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Abstract: We consider linear measurement error models where the variables in

error are observed together with an auxiliary variable, say, time. Cai, Naik and

Tsai (2000) studied this problem and proposed using a de-noising process prior to a

least squares analysis. The present paper focuses on the asymptotic distributions of

such de-noised estimators. We demonstrate that the use of de-noising contributes

to an efficiency gain over other estimators of measurement error models that do not

make use of any auxiliary information. We also extend the results to cases with

dependent errors, and to a general class of M-estimators that have better robustness

properties than least squares.
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1. Introduction

Regression models with measurement errors arise frequently in practice and
have attracted attention in the statistics literature. Since the least squares (LS)
estimator is not consistent in the presence of measurement errors, a number
of alternatives have been proposed. For example, the method of moments,
leading to the adjusted least squares (ALS), can be used to correct for bias.
A likelihood-based argument leads to least squares with orthogonal distances
(OLS). A simulation-extrapolation method (SIMEX), which is equivalent to ALS
in linear models, also works for nonlinear errors-in-variables models. We refer
to Fuller (1987), Carroll, Ruppert and Stefanski (1995), and Cook and Stefanski
(1994) for more details.

The present paper focuses on linear models where the variables in error are
observed together with an auxiliary variable, say, time. Time will be used for
the rest of the paper, but it is clear that any other auxiliary variable can take
its place. Let (ξ, η) ∈ Rp × R1 be variables of interest that satisfy a linear
relationship

η = ξτβ0 + zτα0 (1.1)
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with some additional covariates z ∈ Rq. Measurements of (ξ, η) are collected
over time to yield a data set of {(xi, yi, zi), 1 ≤ i ≤ n} with

xi = ξ(ti) + ui and yi = η(ti) + vi, (1.2)

where ti is time for the ith measurement, ui and vi are measurement errors. We
assume that the zi’s are observed without error, and consider the problem of
estimating the unknown parameters (β0, α0).

A key ingredient of our model is that both ξ and η are time-dependent. For
a given time t, they can be viewed as the (unknown) population means of certain
underlying variables. One example of using this model was given in Cai, Naik
and Tsai (2000) for estimating the relationship between awareness and television
rating points of TV commercials for certain products. The variable zi may include
the constant 1 to reflect the intercept in the model.

To be in line with usual regression models, we may rewrite (1.1) as

yi = ξτi β0 + zτi α0 + vi, (1.3)

where ξi = ξ(ti) is subject to measurement error and the vi’s and ui’s are in-
dependent error variables. The cases where vi are correlated over time will be
discussed in Section 3.

The ordinary least squares estimate (LS) of (1.3) is biased and inconsistent.
Cai, Naik and Tsai (2000) used wavelets to filter out noise in the observed vari-
ables. Let x̃ and ỹ denote the de-noised variables of x and y respectively. Under
some smoothness conditions on ξ(t) and η(t), the least squares method applied
to the de-noised variables yields a consistent estimator of β0, called the DLS
estimator.

The purpose of the present paper is to further study the effect of de-noising
and the asymptotic properties of such de-noised estimators. In Section 2, we
consider a specific procedure of DLS by using a kernel-type smoothing for xi
followed by least squares regression of yi on (x̃i, zi). We note that the de-noising of
x is essential but there is no need to de-noise y. The consistency and asymptotic
normality for the DLS are established. We also confirm that DLS enjoys an
efficiency gain over ALS and OLS by making use of the time information in
the data. In Section 3, we obtain asymptotic results for the cases where {vi}
is a linear stationary process, thus extending the DLS methodology to a wider
range of problems. In Section 4 we generalize our results to a class of de-noised
M-estimators. The M-estimators are more robust than least squares against
outliers in yi, and are often more efficient for non-normal measurement errors. For
robustness of M-estimators, we refer to Huber (1981). Section 5 reports a Monte
Carlo comparison between DLS and ALS and illustrates the DLS methodology
through two examples.
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2. DLS Estimators and Their Asymptotics

The DLS estimators we consider here are in the spirit of Cai, Naik and Tsai
(2000) but differ on some details. First, we de-noise only the x variable but
not the y variable. This brings (1.3) closer to the traditional errors-in-variables
regression framework. More importantly, the de-noising of yi does not enhance
the performance of the estimator. Second, we use a (convolution) kernel-type
smoothing instead of wavelets de-noising. This difference is merely technical.
The kernel-type smoothing is better known in statistics and easier to analyze,
but under appropriate conditions our asymptotic normality results for DLS also
hold for wavelets de-noising such as the one used by Antoniadis, Gregoire and
McKeague (1994, p.1340).

