similar

loss in power under variance misspecification while the estimated global effect of

the covariate is more biased towards the null for the GEE model than the LV

model. As the variance/scale of the outcomes increases, the performance of the LV

model improves. As for asymptotic comparisons, test performance depends upon

the amount of variability and correlation among the outcomes. The LV model test

is superior when the data are highly correlated, ρ > 0.3, and with large variance.

When uncorrelated outcomes are incorporated, the GEE model is superior, except

when only the correlated outcomes are impacted by the exposure.

Key words and phrases: Factor analysis, generalized estimating equations, global

tests.

1. Introduction

In many applied settings, it is of interest to assess the effect of covariates
on multiple outcomes. In the study of birth defects for instance, appropriately
combining multiple outcomes may provide more power to test an effect than fo-
cusing on a single endpoint (Holmes et al. (1987)). Sammel and Ryan (1996)
developed a model for multiple continuous outcomes that formalizes the idea
of performing a factor analysis and then modeling the estimated factors as a
function of the exposure of interest. While we proposed simultaneous estima-
tion of model parameters, methods which estimate the two sets of parameters
separately (Two Stage Factor Analysis-TSFA) are commonly used for validation
and hypothesis testing of measurement scales and indices (Streiner and Norman
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(1995, Chap.10)). Some recent examples include an evaluation of risk factors
influencing menopausal symptoms (Freeman, et al. (2000)), and tests of neu-
robehavior (Heyer (1996)). The model also allows for adjustment with respect to
other covariates and can be thought of as an extension of the random effects (RE)
model of Laird and Ware (1982) (see also Harville (1977)). Tests for covariate
effects on the latent variable provide a global test for multiple outcomes. While
the approach is appealing, it involves strong assumptions about the covariance
of the observed data.

Other approaches have been suggested for testing covariate effects with re-
spect to multiple outcomes, including the generalized least squares methods of
O’Brien (1984) and Laska, Tang, and Meisner (1992). Pocock, Geller, and Tsi-
atis (1987) extended these methods to combinations of test statistics based on
arbitrary types of data. Normal models evaluating mean effects in the presence of
correlated outcomes have been proposed for this framework (Random Effects–RE
models; Laird and Ware (1982); Harville (1977)). Extensions of these methods
based on Generalized Estimating Equations (GEE) (Liang and Zeger (1986);
Zeger and Liang (1986); Lefkopoulou and Ryan (1993); Legler, Lefkopoulou, and
Ryan (1995); Bull (1998)) focus on testing the mean structure of the data, while
the covariance is treated as a nuisance. These GEE-based tests are made ro-
bust to covariance misspecification by the use of an empirical adjustment to the
estimated variances of the parameters.

In this paper we assess the impact of misspecification of the latent structure
on a test for covariate effects based on the latent variable model. We first derive
a global score test for the effect of a covariate on multiple outcomes using the
latent variable model, as well as a robust version, which we compare to a robust
test based upon a GEE model. We also look at two other approaches, namely
the ad hoc two-stage factor analysis described above and a random effects model.
Comparisons between the various tests are based on analytic considerations as
well as simulations. We illustrate the robust score tests for subsets of outcomes
comparing healthy control infants to those exposed in utero to anticonvulsant
medications (Holmes et al. (1994)). We conclude with an example and some
practical guidelines for the use of latent variable models.

1.1. A test based on a latent variable model

Sammel and Ryan (1996) propose a two-stage model to incorporate covariate
effects on multiple outcomes. At the first stage, a set ofM continuous outcomes is
modeled as a function of unobservable latent variables, as well as other covariates.
At the second stage, the latent variables are modeled as a function of exposure
or other covariates of interest. More precisely, suppose the observed data for
individual i are yi = (yi1, . . . , yiM )T , and let xi represent a P × 1 dimensional
vector of covariates. Also, bi represents a Q × 1 vector of unobserved latent
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variables for individual i. Then the conditional model for yi, given the latent
variables bi, can be written as

yi =
(
xT

i ⊗ IM

)
α +

(
bT

i ⊗ IQ

)
λ = Xiα + Biλ + ei, (1)

