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NON-UNIFORM BERRY-ESSÉEN BOUND FOR U-STATISTICS
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Abstract: Non-uniform Berry-Esséen bounds for U -statistics are derived by using a

new and simple method. Extensions to U -type statistics and L-statistics are also

discussed.
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1. Introduction and Main Results

Let X1, . . . ,Xn be a sequence of independent and identically distributed
(i.i.d.) random variables. Let h(x, y) be a real-valued Borel measurable function,
symmetric in its arguments with Eh(X1,X2) = 0. For n ≥ 2, a U -statistic of
degree 2 with kernel h(x, y) is defined by

Un =
(
n

2

)−1 ∑
1≤i<j≤n

h(Xi,Xj). (1)

Introducing functions g(x) = Eh(x,X1) and φ(x, y) = h(x, y) − g(x) − g(y), we
may rewrite the statistic Un as

Un =
2
n

n∑
j=1

g(Xj) +
(
n

2

)−1 ∑
1≤i<j≤n

φ(Xi,Xj). (2)

See, for example, Lee (1990, p.25)
Throughout this paper, we assume that 0 < σ2g = Eg2(X1) < ∞. This

assumption implies that
∑n

j=1 g(Xj) is a sum of non-degenerate i.i.d. random
variables and its distribution, when properly normalized, may be approximated
by the standard normal distribution Φ. Indeed, the classical Berry-Esseen in-
equality shows that if E|g(X1)|3 < ∞, then

∣∣∣P( 1√
nσg

n∑
j=1

g(Xj) ≤ x
)
− Φ(x)

∣∣∣ ≤ An−1/2σ−3
g E|g(X1)|3, (3)

uniformly in x ∈ R, where A > 0 is an absolute constant. Under some further
conditions, i.e., E|g(X1)|p < ∞, p ≥ 3, the bound given by (3) can be refined by
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the so-called non-uniform Berry-Esseen inequality

∣∣∣P( 1√
nσg

n∑
j=1

g(Xj) ≤ x
)
− Φ(x)

∣∣∣ ≤ A(p)(1 + |x|)−pn−1/2σ−p
g E|g(X1)|p, (4)

uniformly in x ∈ R, where A(p) > 0 is a constant depending only on p. It should
be noted that the bound given by (4) reflects dependence on x and n as well as
on E|g(X1)|p, and the power of |x| and n in (4) is optimal under the assumed
moment conditions; see Michel (1976).

In recent years, there has been considerable interest in obtaining results
that are similar to (3) and (4) for U -statistics. The Berry-Esseen inequality for
U -statistics has been investigated, for instance, by Grams and Serfling (1973),
Bickel (1974) and Chan and Wierman (1977). A sharper Berry-Esseen bound
was given by Callaert and Janssen (1978), which states that

∣∣∣P(√
nUn/(2σg) ≤ x

)
−Φ(x)

∣∣∣ ≤ An−1/2σ−3
g E|h(X1,X2)|3

under the condition that E|h(X1,X2)|3 < ∞, where A > 0 is an absolute con-
stant. However, we note that the sharpest Berry-Esséen bound of order O(n−1/2)
for standardized U -statistics comes from Friedrich (1989), who established the
ideal bound under the condition that E|g(X1)|3 < ∞ and E|h(X1,X2)|5/3 < ∞.
Indeed, Bentkus, Götze and Zitikis (1994) showed that the moment conditions
of Friedrich (1989) are the weakest for U -statistics.

A non-uniform Berry-Esseen bound for U -statistic was given by Zhao and
Chen (1982), who shows that if E|h(X1,X2)|3 < ∞, then

(1 + |x|)3
∣∣∣P(√

nUn/(2σg) ≤ x
)
− Φ(x)

∣∣∣ = O(n−1/2). (5)

To my knowledge, this is the only known result in this direction. It remains
an open and more challenging question whether a result similar to (4) holds for
U -statistics. As mentioned before, this question is more interesting because the
bound reflects dependence on x and n as well as on a moment condition. The
answer to this question is affirmative, as the following theorem shows.