For the model specification (1.1) and (1.2), we further assume that ui ∈ Rp

and vi ∈ R are two independent random samples with mean 0 and variance-
covariance Σu and σ2

v respectively. Without less of generality, we assume that
the observations are taken at 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ 1, where ti can be
time or any other input parameter for ξ and η. Note that any monotone and
smooth transformation of t can be used in our set-up. For the sake of technical
convenience, we assume in this section that
(B1) dn =: max

1≤i≤n
{|ti−i/n|}=O(log n/

√
n), and max1≤i≤n |ti−ti−1|=O(log n/n).

If the unsorted {ti} is a random sample from any probability distribution F ,
then a monotone transformation F (ti) satisfies (B1) almost surely.

We now specify a kernel-type smoothing procedure for the xi. To this end,
let K(·) ≥ 0 be a symmetric and Lipschitz kernel supported on [-1,1] with∫ 1
−1K(x)dx = 1. Let wn(s, t) (0 ≤ s, t ≤ 1) be a weight function depending
only on {t1, . . . , tn} and satisfying

∫ 1
0 wn(s, t)dt = 1 for any 0 ≤ s ≤ 1. More

specifically, we take

wn(s, t) =
1
h

[
K
(s− t

h

)
+K

(s+ t

h

)
I{0≤s,t≤h}+K

(2− s− t

h

)
I{1−h≤s,t≤1}

]
(2.1)

for some smoothing parameter h = hn satisfying h ∈ (0, 1/2), h → 0, and
nh/ log n → ∞ as n→ ∞. Then, the de-noised variable x̃ is given by

x̃i =
n∑
j=1

xj

∫
Aj

wn(s, ti)ds, (2.2)

where A1 = [0, (t1 + t2)/2), Aj = [(tj−1 + tj)/2, (tj + tj+1)/2)) (2 ≤ j ≤ n − 1),
and An = [(tn−1 + tn)/2, 1]. This corresponds to a smoothing method used by
Gasser and Müller (1979). The additional terms in (2.1) for (s, t) near the ends
(0 or 1) make bias corrections for kernel smoothing at the boundaries.

For notational convenience, letX = (x1, . . . , xn)τ ∈ Rn×p, X̃=(x̃1, . . . , x̃n)τ
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∈ Rn×p, Z = (z1, . . . , zn)τ ∈ Rn×q, Y = (y1, . . . , yn)τ ∈ Rn, Ξ = (ξ1, . . . , ξn)τ ∈
Rn×p, U = (u1, . . . , un)τ ∈ Rn×p, and V = (v1, . . . , vn)τ ∈ Rn. Also let

Ωn =
1
n

(
ΞτΞ ΞτZ
ZτΞ ZτZ

)
, Ω̃n =

1
n

(
X̃τ X̃ X̃τZ

Zτ X̃ ZτZ

)
. (2.3)

Note by the consistency of the smoother (2.2), supi |x̃i−ξ(ti)| → 0 and Ωn−Ω̃n →
0 in probability as n → ∞. The DLS method proceeds by regressing yi on (x̃i, zi)
to get (

β̂

α̂

)
= (nΩ̃n)−1

(
X̃τ

Zτ

)
Y. (2.4)

The following conditions are also assumed for the asymptotic results in this
section.
(B2) There exist 0 < C1 < C2 < ∞ such that C1 < λmin(Ωn) ≤ λmax(Ωn) ≤ C2

for all n, where λmin and λmax stand for the minimum and maximum
eigenvalues of a matrix.

(B3) ξ(t) is continuous in t, and so is z(t) if zi = z(ti).
(B4) ξ′(t) is Lipschitz with order γ (0 < γ ≤ 1), and so is z′(t) if zi = z(ti).
In typical cases where Ωn → Ω for some matrix Ω as n → ∞, the condition
(B2) follows from positive definiteness of Ω. The smoothness condition on z(t)
as given in (B3) and in (B4) can be weakened so that it holds everywhere except
at finitely many points. Also, (B4) is a stronger condition than (B3). If ξ(t)
and z(t) have bounded second order derivatives, then (B4) holds with γ = 1.
Our main results follow.