where ⊗ represents the Kronecker product (Rogers (1980), p.12).
The matrix λ contains the factor loadings which associate the Q-dimensional

latent vector bi with the observed data yi. Assume ei ∼ N (0,Ψ), where Ψ =
diag

{
σ2

m

}
m=1,...,M . That is, conditional on the latent data, bi, the outcomes are

independent. The second stage of the model can then be written as

bi = Ziθ + δi, (2)

where δi ∼ N(0, IQ), and Zi reflects exposures and other covariates of interest.
These covariates differ from the covariates xi, as they are the subset to be tested.
For simplification we consider only a single latent factor, Q = 1, and scalar
covariate z, therefore models (1) and (2) imply the following marginal model for
yi:

f(yi|α,λ,Ψ, θ) ∼ N
(

Xiα + λziθ, λλT +Ψ
)
. (3)

The question to be addressed in this paper is how tests based on (3) perform
when the model has been misspecified, in particular, when the assumed marginal
covariance of yi is wrong. The test of primary interest is for the null hypothesis
of no exposure effect: Ho : θ = 0. Under the marginal log-likelihood for model
(3), the efficient score is

Slv (θ) =
∂

∂θ
l (θ,α,λ,Ψ) =

n∑
i=1

ziλ
T
(
λλT +Ψ

)−1
(yi − X iα − λziθ) .

A score test for the hypothesis is thus

Tlvm = Slv (0)T V11 Slv (0) |
λ=

ˆλ,Ψ=
ˆΨ,α=α̂

, (4)

where V11 is the 1, 1 element of the inverse of the Fisher information matrix,
I (ζ∗)−1, see (11) in Appendix A, evaluated under the null hypothesis. In addi-
tion, a “robust” version of this test can be computed as

Tlvr = Slv (0)T Σ−1
l Slv (0) |

λ=
ˆλ,Ψ=

ˆΨ,α=α̂
, (5)

Σl = V −1
11

n∑
i=1

{
ziλ

T
(
λλT +Ψ

)−1
Var (y)

(
λλT +Ψ

)−1
λzi

}
V −1

11 .

Here Var (y) is replaced by the moment estimator
∑

(yi − Xiα) (yi − Xiα)T

to yield a consistent estimator of Σl. In addition, we consider an adjustment to
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the model-based test, Tlvm where this test statistic is divided by a constant, for
a better approximation to a χ2 distribution. The constant reflects the deviation
of the assumed model variance from the true variance structure (Rotnitzky and
Jewell (1990)).

1.2. A test based on GEEs

Lefkopoulou and Ryan (1993) derive a test for multiple outcomes based on
the moments

E (yi) = X iα + 1ziθ and Var (yi) = A = Σ1/2RΣ1/2, (6)

where 1 is anM×1 vector of 1’s, R=(1−ρ)I+ρ11T is an exchangeable correlation
matrix and Σ=diag

(
ε2m
)
; m=1, . . . ,M , is the diagonal matrix of the elements

of variance of yi. Typically, a common ε2 is assumed for all outcomes in the GEE
model. However, this may not be appropriate unless the outcomes are repeated
measures. The corresponding generalized estimating equation for θ is

Sg (θ) =
n∑

i=1

zT
i 1

TΣ−1/2R−1Σ−1/2 (yi − Xiα − 1ziθ) = 0.

In practice, ρ and Σ are estimated using the method of moments. To construct a
test of Ho : θ = 0, an empirical estimator of the variance is used which is robust
to covariance misspecification (Liang and Zeger (1986)). The resulting “robust”
test is then

Tgee = ST
g (0)Σ−1

g ST
g (0) |Σ=Σ̂,α=α̂

, (7)

where Σg = h−1
1 g (ρ,Σ)h−1

1 for h1 the 1,1 element of the inverse information
matrix, assuming the model is correctly specified and

g (ρ,Σ) =
n∑

i=1

zT
i 1

TΣ−1/2R−1Σ−1/2Var (yi)Σ
−1/2R−1Σ−1/21zi.

