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Abstract: This paper develops a class of continuous-time closed capture-recapture

models which incorporate the use of covariates such as environmental variables or

an individual’s characteristics. The capture intensity is allowed to vary with time,

behavioural response and heterogeneity. The heterogeneity effect is modeled as a

function of observable covariates but no assumptions regarding the time-varying

function are made. The proposed hierarchy of models can be regarded as the con-

tinuous version of discrete-time models used in ecological applications. A unified

likelihood-based approach is proposed to assess the effect of each possibly time-

dependent covariate and to obtain population size estimators. Our model general-

izes Yip, Huggins and Lin (1996) to incorporate an animal’s behavioural response

and to make use of all capture frequency data. The approach also extends Lin

and Yip (1999) to a more general semi-parametric approach. Simulation results

are presented to show the performance of the proposed estimation procedures. The

estimators are applied to a set of capture data for house mouse (Mus musculus)

discussed in the literature.

Key words and phrases: Conditional likelihood, Horvitz-Thompson estimator, population size,

recurrent event.

1. Introduction

For a closed animal population, we assume there is no birth, death or migra-
tion so that the population size is a constant over the time period of a trapping
experiment. There are two types of capture-recapture models: discrete-time and
continuous-time models. In a typical discrete-time model, the target population
is sampled several times (or over a certain number of occasions). For each trap-
ping sample or occasion, traps are placed in the study area during the sampling
time. After each sampling, one checks the traps and records “first-capture” or
“recapture” for each capture. A unique tag or mark is attached to a first-capture,
whereas for a recapture its tag number is recorded. The complete capture history
for each animal is conveniently expressed as a sequence of 0’s and 1’s, where 0
denotes absence and 1 denotes presence. For example, in a five-sample capture-
recapture experiment, each animal can be counted at most five times; a history
(0 1 0 0 1) means that the animal was caught in the second and fifth sample,
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but not in the others. The maximum count for each animal is the number of
samples.

For a continuous-time model, in addition to the tagging process we also
record the exact capture times for each animal. Any capture is regarded as a
“trapping occasion” and the exact time for each occasion is recorded. Therefore,
for each animal captured in the experiment, the complete capture history consists
of a series of capture times. As an example, an individual’s capture history (1,
4, 6.5, 8, 9) means that the animal was caught in time unit of 1, 4, 6.5, 8 and 9.
There is no limit on the capture frequency for each animal.

As indicated byWilson and Anderson (1995), applications of continuous-time
models include studies of sperm whales, grizzly bears, insects and butterflies. The
model has also found application in software reliability theory; see Nayak (1988).
In the latter cases involving a debugging process, each bug is regarded as an
individual and the detection times for each bug can be considered as “capture
times”.

Discrete-time capture-recapture models have been discussed extensively in
biological and ecological literature. Pollock proposed a class of models where
time, behavioural response or heterogeneity may affect the capture probabili-
ties; see Otis, Burnham, White and Anderson (1978), Pollock (1991), Schwarz
and Seber (1999) and references therein. These models are referred to as mod-
els Mt, Mb, Mh, Mtb, Mth, Mbh and Mtbh where the subscript “t”, “b” and
“h” denote “time-varying”, “behavioural-response” and “heterogeneity”, respec-
tively. In this paper, we propose an analogous class of continuous-time models
Mt, Mb, Mh, Mtb, Mth, Mbh and Mtbh. There is relatively little literature
on continuous-type models. Papers by Becker (1984), Becker and Heyde (1990),
Chao and Lee (1993), Yip and Chao (1996), Yip, Huggins and Lin (1996) and
Lin and Yip (1999) are exceptions.