Theorem 1. Assume (B1), (B2) and (B3). The estimator (β̂, α̂) given by
(2.4) is consistent for (β0, α0).

Theorem 2. Assume (B1), (B2) and (B4), and n(h/ log n)2 → ∞ as n → ∞.
Then(

β̂

α̂

)
−
(
β0

α0

)
=

1
n
Ω−1
n

(
Ξτ (V − Uβ0)
Zτ (V − Uβ0)

)
+Op

(
log n/(nh) + h1+γ

)
, (2.5)

√
nΩ1/2

n√
σ2
v + βτ0Σuβ0

[(
β̂

α̂

)
−
(
β0

α0

)]
d.−→ N(0, Ip+q), (2.6)

provided that nh2+2γ → 0 as n → ∞.

Remark 1. Under (B4) with γ = 1, the smoothing parameter that leads to the
optimal rate of convergence in estimating ξ(t) is of order n−1/5. Our asymptotic
normality result (2.6) requires a smaller h strictly between n−1/2 and n−1/4 in
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this case. This corresponds to undersmoothing ξ so that the bias is kept small.
Based on the asymptotic analysis and empirical experience, we suggest a rule of
thumb as follows: the smoothing parameter h is so chosen that intervals of size
2h would contain around 5 points for n up to 100 and between 1

8n
2/3 and 1

4n
2/3

points for larger n.
It is easy to show that s2 = n−1(Y −Xβ̂−Zα̂)τ (Y −Xβ̂−Zα̂) is a consistent

estimate of σ2
v + βτ0Σuβ0. We can estimate the large sample variance-covariance

of (β̂, α̂) by s2(nΩ̃n)−1. We can also estimate the measurement error variances
of Σu and σ2

v by

Σ̂u = n−1(XτDnX − X̃τDnX̃), σ̂2
v = n−1(Y − X̃β̂ − Zα̂)τ (Y − X̃β̂ − Zα̂),

where Dn = In − n−1llτ is a centering matrix with l = (1, ..., 1)τ ∈ Rn and In is
the n by n identity matrix.

For any symmetric matrix A, let vec(A) be the vectorization of A, that is, a
vector that consists of all the elements in the upper triangular part of A.

Theorem 3. Assume the conditions of Theorem 2. If E‖u1‖4 < +∞, we
have

√
n
(
vec(Σ̂u) − vec(Σu)

)
d.−→ N

(
0, V ar[vec(u1u

τ
1)]
)
. If Ev4

1 < ∞, then
√
n(σ̂2

v − σ2
v)

d.−→ N(0, V ar(v2)).

The asymptotic normality (2.6) enables us to compare the asymptotic ef-
ficiency of the DLS estimator with other estimators developed for errors-in-
variables models. For simplicity, we consider the case of zi = 1 with q = 1.

Let Sξξ = n−1∑n
i=1(ξ(ti) − ξ)(ξ(ti) − ξ)τ with ξ = n−1∑n

i=1 ξ(ti), and

V0n = (σ2
v +βτ0Σuβ0)S−1

ξξ . It follows from Theorem 2 that
√
nV

−1/2
0n (β̂1 −β0)

d.−→
N(0, Ip). If Σu > 0 is known, the ALS estimator of β0 is β̂ALS =

(
Sxx−Σu

)−1
Sxy,

where Sxx = n−1∑n
i=1(xi − x)(xi − x)τ , Sxy = n−1∑n

i=1(xi − x)(yi − y). Un-

der appropriate conditions, we have
√
nV

−1/2
1n (β̂ALS − β0)

d.−→ N(0, Ip) with
V1n = V0n+S−1

ξξ Cov[u(v−uτβ0)]S−1
ξξ , which means that the asymptotic variance-

covariance of DLS is strictly smaller than that of ALS. The amount of difference
increases with the covariance of u(v − uτβ0) relative to Sξξ.