This variance of the test reduces when the distribution of the data is correctly
specified.

2. Comparison of Test Statistics

2.1. Data generating models

In this section we describe several data generating models which will be
the basis for evaluating and comparing the different tests. The first true data
generating model (DGM 1) assumes the data originate from a single factor latent
variable model as described in (3). Data generating model 2 assumes a common
exposure effect and a constant correlation among the outcomes, as under (6).
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A more general model is considered as model 3, which assumes an arbitrary
covariance structure and a common exposure effect on all the outcomes:

yi ∼ N

(
Xiα + 1ziθ,

[
A 0
0 I

])
. (8)

We consider several correlation structures which imply a subset of independent
outcomes with covariance I, while the correlated subset, A, has an exchangeable
form as at (6). Data for model 4 will have a similar structure to the variance
described above in (8), but will have a subset of the outcomes whose means are
not impacted by the exposure. For example, assume that the distribution of the
observed outcomes is

yi ∼ N

([
X iα + 1ziθ

Xiα

]
,

[
A 0
0 I

])
. (9)

For all the data generating models above, we examine situations where the
marginal variance has a constant or non-constant scale.

2.2. Model performance−simulation approach

The proposed data generating models 3, 6, 8, and 9, were evaluated us-
ing a simulation approach. Simulations were based on 2500 datasets (Table
1), each of size 100, with 6 outcomes per subject for evaluating the size of the
tests under the null hypothesis, and 1000 datasets for the power computations
(Tables 2 and 3). We evaluate the various tests under the null hypothesis of
no exposure effect (Table 1), and explore a global exposure effect of -0.16 in
Table 2. In Table 3 the global exposure is assumed to be -0.80 with larger vari-
ance/scale. As for the marginal variance structure, for homogeneous outcomes
we take σ2 = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1)T ; for heterogeneous or non-constant scale
we use σ2 = (0.4, 0.4, 0.4, 0.1, 0.1, 0.1)T . When the LV model is correct we as-
sume λ = (0.3, 0.3, 0.3, 0.1, 0.1, 0.1), which corresponds to an average correlation
under model 2 of 0.37. These parameter values were selected to be similar to
those observed from the birth defects example presented in our earlier work
(Sammel and Ryan (1996)). The assumed models are presented as follows: (1)
latent variable with model based variance (LV-SCORE); (2) latent variable with
robust on sandwich variance (LV-SCORES); (3) latent variable with adjusted
model-based variance (LV-SCOREA) (Rotnitzky and Jewell (1990)); (4) two-
stage factor analysis (TSFA); (5) Generalized Estimating Equation (GEE) with
exchangeable correlation; and (6) random effects model (RE). Model 5 is equiv-
alent to model 6 except that it uses the robust variance adjustment. All data
simulations were done using SAS IML, and analyses were conducted using SAS
Proc Mixed and an IML macro written to fit the latent variable model.
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Table 1. Bias and Power of Tests Under True Global Exposure Effect θ=0.

Homogeneous Variance Heterogeneous Variance
Assumed Model Bias Rejection Rate Bias Rejection Rate

True data generating model (DGM) is latent variable.
LV–SCORE -0.001 0.051 0.000 0.055
LV–SCORES 0.049 0054
LV-SCOREA 0.050 0.056
TSFA -0.001 0.044 0.000 0.046
GEE -0.001 0.058 0.000 0.057
RE 0.001 0.051 0.000 0.061

DGM is compound symmetry with ρ=0.3.
LV–SCORE -0.003 0.042 0.002 0.046
LV–SCORES 0.043 0.045
LV–SCOREA 0.042 0.050
TSFA -0.001 0.050 0.001 0.045
GEE 0.001 0.057 -0.001 0.054
RE -0.001 0.053 -0.001 0.045

DGM is independent subset with ρ=0.3.
LV–SCORE -0.001 0.054 -0.001 0.057
LV–SCORES 0.054 0.058
LV–SCOREA 0.054 0.058
TSFA -0.001 0.050 -0.001 0.047
GEE 0.000 0.052 0.000 0.052
RE -0.001 0.061 0.001 0.054

Table 1 describes the test size or validity of the various tests under the
assumption of no exposure effect, θ = 0. The rejection rates are within sampling
error of the nominal level, 0.05, and thus all proposed tests are valid.