Theorem 1.1. Assume that E|h(X1,X2)|p < ∞, p ≥ 3. Then for any n ≥
2 + (E|g(X1)|3/σ3g)3,

∣∣∣P(√
nUn/(2σg) ≤ x

)
− Φ(x)

∣∣∣
≤A(p)(1+|x|)−pn−1/2

{
E|g(X1)|p

σp
g

+
E|h(X1,X2)|2

σ2g
+

n−(p−1)/2E|h(X1,X2)|p
σp

g

}
, (6)
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uniformly in x ∈ R, where A(p) > 0 is a constant depending only on p.

Let α(x) and β(x, y) be some real-valued Borel measurable functions of
x and y. Furthermore, let Vn ≡ Vn(X1, . . . ,Xn) be real-valued functions of
{X1, . . . ,Xn}. Define a U -type statistic by

Tn = n−1/2
n∑

j=1

α(Xj) +Dn

∑
i�=j

β(Xi,Xj) + Vn, (7)

where Dn is a real number depending only on n. In terms of (2), Theorem 1.1
is an easy corollary of the following theorem.

Theorem 1.2. Assume that
(a) Eα(X1) = 0, Eα2(X1) = 1. E[β(X1,X2)|Xi] = 0, i = 1, 2.
(b) |Dn| ≤ An−3/2 for some constant A > 0.
(c) P (|Vn| ≥ C0(1 + |x|)n−1/2) ≤ C1(1 + |x|)−pn−1/2 for some constants C0 > 0

and C1 > 0.
Then for all p ≥ 3 and n ≥ 2 + ρ33,∣∣∣P(

Tn ≤ x
)
− Φ(x)

∣∣∣ ≤ A(p)(1 + |x|)−pn−1/2{C0 + C1 + L
}
, (8)

uniformly in x ∈ R, where A(p) is a constant depending only on p; ρs =
E|α(X1)|s, λs = E|β(X1,X2)|s and L = ρp + λ2 + n−(p−1)/2λp.

We remark that Theorem 1.2 is quite general. Consider its application to L-
statistics. Let X1, . . . ,Xn be i.i.d. real random variables with distribution func-
tion F . Define Fn to be the empirical distribution, i.e., Fn(x) = n−1∑n

j=1 I{Xi ≤
x}, where I{·} is the indicator function. Let J(t) be a real-valued function on
[0, 1] and T (G) =

∫
xJ(G(x)) dG(x). The statistic T (Fn) is called an L-statistic

(see Chapter 8 of Serfling (1980)). Write

σ2 ≡ σ2(J, F ) =
∫ ∫

J (F (s)) J (F (t))F (min{s, t}) [1− F (max{s, t})] dsdt,

and define the distributions of the standardized L-statistic T (Fn) by Hn(x) =
P (

√
nσ−1(T (Fn) − T (F )) ≤ x). It is well-known that Hn(x) converges to the

standard normal distribution function Φ(x) provided E|X1|2 < ∞ and σ2 > 0,
along with some smoothness conditions on J(t) (see Serfling (1980) and Helmers,
Janssen and Serfling (1990) for references). The uniform rates of convergence
to normality have also been studied by various authors. For instance, assuming
that E|X1|3 < ∞ and σ2 > 0, and some smoothness conditions on J(t), Helmers
(1977) and Helmers, Janssen and Serfling (1990) showed that supx∈R |Hn(x) −
Φ(x)| = O(n−1/2).
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The following theorem gives a new non-uniform Berry-Esseen bound for stan-
dard L-statistics.

Theorem 1.3. Assume that
(a)

∣∣∣J(s) − J(t)
∣∣∣ ≤ K|s − t|, 0 < s < t < 1, for some K > 0, so that J(t) is

bounded, |J(t)| ≤ M < ∞, say;
(b) E|X1|p < ∞, for some p ≥ 3 and σ2 > 0.
Then, for all n ≥ 2 + (E|α(X1)|3)3 with α(X1) = −σ−1 ∫

J(F (t))(I(X1≤ t)
−F (t))dt,

|Hn(x) − Φ(x)| ≤ A(J, p,K,M)(1 + |x|)−pn−1/2σ−pE|X1|p,

uniformly in x ∈ R, where A(J, p,K,M) is a positive constant only depending
on J , p, K and M .