In the special case of Σu = σ2
vIp and V0n = (1 + ‖β0‖2)σ2

vS
−1
ξξ , we can use

the orthogonal least squares estimate β̂OLS of β0, see Madansky (1959). In this
case, we have

√
nV

−1/2
2n (β̂OLS − β0)

d.−→ N(0, Ip) with

V2n = V0n + S−1
ξξ Cov

{
(v − uτβ0)[u+

(v − uτβ0)β0

1 + ‖β0‖2
]
}
S−1
ξξ ,

so DLS is strictly more efficient than the orthogonal least squares. More details
about the likelihood-based orthogonal least squares estimates can be found in
Cui and Li (1998), Liang, Hädle and Carroll (1999), and He and Liang (2000).
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The efficiency gains of DLS over ALS and OLS can be substantial when the
size of the measurement error is large. The method of de-noising makes use of the
auxiliary information to consistently estimate the true values ξi. Unlike the other
two methods, DLS needs no additional knowledge about the size of Σu relative
to σ2

v , and the asymptotic variance is not affected by the fourth moments of ui
and vi.

3. DLS with Dependent Errors

Since the measurements of η are taken over time, it is often the case that
vi are not independent but should be modeled as a time series. The asymptotic
consistency and normality results in Section 2 can be extended to such cases.

Suppose that {vi} is a linear stationary process of the form

vi =
∞∑

j=−∞
bjei−j, (3.1)

where {ej} are i.i.d. with mean 0 and variance σ2
e . Let ρ(k) = cov(vi, vi+k). We

state additional conditions as
(B5) 0 <

∑+∞
j=−∞ b2j < +∞.

(B6) 0 <
∑+∞
j=−∞ |bj | < +∞.

Theorem 4. Under the conditions of Theorem 1 and (B5), the DLS estimate
(2.4) is consistent. Furthermore, if (B6) holds,

√
n
( 1
n
Ω−1
n (Ξ, Z)τRn(Ξ, Z)Ω−1

n +βτ0Σuβ0Ω−1
n

)−1/2
[(

β̂1

α̂1

)
−
(
β0

α0

)]
d.−→ N(0, Ip+q),

where Rn is the n by n matrix whose ij-th element is ρ(i− j).

Regular ARMA models are linear in the form of (3.1) with (B6) holding
automatically, see Brokwell and Richard (1991). In particular, if {vi} follows an
AR(1) model such that vi = ρvi−1 + ei where |ρ| < 1, ei are i.i.d. with mean 0
and variance σ2

e , then bj = ρ|j| and Rn = (σ2
eρ

|i−j|). It is easy to get a consistent
estimate of σ2

e and ρ in this case from the DLS residuals, and therefore Theorem
4 can be used to estimate the standard errors of the DLS estimates, see Example
2 in Section 5.

4. De-noised M-Estimators

The least squares estimators of regression are known to be sensitive to out-
liers in the data. Robust estimators can be more efficient when the error dis-
tributions are non-Gaussian and can protect us from gross errors in the data.
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M-estimators are arguably the most popular robust methods. To be more spe-
cific, we consider an M-estimator (β0, α0) as

(β̂1n, α̂1n) =: arg min
β∈Rp,α∈Rq

1
n

n∑
i=1

ρ(yi − x̃τi β − zτi α), (4.1)

where ρ(·) is an even and convex loss function satisfying ρ(x) =
∫ x
0 ψ(s)ds on

x > 0, ψ(s) a non-decreasing score function with Eψ(v1) = 0, E[ψ(v1 + s)] =
a0s+O(s2), and E[ψ(v1 + s)−ψ(v1)]2 = o(s) as s → 0 for some constant a0 > 0.

Least squares regression is a special M-estimator with ρ(x) = x2, but to be
robust against outlying yi values, we need to choose ρ such that ψ(x) is bounded.
The least absolute deviation regression with ρ(x) = |x| and ψ(x) = sgn(x) is a
well-known example in this class. In this section, we assume Eψ2(v1) < ∞
instead of Ev2

1 < ∞. This condition is automatically satisfied if ψ is bounded
whether vi has finite variance or not. The asymptotic properties of such M-
estimators are given below. As in Section 2, we assume the vi are i.i.d. in this
section.

Theorem 5. Under (B1), (B2) and (B3), the M-estimator (4.1) is consistent
for (β0, α0). Furthermore, under (B4) with nh2+2γ → 0 and nh2/(log n)4 → ∞
as n → ∞, we have

√
nΩ1/2

n√
E[ψ2(v1)]/a2

0 + βτ0Σuβ0

(
β̂1n − β0

α̂1n − α0

)
d.−→ N(0, Ip+q).