Table 2 summarizes the 1000 simulation runs for each model where the true
global exposure effect is θ = −0.16. For each assumed model the bias in this
global exposure is estimated, and the rejection rate or power is reported. The
global exposure estimate for the latent variable model is

∑M
m=1 λmθ/M , and we

observe that the tests (1, 2, or 3) are all equivalent. For the GEE model the global
exposure is an average over all the outcomes, ziθ. Each model is fit assuming
homogeneous and heterogeneous scale for the observed outcomes. Of note is the
fact that the latent variable models with different variance assumptions perform
similarly under all scenarios, as does the TSFA model. Under heterogeneity of
variance, models are also similar but have less power overall. The GEE model
has slightly less power when the true data structure is LV, while the LV model
discriminates similarly when the data have a constant correlation. When there
is a subset of independent outcomes, The LV model performs poorly. However,
when the uncorrelated outcomes are unaffected by the exposure, the LV model is
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preferred. As for the amount of bias in the estimation of the global exposure, we
see that the naive two-stage factor analysis consistently underestimates the true
exposure effect by 30 to 70 percent. The GEE model underestimates the global
mean by 22.6 percent when the true model is LV with homogeneous variance.
However, the bias for the LV model is only 1 percent when the true model
generating the data is exchangeable.

Table 2. Bias and Power of Tests Under True Global Exposure Effect θ = −0.16.

Homogeneous Variance Heterogeneous Variance
Assumed Model Bias (%) Rejection Rate Bias (%) Rejection Rate

True data generating model (DGM) is latent variable.
LV–SCORE -0.004( 2.4) 0.908 -0.002 ( 0.2) 0.764
LV–SCORES 0.912 0.764
LV–SCOREA 0.903 0.748
TSFA -0.048 (29.7) 0.906 -0.078 (49.1) 0.760
GEE -0.037 (23.3) 0.825 -0.066 (41.6) 0.616
RE -0.018 (11.5) 0.895 -0.052 (32.7) 0.732

DGM is compound symmetry with ρ=0.37.
LV–SCORE 0.002 ( 1.1) 0.712 0.019 (11.6) 0.706
LV–SCORES 0.714 0.704
LV–SCOREA 0.706 0.687
TSFA -0.065 (41.2) 0.712 -0.068 (42.4) 0.703
GEE -0.001 ( 0.9) 0.789 -0.002 ( 1.2) 0.886
RE -0.001 ( 0.1) 0.768 -0.002 ( 1.3) 0.833

DGM is independent subset with ρ=0.37.
Homogeneous Variance Heterogeneous Variance

Assumed Model Bias (%) Rejection Rate Bias (%) Rejection Rate
LV–SCORE -0.060 (37.2) 0.541 -0.059 (36.8) 0.385
LV–SCORES 0.542 0.382
LV–SCOREA 0.544 0.379
TSFA -0.098 (61.5) 0.534 -0.111 (69.9) 0.379
GEE -0.001 ( 0.4) 0.982 0.001 ( 0.6) 0.995
RE -0.001 ( 0.4) 0.979 -0.001 ( 0.4) 0.994

DGM is independent subset with correlated outcomes affected.
LV–SCORE -0.005 ( 2.6) 0.971 -0.003 ( 2.0) 0.812
LV–SCORES 0.970 0.811
LV–SCOREA 0.967 0.810
TSFA -0.056 (34.8) 0.964 -0.080 (49.7) 0.806
GEE -0.062 (38.9) 0.703 -0.116 (72.5) 0.260
RE -0.053 (33.5) 0.771 -0.101 (63.4) 0.371
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The LV model performs consistently better when the variance of the out-
comes is larger, σ2 = (5, 5, 5, 5, 5, 5)T for homogeneous models, and σ2 = (20, 20,
20, 5, 5, 5)T for heterogeneous or non-constant scale (Table 3). In this situation
the factor loadings are (0.4, 0.4, 0.4, 2, 2, 2)T corresponding to a correlation of
ρ = 0.12. All models have similar power except when independent subset of
outcomes are present where the LV model is unable to combine the information
appropriately for testing. Bias in estimation of the exposure effect is similar under
misspecification with the exception of the TSFA model, which underestimates the
effect severely (80−90 percent).