The proofs of Theorems 1.1−3 will be given in the next section. For con-
venience, throughout this paper, we denote by A, A1, . . . absolute positive con-
stants, which may be different at each occurrence. If a constant A depends on a
parameter, say u, then we write A(u). Furthermore, we introduce the following
notation for ease of presentation:

∑
i<j ≡

∑
1≤i<j≤n,

∑
i�=j ≡

∑n
i,j=1
i�=j

.

2. Proofs of Main Results

Proof of Theorem 1.1. In view of (2), Theorem 1.1 is an immediate corollary
of Theorem 1.2. The details are omitted.

Proof of Theorem 1.2. It should be pointed out that the proof of (5) given
by Zhao and Chen (1982) is very technical and complex, and therefore it is hard
to extend the proof to the case for p ≥ 3. Here we give a totally new and simple
proof for the non-uniform Berry-Esseen bound for U-statistics.

Without loss of generality, assume that x ≥ 0. For simplicity, we further
assume Vn = 0 and Dn = n−3/2. As shown in Wang, Jing and Zhao (2000), these
assumptions will not affect the proof of the main results.

The proof of (8) breaks up into three parts: 0 ≤ x ≤ 1, 1 ≤ x2 ≤ 8 log n, and
x2 ≥ 8 log n.

In fact, for 0 ≤ x ≤ 1, (8) is a direct corollary of Theorem 2.1 given by Wang,
Jing and Zhao (2000), by noting that 1 ≤ ρ3 ≤ ρp and λ5/3 ≤ (λ2)5/6 ≤ 1 + λ2.

If x2 ≥ 8 log n, it can be easily shown that

1− Φ(x/2) ≤ 1√
2π

e−x2/8 ≤ A(1 + x)−pn−1/2.
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Hence, from the classical non-uniform Berry-Esseen bound for sums of indepen-
dent random variables [cf. Michel (1976)],

P
(
n−1/2

n∑
j=1

α(Xj) ≥ x/2
)
≤ 1−Φ(x/2) +A(1 + x)−pn−1/2ρp

≤ A1(p)(1 + x)−pn−1/2ρp.

On the other hand, by noting that
∑

i�=j β(Xi,Xj) =
∑

i<j [β(Xi,Xj)+β(Xj ,Xi)]
is a degenerate U-statistic, it follows from the moment inequality for degenerate
U-statistics [cf. Wang (1998)] that P

(
n−3/2∑

i�=j β(Xi,Xj) ≥ x/2
)
≤ A(p)(1 +

x)−pn−p/2λp. By using these estimates, for x2 ≥ 8 log n, (8) follows from∣∣∣P(
Tn ≤ x

)
− Φ(x)

∣∣∣ =
∣∣∣P(

Tn > x
)
− (1− Φ(x))

∣∣∣
≤ (1− Φ(x)) + P

(
n−1/2

n∑
j=1

α(Xj) ≥ x/2
)
+ P

(
n−3/2∑

i�=j

β(Xi,Xj) ≥ x/2
)

≤ A(p)(1 + x)−pn−1/2{ρp + n−(p−1)/2λp

}
.

So it remains to show that if 1 ≤ x2 ≤ 8 log n and n ≥ 2 + ρ33, then

∆n(x) ≡
∣∣∣P(

n−1/2
n∑

j=1

α(Xj) + n−3/2∑
i�=j

β(Xi,Xj) ≤ x
)
− Φ(x)

∣∣∣
≤ A(p)(1 + x)−pn−1/2(ρp + λ2). (9)

Let αj = α(Xj) and ηij = β(Xi,Xj) + β(Xj ,Xi). As mentioned before, we
can rewrite

∑
i�=j β(Xi,Xj) =

∑
i<j ηij with E

(
η12 | X1

)
= 0 and Eη212 ≤ 4λ2.