In addition to capture records, some environmental variables (temperature,
humidity and rainfall) as well as an individual’s characteristics (age, sex, body
weight and wing length) are usually also recorded in an experiment. Pollock,
Hines and Nichols (1984) were the first to propose a full likelihood approach
using covariates in a discrete-time model. One difficulty with the full likelihood
approach is that the covariates for uncaptured animals are not observable. Thus
the unconditional method may not be theoretically applicable unless some as-
sumptions regarding covariates are made. Huggins (1989, 1991) circumvented
the foregoing difficulty by using a conditional likelihood so that the covariates of
the uncaptured animals can be avoided in the analysis, but Huggins only treated
discrete-time models.

For the continuous-time model Mth, which assumes that capture intensity
varies with time and with an individual’s covariates, Yip et al. (1996) developed a
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partial likelihood approach to assess the effects of covariates, but their approach
ignores the information of first captures. Lin and Yip (1999) applied a likelihood
score function and a martingale method to a general class of regression models
in which a parametric assumption for the time-varying function is made.

This paper deals with continuous-time models and assumes the intensity
function varies with time, behavioural response and individual. The heterogene-
ity effect is modeled as a function of the individual’s covariates but no assump-
tions regarding the time-varying function are made. Our model generalizes Yip et
al. (1996) to incorporate an animal’s behavioural response and to make use of all
capture records; this paper also extends Lin and Yip (1999) to a semi-parametric
approach.

Section 2 presents our models and estimation procedures. We focus on the
most general modelMtbh and only outline the results for its submodels. A unified
conditional likelihood approach is developed to assess the effect of each covariate
and to obtain population size estimators. The resulting estimating equations can
also be justified from the full likelihood. A simulation study is reported in Section
3 to examine the performance of the proposed estimation procedure. Section 4
presents an illustrative example of the house mouse (mus musculus) provided in
the software CAPTURE (Rexstad and Burnham (1991)).

2. Models and Estimators

Assume there are ν individuals, indexed by 1, . . . , ν. Also assume that the
experiment period is relatively short so that the population size remains fixed
in the study period. Suppose that the experiment terminates at the time τ

and Ni(t) denotes the number of times the ith animal has been caught in [0, t].
Each {Ni(t); 0 ≤ t ≤ τ} is a continuous-time counting process with intensity
λi(t). The intensity for the ith animal, λi(t) is λi(t)dt = P{dNi(t) = 1|Ft−},
where Ft is the capture history generated by {N1(u), . . . , Nν(u); 0 ≤ u ≤ t}.
Let the associated covariates for the ith individual be Zi = (Zi1, . . . , Zip)′. In
the following, we only present the estimation procedure for time-independent
covariates because an experiment’s duration is usually short for a closed model
as a matter of practice. (The extension to the case with deterministic time-
dependent covariates is parallel.) Let λ0(t) be any arbitrary non-negative time-
varying function defined in [0, τ ]. The covariates are used to model individual
heterogeneity. Let β = (β1, . . . , βp)′ be a vector of unknown parameters. We use
λ0(t), exp(β′Zi) and φ to model, respectively the time, heterogeneity and the
behavioural response effects. Thus a multiplicative type of model Mtbh is

λi(t) =

{
λ0(t) exp(β′Zi) until first capture,
φλ0(t) exp(β′Zi) for any recapture.
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The proposed hierarchy of continuous-time models is summarized in Table 1.

Table 1. A Hierarchy of Continuous-Time Models.

Model Assumption Restriction in model Mtbh

Mtbh λi(t) =
{
λ0(t) exp(β′Zi) until first capture,
φλ0(t) exp(β′Zi) for any recapture.