Table 3. Bias and Power of Tests Under True Global Exposure Effect θ=-0.80.

Homogeneous Variance Heterogeneous Variance
Assumed Model Bias (%) Rejection Rate Bias (%) Rejection Rate

True data generating model (DGM) is latent variable.
LV–SCORE -0.004( 0.6) 0.748 -0.010 ( 1.2) 0.791
LV–SCORES 0.748 0.789
LV–SCOREA 0.736 0.796
TSFA -0.709 (88.7) 0.748 -0.713 (89.1) 0.789
GEE -0.054 ( 6.8) 0.728 0.320 (40.0) 0.791
RE -0.022 ( 2.8) 0.754 0.303 (37.9) 0.786

DGM is compound symmetry with ρ=0.12.
LV–SCORE 0.001 ( 0.1) 0.986 -0.069 ( 8.6) 0.924
LV–SCORES 0.988 0.924
LV–SCOREA 0.983 0.928
TSFA -0.660 (82.5) 0.985 -0.069 (86.0) 0.921
GEE 0.001 ( 0.1) 0.992 -0.066 ( 8.2) 0.969
RE -0.001 ( 0.1) 0.992 -0.065 ( 8.2) 0.966

DGM is independent subset with ρ=0.12.
LV–SCORE -0.239 (29.8) 0.775 -0.166 (20.7) 0.714
LV–SCORES 0.777 0.714
LV–SCOREA 0.777 0.707
TSFA -0.714 (89.2) 0.772 -0.725 (90.7) 0.736
GEE -0.003 ( 0.3) 1.000 -0.073 ( 9.2) 0.997
RE -0.002 ( 0.3) 1.000 -0.073 ( 9.2) 0.997

DGM is independent subset with correlated outcomes affected.
LV–SCORE -0.003 ( 0.4) 0.999 -0.025 ( 3.1) 0.972
LV–SCORES 0.999 0.972
LV–SCOREA 0.998 0.972
TSFA -0.660 (82.5) 0.999 -0.693 (86.6) 0.966
GEE -0.235 (29.4) 0.949 -0.174 (21.8) 0.969
RE -0.200 (24.9) 0.971 -0.168 (21.0) 0.973
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2.3. Model performance−asymptotic relative efficiency

For comparisons of efficiency, we consider the robust Wald tests for the GEE
model (7) compared to that of the latent variable model (5) score test, both
with robust variance estimates. First, we assume an arbitrary data generating
model which will take more specific forms presently, then consider the asymptotic
variance of the two normally distributed tests. The tests both have the form
Tj = Σ−1/2

j Sj , j = 1 indicating the LV model and j = 2 the GEE model. For
these tests to be comparable, they must have the same size under an arbitrary
model. This condition will be satisfied if the asymptotic mean is 0 and the test
is standardized to have variance 1. Because of the empirical variance used to
construct both tests, our tests have this desired property.

To compare the power of the two tests, we calculate Pitman’s Asymptotic
Relative Efficiency (ARE) under various data generating models indexed by the
parameter θ. Suppose that at an arbitrary point θ in the alternative space, a test
statistic Tj satisfies

√
n (Tj − µj(θ))

L−→ N
[
0, σ2

j (θ)
]
. Then, using the results of

Serfling ((1980), p.316), one can show that the relative efficiency of two such
tests is:

ARE(T1, T2) =
∆2

∆1
, where ∆j = lim

n→∞

[
σj (θ)
µ′j (θ)

∣∣∣∣∣
θ=θo

]2

.