For the rest of this section, we use the following notations: i =
√−1,

g(t) = Eeitα1/
√

n, Sn =
1√
n

n∑
j=1

αj , Λn,m =
1

n3/2

m−1∑
k=1

n∑
j=k+1

ηkj,

fn(t) =
{
1 + n(g(t) − 1) + t2

2

}
e−t2/2, ϕn(t) =

(it)3e−t2/2

√
n

Eα1α2η12.

The proof of (9) is based on the following lemmas.

Lemma 2.1. If |t| ≤ √
n/(4ρ3), we have

|g(t)| ≤ e−t2/3n,
∣∣∣gn(t)− e−

t2

2

∣∣∣ ≤ 16n−1/2ρ3|t|3e−t2/3. (10)

If in addition |t| ≤ (√n/ρ3)1/3, then

|gn(t)− fn(t)| ≤ An−1 (ρ3)2 t4e−t2/6. (11)
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This lemma is well-known. See, for example, Hall (1982).

Lemma 2.2. If |t| ≤ √
n/(4ρ3) and n ≥ max{2, ρ23}, then

∣∣∣Eeit(Sn+Λn,n) − e−t2/2
∣∣∣ ≤ An−1/2(λ1/22 + ρ3)(t2 + t6)e−t2/3 + 16n−1λ2t2, (12)

and for any 2 ≤ m ≤ n,

∣∣∣Eeit(Sn+Λn,n)
∣∣∣ ≤ (

1 +
2mλ

1/2
2 |t|√
n

)
e−

(m−2)t2

3n + 16mn−2λ2t2. (13)

If in addition |t| ≤ (√n/ρ3)1/3, then
∣∣∣Eeit(Sn+Λn,n)−fn(t)−ϕn(t)

∣∣∣ ≤ An−3/4(λ2ρ3)1/2(t2+t8)e−t2/3+16n−1λ2t2. (14)

Proof. We first prove that for any |t| ≤ √
n/(4ρ3) and n ≥ max{2, ρ23},

∣∣∣EΛn,ne
itSn +

Eα1α2η12√
n

t2e−
t2

2

∣∣∣ ≤ An−3/4(λ2ρ3)1/2(t2 + t6)e−t2/3. (15)

Recalling E(η12|X1) = 0, it can be easily shown that

E η12e
it(α1+α2)/

√
n = − t2

n
Eα1α2η12 +K1n +K2n, (16)

where K1n = Eη12
(
eitα1/

√
n − 1 − itα1√

n

) (
eitα2/

√
n − 1

)
and K2n = it√

n
Eα1η12(

eitα2/
√

n − 1 − itα2√
n

)
.

By |eix − 1− ix| ≤ 2|x|3/2 and Holder’s inequality, we obtain that

|K1n|+ |K2n| ≤ 2n−5/4|t|5/2
(
E|η12||α1|3/2|α2|+ E|η12||α1||α2|3/2

)

≤ 8n−5/4(λ2ρ3)1/2(t2 + t4).

Therefore, it follows from independence of the αj, (10) and (16) that

EΛn,ne
itSn =

1
n3/2

n−1∑
k=1

n∑
j=k+1

ηkje
itSn

=
n− 1√

n
gn−2(t)Eη12e

it(α1+α2)/
√

n

= −(n− 1)Eα1α2η12
n3/2

t2gn−2(t) +
(n− 1)gn−2(t)√

n
t2(K1n +K2n)

= −Eα1α2η12√
n

t2e−
t2

2 +K3n,
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where simple calculation shows that (recall ρ3 ≥ 1 and 1 ≥ (ρ23/n)1/4)

|K3n|≤
√
nt2|g(t)|n−2

(
|K1n|+|K2n|+n−3/2(λ2)1/2

)
+

t2(λ2)1/2√
n

∣∣∣gn−2(t)−e−
t2

2

∣∣∣
≤ A(t2 + t6)e−t2/3

(
n−3/4(λ2ρ3)1/2 + n−1λ1/22 ρ3

)

≤ An−3/4(λ2ρ3)1/2(t2 + t6)e−t2/3.