If ψ is differentiable, it is easy to show that a0 = Eψ′(v1). If ψ(x) = sgn(x),
then a0 = 2fv(0) where fv is the p.d.f of v1. Theorem 2 can be viewed as a
special case of Theorem 5 except that the condition on h is slightly weaker in the
former.

5. Empirical Investigations

We report a simulation study when data are generated from (1.3) with p =
q = 1. More specifically, samples of size n = 1000 are generated from yi =
1+ ξ(ti)+ vi and xi = ξ(ti)+ui. The variances of the normal variables ui and vi
are chosen for different levels of signal-to-noise ratios snrx = std(ξ)/std(u) and
snry = std(η)/std(v), where std stands for standard deviation. The function ξ

is taken to be the Doppler function (see, e.g., Donoho and Johnstone, (1994)),
and ti = i/n for i = 1, . . . , n. A similar setting was used in the simulation
study of Cai, Naik and Tsai (2000) where they compared the performance of
their DLS with LS. Here, our comparison is with a consistent estimator ALS of
(β0, α0) = (1, 1). In this case, we use the kernel-type smoothing with h = 0.007
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and K(t) = 3
4 (1 − t2)I{|t|≤1} on t ∈ (−1, 1). Note that the ALS estimators used

here assume the measurement error variance Σu to be known. This additional
information, usually unavailable in practice, is not needed for DLS.

(a) Case 2 (b) Case 2
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Figure 1. (a) Average slope estimates and (b) Ratio of standard errors of
ALS relative to DLS when snry = 10− snrx.

Figure 1(a) gives the average parameter estimates of DLS and ALS (based
on 500 Monte Carlo samples) for snrx between 0.1 and 8 (in increments of 0.1)
and snry = 10− snrx. It is clear that both estimators are nearly unbiased when
snrx > 3. When the signal-to-noise ratio is small, DLS has a negative bias but
ALS has a positive bias. Figure 1(b) shows the estimated standard error of ALS
relative to DLS under the same setup. As expected, the ALS is less efficient.
At snrx = 2, the relative efficiency of DLS relative to ALS is as large as 2, and
increases rapidly as snrx becomes smaller. When bias and variance are taken
together, it is clear that DLS is a better performer, especially when snrx is small.
The comparisons are similar when we chose snry = snrx.

We now consider two examples to illustrate the applications of DLS.

Example 1. (Advertising) In measuring the effectiveness of television advertis-
ing, people have developed Television Rating Points (TRP) as a rough estimate of
the extent of TV advertising. TRP is calculated based on several factors, includ-
ing the length of the TV commercial. This is related to an Awareness Response
(AR) reflecting the percentage of people who have seen that advertisement in a
small survey of consumers. We take η(t) as the true Awareness Response (from
the whole targeted population) at time t, and ξ(t) as the “true” extent of adver-
tising approximated by TRP at time t. Here, we observe TRP and AR as data
with measurement errors. Figure 2 gives the scatter-plots of the weekly AR and
TRP data for a TV advertisement in its first 75 weeks. The data are taken from
West and Harrison (1989, p.581). We model the relationship between AR(t) and
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TRP (t) as
ARi = α+ β1ξi + β2ξi−3 + vi, i = 1, . . . , 75, (5.1)

where TRPi = ξi + ui and ti = i/75.

(a) Awareness Reponses (b) Television Rating Points
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Figure 2. (a) Scatterplot of awareness response; (b) Scatter-plot of Television
Rating Points and the de-noised curve.

Following Remark 1, we use h = 0.031 with the same Epanechnikov kernel
as used for our simulation above. Since three observations for AR are missing,
only 72 observations are used in estimating the model. The DLS estimate of
(α, β1, β2) is (0.216, 0.034, 0.034) and the standard errors of both slope estimates
are 0.007. The estimated measurement error Σ̂u = 1.553 and snrx = 1.24. By
contrast, the LS estimate of the parameters based on the raw data is (0.241,
0.027, 0.024). That is, the LS estimate underestimates the slopes by more than
one standard error. In other words, the estimate based on DLS indicates that
an increase of one unit in the extent of TV advertising every week would make
additional 6.8% of the targeted population aware of the campaign, as compared
to 5.1% estimated by least squares without de-noising.