Derivations of the specific forms for the asymptotic mean and variance of the
tests, Tj , involve the asymptotic limits (in probability) of the estimated param-
eters, λ̂, Ψ̂, ρ̂, Σ̂, given the particular data generating model. These limiting
quantities, denoted by λo, Ψo, ρo, Σo, have been previously described (Sammel
(1995)).

In this section we evaluate Asymptotic Relative Efficiencies (AREs) under
several different data generating models. Since the ARE comparisons are in-
fluenced by the amount of variability and strength of association among the
outcomes, we illustrate the comparison under a variety of values, k. We spec-
ify the variance taking homogeneous as Var = k ∗ I (m) and heterogeneity as
Var = k ∗ Diag (4, 4, 4, 1, 1, 1) for k = 0.1, 0.5, 1, 4, 9, 16.

Figure 1 illustrates the ARE for the latent variable robust score test (5) rel-
ative to the GEE global score test (7). In addition to the homogeneous versus
heterogeneous variance, we can also illustrate the impact when the exposure on
the mean is homogeneous or heterogeneous. This is done via the factor load-
ing vector λ, where we assume λ = l ∗ (1, 1, 1, 1, 1, 1)T for homogeneity, and
λ = l ∗ (4, 4, 2, 2, 1, 1)T for heterogeneity. The strength of association among the
outcomes is controlled by l, where l = (0.1, 0.5, 1, 2, 3).
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Homogeneous Var=k ∗ diag{1, 1, 1, 1, 1, 1}
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Figure 1. ARE comparisons when true model is latent variable

When the exposure or mean effect is homogeneous, the ARE remains con-
stant as k increases, and the values are only slightly larger when the variance is
heterogeneous. The ARE is less than 1 for weakly correlated outcomes, λ = 0.1,
and 0.5; equivalent when λ = 1; and greater than 1 for values λ > 1. When the
exposure effect is heterogeneous, the ARE is slightly stronger when the outcomes
have homogeneous variance, and increases linearly as the variance increases. The
latent variable test is superior except when the variability of the outcomes is
small, k < 4 for homogeneous outcomes and k < 9 under scale heterogeneity.

Evaluation when GEE is correct is presented in Figure 2. The LV test has
better performance when the outcomes have moderate correlation, homogeneous
variance, and the ARE increases linearly with increasing variance. The LV test is
most efficient for strongly correlated outcomes, ρ = 0.6, when k = 2 or higher for
homogeneous outcomes. When the outcomes are moderately correlated, ρ = 0.3,
the GEE test does slightly better when outcomes have heterogeneous variance,
except for k ≥ 8 and k ≥ 11.

When a subset of the outcomes are independent, the latent variable model
does not perform well, results are depicted in Figure 3. Under this set of as-
sumptions, the latent variable model is superior only when the set of correlated
outcomes has a very strong correlation. As illustrated in the figure, the ARE
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surpasses 1 when ρ = 0.6 and the variability is moderate to large, k = 8 for
homogeneous outcomes, and k = 6 when outcomes have heterogeneous variance.
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Figure 2. ARE comparisons when true variance has constant correlation
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Figure 3. ARE comparisons when true model has independent subset

3. Example

Holmes, Harvey, Brown and Khoshbin (1994) discuss an observational co-
hort study of infants born at Brigham and Women’s Hospital in Boston, MA.
Our example considers two subgroups from this study, infants whose mothers are
epileptics who took medications during their pregnancy (exposed subjects), and
control infants, whose mothers were randomly chosen from those who gave birth
at the same hospital at the same time as the exposed mothers. Various outcomes
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were assessed on the infants including weight, measures of size, and a variety of
cranial and limb measurements. Variables include (in order) bitemporal (side to
side) head diameter, nose length, finger length, weight, anterior-posterior (front
to back) head diameter, and upper lip width. For consideration in the latent vari-
able model, the best grouping of variables would be of those which are moderately
correlated (conceptually) and have been implicated in previous literature to be
influenced by the exposure. Items which are too strongly associated with one
another would dominate the latent variable score. If outcomes are uncorrelated
with one another, then GEE methods are more appropriate. In our example, we
anticipate that the various size measurements would meet model requirements.