This proves (15).
Let us turn back to the proofs of (12)−(14). Put Λ∗

n,m = Λn,n −Λn,m =
1

n3/2

∑n− 1
k=m+1×

∑n
j=k+1 ηkj and Λ∗

n,m = 0, if m ≥ n. By |eiz − 1 − iz| ≤ 2|z|2,
we have that
∣∣∣Eeit(Sn+Λn,n)−Eeit(Sn+∆∗

n,m)−itEΛn,meit(Sn+Λ∗
n,m)

∣∣∣≤2t2E|Λn,m|2≤16mn−2λ2t2

(17)
By letting m = n in (17), the proofs of (12) and (14) follow easily from (10), (11)
and (15) respectively. In view of independence of the αj , on the other hand, we
have that

E|Λn,meit(Sn+Λ∗
n,m)| = E

∣∣∣ 1
n3/2

m−1∑
k=1

n∑
j=k+1

ηkje
it(Sn+Λ∗

n,m)
∣∣∣

≤mE|η12||g(t)|m−2/
√
n ≤ 2mλ

1/2
2 |g(t)|m−2/

√
n.

This, together with (10) and (17), implies that for any 2 ≤ m ≤ n,

∣∣∣Eeit(Sn+Λn,n)
∣∣∣ ≤ |g(t)|m + 2mλ

1/2
2 |t|√
n

|g(t)|m−2 + 16mn−2λ2t2

≤
(
1 +

2mλ
1/2
2 |t|√
n

)
e−

(m−2)t2

3n + 16mn−2λ2t2.

This provides (13). The proof of Lemma 2.2. is complete.

Lemma 2.3. Let F be a distribution function with characteristic function f .
Then for all y ∈ R and T > 0 it holds that

lim
z↓y

F (z) ≤ 1
2
+ V.P.

∫ T

−T
exp(−iyt)

1
T
K(

t

T
)f(t)dt, (18)

lim
z↑y

F (z) ≥ 1
2
− V.P.

∫ T

−T
exp(−iyt)

1
T
K(− t

T
)f(t)dt, (19)

where V.P.
∫ T
−T =limh↓0

( ∫ −h
−T +

∫ T
h

)
, and 2K(s)=K1(s)+iK2(s)/(πs), K1(s) =

1− |s|,K2(s) = πs(1− |s|)cot πs+ |s|, for |s| < 1, and K(s) ≡ 0 for |s| ≥ 1.
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The proof of Lemma 2.3 can be found in Prawitz (1972).

Lemma 2.4. It holds that for any y ∈ R and n ≥ 2 + n0,

|I+|, |I−| ≤ An−1/2ρ3e−y2/2 +A1n
−2/3(λ2 + ρ

4/3
3 ), (20)

where n0 = max{k : 6 log k ≥ (√k/ρ3)2/3}, K1(s) is defined as in Lemma 2.3,

I+ =
1
T

∫ T

−T
e−iytK1

( t

T

)
Eeit(Sn+Λn,n)dt,

I− =
1
T

∫ T

−T
e−iytK1

(
− t

T

)
Eeit(Sn+Λn,n)dt, T =

√
n/(4ρ3).

Proof. We only prove (20) for |I+|. We first note that n ≥ max{2, ρ23} when
n ≥ 2 + n0. Let T1 = (

√
n/ρ3)1/3. Rewrite I+ = I1 + I2, where

I1 =
1
T

∫ T1

−T1

e−iytK1

( t

T

)
Eeit(Sn+Λn,n)dt,

I2 =
1
T

∫
T1≤|t|≤T

e−iytK1

( t

T

)
Eeit(Sn+Λn,n)dt.