If we choose to use the de-noised least absolute deviation estimator in this
example, we get the parameter estimates (0.220, 0.037, 0.028) with the standard
errors of both slope estimates at 0.008. Without de-noising, the estimates are
(0.230, 0.028, 0.026), so attenuation mainly occurs for the first slope parameter
for this estimator. The residual plots of this regression example shows that the
errors are close to normal so least squares is expected to yield a more efficient
estimator.

Example 2. (Volatility) In finance and security analysis, we often measure the
risk of an individual stock as its (standardized) regression slope against a market
index. If this slope, usually called beta, is greater than 1, the change in the
stock price is expected to be more than that in the index and thus the stock is
considered to be more risky. An index is usually chosen to represent a broad
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market. If we ask how risky a stock is relative to a relevant market, then the
use of an index results in measurement errors if the index covers only a portion
of the stocks in the market of interest. As a result, the value of beta may be
under-estimated. A correction of this bias can be made with DLS.

We consider the common stock price of Microsoft (MSFT) during the first
ten months of year 2000, using with daily closing prices. To measure its risk
relative to the market of U.S blue chip stocks, we take the Standard & Poor’s
100 Index as a proxy to this market. (The Standard & Poor’s 500 Index is more
commonly used in finance, but the same methodology applies.) Figure 3 gives
the time series plots for the MSFT price and the index over the 10 month period
with 206 observations.
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Figure 3. Time series plots of (a) Microsoft stock price and (b) S & P 100
index over the first ten months of year 2000.

To account for a sudden shift in the MSFT price at the beginning of April
(see Figure 4(a)), we model the stock price gains yi (the price at i-th day divided
by the price on day one) as yi = ξiβ+α0I(i ≤ 64)+α1I(i > 64)+vi, i = 1, ..., 206,
where ξi denotes the change in market value from day one to the i-th day, which
is measured (with some error) by the change in the S&P100 index. The intercept
parameter α0 is used for the first three months (with 64 trading days) and α1

for the remaining days.
Ordinary least squares gives β̂LS = 1.167. If we test the hypothesis that

β = 1 against β > 1, the p-value from the t-test is 0.054. But we can see from
the residual plot in Figure 4(b) that there is clear dependence in the residuals.

We now assume that vi follows an AR(1) process and use the DLS to estimate
the model parameters. We choose h = n−1/3/8 for de-noising. The resulting
estimate is β̂DLS = 1.276 with standard error of 0.135. The estimate of the
autocorrelation for {vi} is ρ̂ = 0.86. Figure 6(c) shows the residual plot after
fitting the AR(1) process to {vi}. It is not significantly different from white noise,
validating our choice of AR(1) in this case. For the test of β = 1 versus β > 1,
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we have a p-value of 0.023 based on DLS. At the usual 5% level of significance,
we may conclude that MSFT is a stock that was more volatile than the U.S. blue
chip market as a whole.

(a) Scatter Plot (b) Residuals from LS Fit
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(c) Residuals from AR(1) Fit
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Figure 4. (a) Microsoft stock price versus de-noised index (b) Residual plot from the LS
fit. (c) Residuals after fitting AR(1) to the errors.

6. Proofs of Main Results

In this section, we use a generic positive constant C which may vary from line
to line. For notational convenience, let In(i)= ξ̃i−ξi=∑n

j=1 ξ(tj)
∫
Aj
wn(s, ti)ds−

ξ(ti), and Jn(j) =
∑n
i=1 ξ(ti)

∫
Aj
wn(s, ti)ds− ξ(tj). Note that Jn(j) relates to

ũj−uj as we shall see later in the section. We first provide bounds on In and Jn.

Lemma 6.1. For the de-noising method (2.2) we have the following results.
(i) max0≤ t≤ 1

∫ 1
0 |wn(s, t)|ds = O(1), and max1≤ j≤n,0≤ t≤ 1 |

∫
Aj
wn(s, t)ds| =

O(log n/(nh)) if (B1) holds.
(ii) If (B1) and (B3) hold, then max1≤i≤n ‖In(i)‖ = o(1).
(iii)If (B1) and (B4) hold with n(h/ log n)2 → ∞, then

‖In(i)‖ =
{

O(h) for ti < h or ti > 1− h

O(h1+γ + log n/n) for h ≤ ti ≤ 1− h
,
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max
1≤j≤n

‖Jn(j)‖ = O(log n(h+ (nh)−1) + dn/h).