Table 4 shows some summary statistics for the 628 infants, for a subset of
continuous measurements that will be used to illustrate the tests developed in the
paper. Means and standard errors are given for control and exposed infants, along
with the estimated exposure effect based on a linear regression model that also
adjusts for gender and gestational age. Exposure to anticonvulsant medications
resulted in a decrease in all outcomes of interest except for upper lip width. Wider
upper lip has been associated with the characteristic “anticonvulsant face” which
reflect subtle abnormalities of exposure. Pearson correlation coefficients among
the outcomes are also presented. All outcomes are positively correlated, while
lip width is relatively uncorrelated with the other outcomes. For the remaining
outcomes, correlations range between 0.19 and 0.60.

Table 4. Summary Statistics

Exposed Control
n=176 n=452

Outcome (cm) Mean (SE) Mean (SE) β̂∗ p-value∗

Head-bt 9.10 (0.059) 9.40 (0.024) -0.212 <0.001
Nose length 1.94 (0.010) 1.98 (0.015) -0.031 0.104
Finger length 2.86 (0.021) 2.95 (0.017) -0.045 0.103
Weight(kg) 3.28 (0.005) 3.41 (0.026) -0.004 0.917
Head-ap 11.67 (0.055) 11.74 (0.027) -0.007 0.880
Upper lip width 0.91 (0.009) 0.89 (0.006) 0.017 0.113

∗Adjusted for gender and gestational age using linear regression.

Correlation Matrix

Head-bt Nose Finger Weight Head-ap Lip
Head-bt 1.000
Nose length 0.249 1.000
Finger length 0.275 0.055 1.000
Weight(kg) 0.596 0.250 0.464 1.000
Head-ap 0.542 0.189 0.213 0.542 1.000
Upper lip width 0.029 0.039 0.100 0.179 0.100 1.000
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Both the latent variable and GEE models are fit to subsets of the outcomes
in Table 5. Estimates of the global exposure effect are presented, as well as
p-values for the two tests, one assuming the covariance of the model is correct
(model-based tests) described for the LV model as (4) or as the random effects
(RE) model. The other (robust) tests use the sandwich variance estimate to
protect against variance misspecification are described as (5) for the LV model
and as (7) for the GEE. The final column reflects the assumption of independence
for the assumed variance. Restricted maximum likelihood estimates (REML) of
variance parameters have been used in this example (Harville (1977)). The subset
of outcomes presented in Model 1 represent a set of correlated outcomes each with
a modest exposure effect. The estimate of the exposure effect is slightly larger
for the LV model, however, conclusions about the exposure effect are similar for
the GEE model under both the independence and compound symmetry variance
assumptions. In model 2 weight and anterior/posterior head diameter (head-ap)
are added to the model. These outcomes are strongly correlated with one another
and the other outcomes in the model, while mean levels do not differ between the
two exposure groups. The result of adding these two outcomes to the model is a
decrease in the global exposure effect for both models, and a parallel decrease in
the significance level of the tests. The robust test GEE model is influenced the
least by the addition of these outcomes. The model with the working assumption
of independence is impacted the least by the addition of these outcomes. This
result is consistent with both the simulation and asymptotic comparisons of the
previous sections.

Table 5. Estimation and tests for global exposure effect

Latent GEE GEE
Variable CS Independence

Model 1: Head-bt, Nose length and Finger length
Global Exposure estimate -0.093 -0.050 -0.052
Model based test p-value <0.001 0.001 <0.001
Robust test p-value <0.001 0.002 <0.001
Model 2: Head-bt, Nose length, Finger length, Weight and Head-ap
Global Exposure estimate -0.052 -0.037 -0.044
Model based test p-value 0.025 0.028 0.001
Robust test p-value 0.053 0.016 0.010
Model 3: Head-bt, Nose length, Finger length, and -1*(Upper lip)
Global Exposure estimate -0.073 -0.031 -0.032
Model based test p-value <0.001 0.001 0.001
Robust test p-value <0.001 0.002 0.001
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Model 3 incorporates the uncorrelated outcome upper lip width to the subset
of outcomes in Model 1. For consistency in the estimate of exposure effect we
have included the negative of the lip measurement, -1*(uplip), to the model. The
addition of this outcome does not significantly effect the tests of significance when
compared to Model 1, but the effect estimates for both models has decreased.
Surprisingly, in this situation the latent variable model test has not been effected,
although the computational results indicate it is less efficient.