It is easy to see that
[
6n logn

t2

]
≤ n − 2 if |t| ≥ T1. Hence, by (13) with m =[

6n logn
t2

]
+ 2,

|I2| ≤ 1
T

∫
T1≤|t|≤T

|Eeit(Sn+Λn,n)|dt ≤ A(ρ3 + λ2)n−2/3. (21)

Noting K1(s) = 1− |s|, for |s| < 1, we obtain |I1| ≤ |I11|+ |I12|, where

I11 =
1
T

∫ T1

−T1

e−iytEeit(Sn+Λn,n)dt, I12 =
2
T 2

∫ T1

0
t|Eeit(Sn+Λn,n)|dt.

It is obvious that |I12|≤ 2
T 2

∫ T1
0 tdt≤8n−2/3ρ4/33 . Noting that

1√
2π

∫ ∞
−∞e−iyt−t2/2dt=

e−y2/2, it follows from (12) that

|I11| ≤ 1
T

∣∣∣
∫ ∞

−∞
e−iyt−t2/2dt

∣∣∣+ 1
T

∫
|t|≥T1

e−t2/2dt+
1
T

∫ T1

−T1

∣∣∣Eeit(Sn+Λn,n)−e−t2/2
∣∣∣dt

≤ An−1/2ρ3e−y2/2 +A1n
−1(ρ23 + λ2).

Collecting all these estimates, we conclude the proof of Lemma 2.4.

Lemma 2.5. The integrals

J+ ≡ i

π
V.P.

∫ T

−T
e−iytK2

( t

T

)
Eeit(Sn+Λn,n) dt

t
,

J− ≡ i

π
V.P.

∫ T

−T
e−iytK2

(
− t

T

)
Eeit(Sn+Λn,n)dt

t
, T =

√
n/(4ρ3),
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satisfy: for any y ∈ R and n ≥ 2 + n0,∣∣∣J+ + 1− 2Φ(y)− 2Ln(y)− 2L1n(y)
∣∣∣ ≤ An−2/3(λ2 + ρ

4/3
3 ), (22)∣∣∣J− + 1− 2Φ(y)− 2Ln(y)− 2L1n(y)

∣∣∣ ≤ An−2/3(λ2 + ρ
4/3
3 ), (23)

where n0 = max{k : 6 log k ≥ (
√
k/ρ3)2/3}, K2(s) is defined as in Lemma 2.3,

Ln(y) = n
{
EΦ

(
y − α1√

n

)
− Φ(y)

}
− 1
2Φ

(2)(y) and L1n(y) = Eα1α2η12√
n

Φ(3)(y).

Proof. We only prove (22). We can write J+ = J11 + J12 + J13 + J2, where

J11 =
i

π
V.P.

∫ T1

−T1

e−iyt
(
fn(t) + ϕn(t)

)dt

t
,

J12 =
i

π
V.P.

∫ T1

−T1

e−iyt
(
Eeit(Sn+Λn,n) − fn(t)− ϕn(t)

)dt

t
,

J13 =
i

π
V.P.

∫ T1

−T1

e−iyt
(
K2(

t

T
)− 1

)
Eeit(Sn+Λn,n)dt

t
,

J2 =
i

π
V.P.

∫
T1≤|t|≤T

e−iytK2(
t

T
)Eeit(Sn+Λn,n)dt

t

and T1 = (
√
n/ρ3)1/3. Similar to (21), it follows that |J2| ≤ A(1 + λ2)n−2/3. By

using (14), we have

|J12| ≤
∫ T1

−T1

∣∣∣Eeit(Sn+Λn,n) − fn(t)− ϕn(t)
∣∣∣dt|t|

≤ An−2/3λ2 +A1n
−3/4(λ2ρ3)1/2 ≤ An−2/3(λ2 + ρ3).

Noting that |K2(s) − 1| ≤ As2, for |s| ≤ 1/2 (cf., e.g., Lemma 2.1 in Bentkus
(1994)), it can be easily shown that

|J13| ≤ AT−2
∫ T1

−T1

|t|
∣∣∣Eeit(Sn+Λn,n)

∣∣∣dt ≤ AT−2
∫ T1

−T1

|t|dt ≤ An−2/3ρ4/33 .