Mbh λi(t) =
{
λ exp(β′Zi) until first capture,
φλ exp(β′Zi) for any recapture.

i.e., set λ0(t) ≡ λ
in model Mtbh

Mth λi(t) = λ0(t) exp(β′Zi) i.e., set φ = 1 in model Mtbh

Mtb λi(t) =
{
λ0(t) until first capture,
φλ0(t) for any recapture.

i.e., β = 0 in model Mtbh

Mh λi(t) = λ exp(β′Zi)
i.e., set λ0(t) ≡ λ, φ = 1
in model Mtbh

Mb λi(t) =
{
λ until first capture,
φλ for any recapture.

i.e., set β = 0, λ0(t) ≡ λ
in model Mtbh

Mt λi(t) = λ0(t)
i.e., set β = 0, φ = 1
in model Mtbh

Lin and Yip (1999) discussed a similar type of regression model, but they
adopted a parametric approach by assuming that the time-varying function is
characterized by only one parameter. Their model Mtbh is thus equivalent to
our model Mbh.

Let φ = exp(α) and Xi(t) = I [the ith animal has been captured in (0, t)] de-
notes the prior capture history, where I[·] is the usual indicator function. For the
most general model Mtbh, the intensity of the ith individual can be rewritten as

λi(t) = λ0(t) exp(β′Zi + αXi(t)). (2.1)

This is the Cox (1972) regression model for recurrent event analysis, where
“event” means “capture” and λ0(t) denotes the baseline intensity function; see
Andersen and Gill (1982) and Andersen, Borgan, Gill and Keiding (1993). In
our approach, no assumptions regarding the form of this function are necessary.
The Andersen-Gill family of models has been extensively discussed in the con-
text of survival analysis, reliability theory and recurrent event analysis. However,
the inference procedure under the Andersen-Gill model cannot be directly ap-
plied to our models because (1) the number of subjects is known in the Cox and
Andersen-Gill models, while in our model the population size is the main param-
eter of interest, and (2) all the covariates are observable in the Cox model, but
in our model the covariates for the uncaptured animals are missing. Therefore,
the statistical methods used in the recurrent event analysis need to be modified
to handle our models.
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2.1. Model Mtbh

Let Nt =
∑ν

i=1 Ni(t) be the total number of captures by time t, and Mt

be the total number of animals that are marked (i.e., first-captures) by time
t. Hence Mτ represents the number of distinct animals captured in the whole
experiment period. Let Kt = Nt − Mt denote the number of re-captures by
time t. Without loss of generality, label the captured individuals as 1, . . . ,Mτ .
Let the ith individual be captured mi = Ni(τ) times and the capture times be
ti1, . . . , timi . Thus

∑Mτ
i=1 mi = Nτ is the total number of captures.

For notational simplicity, let γi= exp(β′Zi) and denote the baseline cumula-
tive intensity function by Λt =

∫ t
0 λ0(u)du, t ∈ [0, τ ]. If mi > 0, the likelihood

function can be obtained by using a similar argument as in Crowder, Kimber,
Smith and Sweeting (1991, p.165) as follows. Given a small increment ∆tij at
each point tij, j = 1, . . . ,mi, we consider the following independent consecutive
events and their associated probabilities: no capture in (0, ti1) with probability
exp[−∫ ti1

0 γiλ0(u)du], one capture in (ti1, ti1+∆ti1) with probability γiλ0(ti1)∆ti1,
no capture in (ti1 + ∆ti1, ti2) with probability exp[−φ

∫ ti2
ti1+∆ti1

γiλ0(u)du], one
capture in (ti2, ti2 + ∆ti2) with probability φγiλ0(ti2)∆ti2, . . . , and so on, up to
no capture in (timi+∆timi , τ) with probability exp[−φ

∫ τ
timi

+∆timi
γiλ0(u)du]. Let

all the increments tend to 0, and a standard approach implies that the likelihood
under model Mtbh for the ith captured animal is

Li ∝ exp(−γiΛti1)γiλ0(ti1)

×

 mi∏

j=2

φλ0(tij)γi exp[−φγi(Λtij − Λti,j−1)]


 · exp[−φγi(Λτ − Λti,mi

)]

= φmi−1γmi
i


 mi∏

j=1

λ0(tij)


 exp[−φγiΛτ + (φ− 1)γiΛti1 ]. (2.2)