Proof. We only prove (iii) here, as the first two statements are easier to verify
using similar arguments.

By the definition of wn(s, t), we have
∫ 1
0 wn(s, t)ds = 1. Together with (i),

we have

‖In(i)‖ ≤ ‖
n∑
j=1

∫
Aj

wn(s, ti)[ξ(tj)− ξ(s)]ds‖ + ‖
n∑
j=1

∫
Aj

wn(s, ti)ξ(s)ds − ξ(ti)‖

≤ C log n/n+ ‖
∫ 1

0
wn(s, ti)[ξ(s)− ξ(ti)]ds‖.

Using the Lipschitz property of ξ′(t), we can expand ξ(s) at s = ti to show that∫ 1

0
wn(s, ti)[ξ(s)− ξ(ti)]ds = O(h1+γ), if h ≤ ti ≤ 1− h.

For other ti near the boundaries, the above term is O(h). Thus we have proven
the bound on In(i) in (iii).

Since K has a finite support, there are only O(nh) nonzero terms in {K((ti−
t)/h), 1 ≤ i ≤ n}. Together with (B1), we have

1
nh

n∑
i=1

K
(ti − t

h

)
ξ(ti)−

∫ 1
h
K
(s− t

h

)
ξ(s)ds = O(log n/(nh) + dn/h),

max
0≤s≤1

‖ 1
n

n∑
i=1

wn(s, ti)ξ(ti)−
∫ 1

0
wn(s, t)ξ(t)dt‖ = O(log n/(nh) + dn/h), (6.1)

and therefore Jn(j) = n
∫
Aj
[
∫ 1
0 wn(s, t)(ξ(t)−ξ(tj))dt]ds+O(log n/(nh)+dn/h) =

O(log n(h+ (nh)−1) + dn/h), which completes the proof of Lemma 6.1.

Proof of Theorem 1. Consistent with the notation in Section 2, let Ξ̃ =
(ξ̃(t1), . . . , ξ̃(tn))τ , Π = (η(t1), . . . , η(tn))τ , Ũ = (ũ1, . . . , ũn)τ . By Lemma 6.1,
we have

n−1‖Ξ̃− Ξ‖2 ≤ max
1≤i≤n

‖In(i)‖2 = o(1), n−1‖(Ξ̃ − Ξ)τΞ+ Ξτ (Ξ̃− Ξ)‖ = o(1),

n−1E[Ũ τ Ũ ] =
1
n

n∑
i=1

n∑
j=1

[
∫
Aj

wn(s, ti)ds]2Σu = O(log n/(nh)), (6.2)

Note that

n−1(X̃τ X̃−ΞτΞ)=n−1[(Ξ̃−Ξ)τ (Ξ̃− Ξ)+(Ξ̃−Ξ)τΞ+Ξτ (Ξ̃−Ξ)+Ũ τΞ+Ξτ Ũ

+ (Ξ̃− Ξ)τ Ũ + Ũ τ (Ξ̃− Ξ) + Ũ τ Ũ ] = op(1).
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Similar arguments lead to
(
X̃τ X̃ X̃τZ

Zτ X̃ ZτZ

)−1(
X̃τΞ X̃τZ

ZτΞ ZτZ

)
→ Ip+q, and

(
X̃τ X̃ X̃τZ

Zτ X̃ ZτZ

)−1 (
X̃τ

Zτ

)
V → 0

in probability, from which the consistency result of Theorem 1 follows.

Proof of Theorem 2. By Lemma 6.1 and (6.2), we have

n−1E
[
(X̃−Ξ)τ (X̃−Ξ)

]
= n−1(Ξ̃−Ξ)τ (Ξ̃−Ξ)+n−1E[Ũ τ Ũ ] = O(h2+log n/(nh)),

and therefore

n−1(X̃ − Ξ)τ (X̃ − Ξ) = Op(h2 + log n/(nh)). (6.3)

By the definition of In(i), we have Ξτ (Ξ̃ − Ξ) =
∑n
i=1 ξ(ti)I

τ
n(i). Splitting the

sum into those over {i : ti ∈ (h, 1 − h)} and its compliment set (of size O(nh)),
and using Lemma 6.1 again, we obtain

n−1‖Ξτ (Ξ̃− Ξ)‖ ≤ C

n

[
nh max

ti<h,ti>1−h
‖In(i)‖ + n max

h≤ti≤1−h
‖In(i)‖

]