On the other hand, simple calculation shows that

i

2π
V.P.

∫ ∞

−∞
e−iyt

(
fn(t) + ϕn(t)

)dt

t
= −1

2
+ Φ(y) + Ln(y) + L1n(y).

Therefore, it follows from all these estimates that (recall ρ3 ≥ 1)∣∣∣J+ + 1− 2Φ(y)− 2Ln(y)− 2L1n(y)
∣∣∣

≤
∣∣∣J11 + 1− 2Φ(y)− 2Ln(y)− 2L1n(y)

∣∣∣ + |J12|+ |J13|+ |J2|

≤
∫
|t|≥T1

1
|t|

∣∣∣fn(t) + ϕn(t)
∣∣∣dt +An−2/3(λ2 + ρ

4/3
3 )

≤ A1n
−2/3(λ2 + ρ

4/3
3 ).
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This also completes the proof of Lemma 2.5.

We are now ready to prove (9). It suffices to show that for 1 ≤ x2 ≤ 8 log n
and n ≥ 2 + ρ33,

P (Sn + Λn,n ≤ x) ≤ Φ(x) +A(p)(1 + x)−pn−1/2(ρp + λ2), (24)

P (Sn + Λn,n ≥ x) ≤ 1− Φ(x) +A(p)(1 + x)−pn−1/2(ρp + λ2). (25)

We first prove (24). We may assume that ρ33 ≥ max{n1, n2}, where n1 = max{k :
(6 log k)9 ≥ k} and n2 = max{k : (log k)9p ≥ k}. Otherwise, we have x2 ≤
8 log

(
2 + max{n1, n2}

)
, where max{n1, n2} is a constant depending only on

p. The result follows immediately from Wang, Jing and Zhao (2000). Taking
account of n ≥ 2 + ρ33 and ρ33 ≥ max{n1, n2}, it is easy to see that n ≥ 2 + n0,
where n0 = max{k : 6 log k ≥ (

√
k/ρ3)2/3} as defined in Lemmas 2.4 and 2.5,

and for x2 ≤ 8 log n,

n−2/3(λ2 + ρ
4/3
3 ) ≤ (1 + x)−pn−2/3ρ1/33 (λ2 + ρ3)(1 + 3 log1/2 n)p

≤ (1 + x)−pn−1/2(λ2 + ρ3)(1 + 3 log1/2 n)pn−1/18

≤ A(p)(1 + x)−pn−1/2(λ2 + ρ3).

Hence, by using (18) in Lemma 2.3 with y = x and T =
√
n/(4ρ3), and then

Lemmas 2.4−2.5, we have for 1 ≤ x2 ≤ 8 log n and n ≥ 2 + ρ33

P (Sn + Λn,n ≤ x) ≤ 1
2
(|I+|+ |J+ + 1|)

≤ Φ(x) + |Ln(x)|+ |L1n(x)|++A(p)(1 + x)−pn−1/2(ρ3 + λ2).

Recalling ρ3 ≥ 1 and ρp ≥ ρ3, it is obvious that |L1n(x)| ≤ n−1/2λ1/22 |Φ(3)(x)| ≤
A(p)(1 + x)−pn−1/2(ρ3 + λ2). So, to prove (24), it remains to show

|Ln(x)| ≤ A(p)(1 + x)−pn−1/2ρp. (26)

Let α∗
1 = α1I{|α1| ≤ √

n(1 + x)/8} and L∗
jn(x) = EΦ

(
x − α∗

1√
n

)
− Φ(x) −

Eα∗
1√

n
Φ(1)(x)− Eα∗2

1
2n Φ(2)(x). By using a Taylor expansion of Φ(x), we have

|L∗
jn(x)| ≤

1
6n3/2

E|α∗
1|3Φ(3)

(
x+ θ

|α∗
1|√
n

)
(where |θ| ≤ 1)

≤ A(x2 + 1)e−x2/2

n3/2
E|α∗

1|3 exp
(
x|α∗

1|/
√
n
)