4. Conclusions

This paper has focused on the comparison of several approaches to testing
and estimating covariate effects on multiple outcomes. The first approach was
based on a latent variable model and assumes that the covariates of interest affect
outcomes through an underlying latent structure, in a method similar to factor
analysis. The other tests, generalized estimating equations and random effects
test assume an average effect of exposure over all outcomes.

We derived the distribution of the tests under general assumptions for the
distribution of the outcomes, then compared the relative performance of the tests
under various true models. The latent variable model and the GEE model have
similar detriments in power under misspecification. Bias of the global exposure
effect is more severe under the GEE model. The latent variable model is inferior
when the variability of the outcomes is very small, or the correlation among the
outcomes is weak. Care in modeling is warranted when there are uncorrelated
subsets of outcomes.

The latent variable model is efficient even when the true correlation struc-
ture is exchangeable, when the variability of the outcomes is large, k ≥ 8, and
when that variability/scaling is heterogeneous, and for modestly correlated out-
comes, ρ ≥ 0.3. If uncorrelated outcomes are included, the latent variable model
outperforms the GEE only when the outcomes are highly correlated, ρ ≥ 0.6
and variance moderate to large, k ≥ 6, or when only the correlated outcomes
are impacted by the covariate. Our findings suggest that when used in the right
setting, the latent variable model can provide a powerful and robust approach to
the analysis of multiple outcome data.

In addition to testing covariates, the latent variable model allows for estima-
tion of the latent outcome, which is an overall summary measure or ranking of
subjects, i.e., severity score for the severity of birth defects in our example. This
score gives a relative ranking of the subjects where the effect of the covariates
influences the relative ranking.
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Appendix A

This appendix provides details on deriving the two tests for exposure. The
asymptotic variance of θlv may be found by inverting the expected information
from the marginal log-likelihood from the latent variable model described in
Section 1.1. For ζ∗=(θ,α,λ,Ψ), the expected information can be partitioned as

I (ζ∗) =




Iθθ Iθα Iθλ Iθσ2

IT
θα Iαα Iαλ Iασ2

IT
θλ IT

αλ Iλλ Iλσ2

IT
θσ2 IT

ασ2 IT
λσ2 Iσ2σ2



, (10)

and σ2 =
(
σ2

1 , . . . , σ
2
M

)T is the vector of diagonal elements of Ψ. Evaluation of
specific elements of this matrix reveals that Iθσ2 and Iασ2 are zero.

For testing, we need to compute the information under the null hypothesis
Ho : θ = 0, in which case, Iθλ, Iαλ, and Iσ2λ are also zero. Therefore, at Ho, the
information (10) has form

I (ζ∗) =




Iθθ Iθα 0 0

IT
θα Iαα 0 0

0 0 Iλλ 0

0 0 0 Iσ2σ2



. (11)

This is a block diagonal matrix where the mean parameters are asymptotically in-
dependent of the variance components. Hypothesis tests on the mean parameters
µ = (θ,α) are of primary interest, in particular the null hypothesis Ho : θ = 0.
Therefore, the model-based variance is V11 the first element of V = I (ζ∗)−1.

This variance form is used to conduct a score test for the global effect of the
latent variable, described at (5). For a “robust” version of the variance we define

W = V

[
n∑

i=1

DT
i

(
λλT +Ψ

)−1
Var (Y )

(
λλT +Ψ

)−1
Di

]
V

for D = (λZi Xi)
T (Rotnitzky and Jewell (1990)). In practice a moment esti-

mate of W is used utilizing the estimated mean model.
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