= O(h2) +O(h1+γ + log n/n) = Op(h1+γ + log n/n). (6.4)

Similarly, we have

n−2E‖Ξτ (Ũ − U)‖2 = n−2E‖
n∑
j=1

[
n∑
i=1

ξ(ti)
∫
Aj

wn(s, ti)ds − ξ(tj)]us‖2

≤ ‖Σu‖
n2

n∑
j=1

‖Jn(j)‖2 = O
(
n−1[h log n+ log n/(nh) + dn/h]2

)
,

and thus (using nh2 → ∞)

n−1Ξτ (Ũ − U) = Op(h log n/
√
n+ dn/(

√
nh)). (6.5)

It follows from (6.3)−(6.5) that

n−1(X̃τ X̃ − X̃τΞ) = n−1{(X̃ − Ξ)τ (X̃ − Ξ) + Ξτ (Ξ̃− Ξ) + Ξτ (Ũ − U) + ΞτU}
= n−1ΞτU +Op(h1+γ + log n/(nh)). (6.6)

Similarly, we have

n−1Zτ (X̃ − Ξ) = n−1{Zτ (Ξ̃ − Ξ) + Zτ (Ũ − U) + ZτU}
= n−1ZτU +Op(h1+γ + log n/(nh)). (6.7)
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Based on (6.6) and (6.7), we have

(
X̃τ X̃ X̃τZ

Zτ X̃ ZτZ

)−1(
X̃τΞ X̃τZ

ZτΞ ZτZ

)
=Ip+q−(nΩn)−1

(
ΞτU 0
ZτU 0

)
+Op(h1+γ+logn/(nh)).

Similarly, we have n−1(X̃ − Ξ)τV = op(h1+γ + log n/(nh)), and therefore

(
β̂

α̂

)
−
(
β0

α0

)
=


(X̃τ X̃ X̃τZ

ZτX̃ ZτZ

)−1 (
X̃τΞ X̃τZ

ZτΞ ZτZ

)
− Ip+q


(β0

α0

)

+

(
X̃τ X̃ X̃τZ

Zτ X̃ ZτZ

)−1(
X̃τ

Zτ

)
V

=
1
n
Ω−1
n

(
Ξτ (V − Uβ0)
Zτ (V − Uβ0)

)
+Op(h1+γ + log n/(nh)).

The rest of the proof follows easily.

Proof of Theorem 3. Following Theorem 2, it is straightforward to verify that
Σ̂u = n−1U τU + op(1) and σ̂2

v = n−1∑n
i=1 v

2
i + op(1).

Proof of Theorem 4. First we note that ρ(k) = σ2
e

∑
j bjbj−k and

∑
k |ρ(k)| ≤

(
∑
j |bj |)2. Following the proof of Theorem 1, it suffices for the consistency result

to verify
n−1(X̃, Z)τV = op(1), (6.8)

This follows from E ‖ 1
n (Ξ, Z)

τ V ‖2 = 1
n2 trace{ (Ξ, Z)τE(V V τ )(Ξ, Z) } =

O(n−1λmax(Rn)) = O(n−1∑n
k=0 |ρ(k)|) = o(1), and E‖(X̃ − Ξ)V ‖2 ≤ E‖X̃ −

Ξ‖2λmax(Rn) ≤ 2
∑n
k=0 |ρ(k)|E‖X̃ − Ξ‖2 = o(n2).

For the asymptotic normality to work as in the proof of Theorem 2, we
need to verify that 1

n(X̃ − Ξ)V = op(h1+γ + log n/(nh)) and 1√
n
(Ξ, Z)τV is

asymptotically normal. They both follow from similar arguments leading to
(6.8) using the weak correlations of vi as dictated by (B5). We omit the details.

Proof of Theorem 5. Using similar arguments to those of He and Shao (1996),
a Bahadur-type representation holds for the M-estimator(

β̂1n

α̂1n

)
−
(
β0

α0

)
= −(a0nΩn)−1

n∑
i=1

ψ(ei)

(
x̃i
zi

)
+ op(n−1/2),

where ei = yi − x̃τi β0 − zτi α0. Since the first order term of the above representa-
tion takes the same form as the least squares with ei replaced by ψ(ei)/a0, the
arguments used for the proof of Theorem 2 carry over. We omit the details.
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