≤ An−3/2ρ3(x2 + 1)e−x2/4
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Hence, it follows that

|Ln(x)| ≤
∣∣∣Ln(x)−

n∑
j=1

L∗
jn(x)

∣∣∣+
n∑

j=1

|L∗
jn(x)|

≤ n
∣∣∣EΦ(

x− α∗
1√
n

)
− EΦ

(
x− α1√

n

)∣∣∣+An−1/2ρ3(x2 + 1)e−x2/4

≤ 2nP (|α1| ≥
√
n(1 + x)/8) +An−1/2ρ3(x2 + 1)e−x2/4

≤ A(p)(1 + x)−pn−1/2ρp.

This proves (26) and hence (24).
Now we prove (25). Similar to the proof of (24), by using (19) in Lemma

2.3 with y = x and T =
√
n/(4ρ3), and then Lemmas 4-5, we have for 1 ≤ x2 ≤

8 log n and n ≥ 2 + ρ33

P (Sn + Λn,n ≥ x) ≤ 1
2
(|I−|+ |J− − 1|)

≤ 1−Φ(x)+|Ln(x)|+|L1n(x)|++A(p)(1+x)−pn−1/2(ρ3+λ2)

≤ 1− Φ(x) + +A(p)(1 + x)−pn−1/2(ρp + λ2).

This proves (25). The proof of Theorem 1.2 is now complete.

Proof of Theorem 1.3. As in Serfling (1980, p.265), we have

T (Fn)− T (F ) = −
∫
[ψ(Fn(x)) − ψ(F (x))]dx, (27)

where ψ(t) =
∫ t
0 J(u)du. The Lipschitz condition on J implies that

∣∣∣ψ(Fn(x))− ψ(F (x)) − (Fn(x)− F (x))J(F (x))
∣∣∣ ≤ K(Fn(x)− F (x))2. (28)

Write ηj(t) = I{Xj ≤ t} − F (t). It follows from (27) and (28) that

n−1/2
n∑

j=1

α(Xj)− n−3/2∑
i�=j

β(Xi,Xj)− Vn

≤ √
n(T (Fn)− T (F ))/σ

≤ n−1/2
n∑

j=1

α(Xj) + n−3/2∑
i�=j

β(Xi,Xj) + Vn, (29)

where α(Xj) = −σ−1 ∫
J(F (t))ηj(t)dt, β(Xi,Xj) = Kσ−1 ∫

ηi(t)ηj(t)dt, Vn =
n−3/2∑n

j=1 Z(Xj) with Z(Xj) = Kσ−1 ∫
η2j (t)dt. It can be easily shown that
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Eα(X1) = 0, Eα2(X1) = 1 and E(β(Xi,Xj)
∣∣∣Xi) = 0, i �= j. For the rest of this

section, we prove that

E|α(X1)|p + E|β(X1,X2)|p +E|Z(X1)|p ≤ A(J,K)σ−pE|X1|p, (30)

P (|Vn|>(1+|x|)n−1/2(1+E|Z(X1)|))≤A(J,K, p)(1+|x|)−pn−1/2σ−pE|X1|p.
(31)

Theorem 1.3 will then follow from Theorem 1.2.
In fact, similar to the proof of Lemma A in Serfling (1980, p.288), we can

show that

|α(Xj)|+ |β(Xi,Xj)|+ Z(Xj) ≤ A(J,K)σ−1(|Xj |+ E|X1|), (32)

Noting Eα2(X1) = 1, (30) follows easily from (32). For (31), we have that,

P (|Vn|≥(1 + |x|)n−1/2(1+E|Z(X1)|))≤P
(∣∣∣

n∑
j=1

(Z(Xj)−EZ(Xj))
∣∣∣≥n(1+|x|)

)

≤ A(J,K, p)(1 + |x|)−pn−1/2σ−pE|X1|p.

The proof of Theorem 1.3 is now complete.
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generalized L-statistics. Scand. J. Statist. 17, 65-77.

Helmers, R. and van Zwet, W. R. (1982). The Berry-Esséen bound for U -statistics. In Statistical
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