Let δi = I [the ith individual is captured at least once in the experiment] and
take

Pi ≡ Pi(β,Λτ ) ≡ P (δi = 1) = 1− exp(−γiΛτ ). (2.3)

Therefore, the conditional likelihood that only considers the captured animals
(i.e., mi > 0) becomes

Lc=
Mτ∏
i=1

Li

Pi
=


Mτ∏

i=1

mi∏
j=1

λ0(tij)


Mτ∏

i=1

γmi
i φmi−1 exp[−φγiΛτ + (φ− 1)γiΛti1 ]

1− exp(−γiΛτ )
. (2.4)

For the moment, if we assume that the function λ0(t) is known in the above
likelihood, the resulting estimating equations are:

∂ logLc

∂φ
=

Mτ∑
i=1

[φ−1(mi − 1)−γi(Λτ −Λti1)] =
Kτ

φ
−

Mτ∑
i=1

γi(Λτ −Λti1) = 0, (2.5a)
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∂ logLc

∂β
=

Mτ∑
i=1

[
mi − γiΛτ

Pi
+ (1− φ)γi(Λτ − Λti1)

]
Zi = 0. (2.5b)

These equations are given in terms of the baseline cumulative intensity functions.
For model Mbh, we have λ0(t) ≡ λ, thus Λt = λt. In this case, the estimating
equations are directly obtained from (2.5) by use of the reparametrization λ =
exp(β0) and adding a constant covariate. See Section 2.2.

For models with an arbitrary time-varying intensity function, as will be
theoretically justified later, the function Λt is estimated by a modified Nelson-
Aalen estimator (Nelson (1972); Aalen (1978)). Here we first give an intuitive
interpretation of the modified Nelson-Aalen estimator. Define M∗

t as the col-
lection of all marked animals just before time t. Note that given the capture
history before time t, there are ν − Mt unmarked animals with total intensi-
ties [

∑ν
i=1 γk − ∑

i∈M∗
t
γi]λ0(t), and Mt marked animals with total intensities

[
∑

i∈M∗
t
φγi]λ0(t). Then E(dNt|Ft−) = [

∑ν
i=1 γi + (φ − 1)

∑
i∈M∗

t
γi]λ0(t). From

this, the Nelson-Aalen estimator Λ̂ of Λ is a step function with jumps occurring
at capture times, i.e.,

dΛ̂t =


 ν∑

i=1

γi + (φ− 1)
∑

i∈M∗
t

γi



−1

dNt, 0 ≤ t ≤ τ. (2.6a)

However, in the above estimator, the population size ν and the covariate infor-
mation for the uncaptured animals are not available, thus we replace

∑ν
i=1 γi

by the Horvitz-Thompson (1952) estimator
∑ν

i=1 γiI[δi = 1]/Pi =
∑Mτ

i=1 γi/Pi,
where Pi is defined in (2.3). The modified estimator of the baseline cumulative
intensity function is

dΛ̂t =


Mτ∑

i=1

(γi/Pi) + (φ− 1)
∑

i∈M∗
t

γi



−1

dNt, 0 ≤ t ≤ τ. (2.6b)

Combining (2.5), (2.6b) and the identities

Mτ∑
i=1

γi(Λτ − Λti1) =
∫ τ

0

( ∑
i∈M∗

t

γi

)
dΛt, (2.7a)

Mτ∑
i=1

γi(Λτ − Λti1)Zi =
∫ τ

0

( ∑
i∈M∗

t

γiZi

)
dΛt, (2.7b)

we obtain Equations (2.8a) and (2.8b), in which only one additional parameter
Λτ , the baseline cumulative intensity function for the whole experiment period,
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is involved. Hence we write the resulting system of equations as follows:

Kτ

φ
−

∫ τ

0

∑
i∈M∗

t
γi

[
∑Mτ

i=1(γi/Pi) + (φ− 1)
∑

i∈M∗
t
γi]

dNt = 0, (2.8a)

Mτ∑
i=1

(mi− γiΛτ

Pi
)Zi+(1−φ)

∫ τ

0

∑
i∈M∗

t
γiZi

[
∑Mτ

i=1(γi/Pi) + (φ− 1)
∑

i∈M∗
t
γi]

dNt = 0, (2.8b)

Λτ =
∫ τ

0

1
[
∑Mτ

i=1(γi/Pi) + (φ− 1)
∑

i∈M∗
t
γi]

dNt. (2.8c)

Further, notice that if the covariate in (2.8b) is a scalar, then (2.8b) is equivalent
to (2.8c). Thus in this case we can combine (2.8b) and (2.8c) into one by including
an additional constant covariate. Defining Z+

i = (1, Zi1, . . . , Zip)′, the combined
equations become

Mτ∑
i=1

(mi−γiΛτ

Pi
)Z+

i +(1−φ)
∫ τ

0

∑
i∈M∗

t
γiZ

+
i

[
∑Mτ

i=1(γi/Pi) + (φ− 1)
∑

i∈M∗
t
γi]

dNt = 0. (2.8d)

Here Z+
i is a column vector of dimension p+1, so (2.8d) contains p+1 equations.

Therefore, the above system of equations consists of p+2 equations and there are
p+ 2 unknowns: (β, φ,Λτ ) = (β1, . . . , βp, φ,Λτ ). Numerical iteration is required
to obtain the solution. An algorithm is the following. Given an initial value of
(β, φ), determine the value of Λτ by (2.8c); for this fixed value of Λτ , obtain
a second value of (β, φ) from (2.8a) and (2.8b); iterate to converge. Let the
solution be denoted as (β̂, φ̂, Λ̂τ ) = (β̂1, . . . , β̂p, φ̂, Λ̂τ ), then we subsequently
get γ̂i = exp(β̂′Zi). The proposed Horvitz-Thompson type of population size
estimator is

ν̂ =
∑
δi=1

I(δi = 1)/[1 − exp(−γ̂iΛ̂τ )] =
Mτ∑
i=1

1/[1 − exp(−γ̂iΛ̂τ )]. (2.9)

We now give a brief justification for the Nelson-Aalen estimator from the full
likelihood. For the case of the ith animal who has never been caught, i.e., mi =
0, the likelihood becomes exp(−γiΛτ ). It then follows from (2.2) that the full
likelihood based on the capture history is

L(β, φ,Λ) ∝
[

Mτ∏
i=1

Li

]
exp(−

ν∑
i=Mτ+1

γiΛτ ). (2.10)

We can factor the likelihood as L(β, φ,Λ) = L1(β, φ)L2(β, φ,Λ), where

L1(β, φ) = φKτ

[
Mτ∏
i=1

γmi
i

] 
Mτ∏

i=1

mi∏
j=1

[
ν∑

k=1

γk + (φ− 1)
∑

k∈M∗
tij

γk

]

−1

,
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L2(β, φ,Λ)

=


Mτ∏

i=1

mi∏
j=1

[
ν∑

k=1

γk+(φ−1)
∑

k∈M∗
tij

γk

]
λ0(tij)


 exp


−∫ τ

0

[
ν∑

k=1

γk+(φ−1)
∑

k∈M∗
u

γk

]
dΛu


 .

The baseline cumulative intensity function appears only in L2. For any given
ν and φ, L2 corresponds to a probability measure based on the observed failure
times {tij , j = 1, . . . ,mi, i = 1, . . . ,Mτ} from a “multiplicative model” with
intensity λ∗(t) = [

∑ν
k=1 γk + (φ − 1)

∑
k∈M∗

t
γk]dΛt. Following the approach of

Andersen et al. ((1993), Section IV.1.5), we use the MLE here in the broad sense
of Kiefer and Wolfowitz (1956); see also Scholz (1980) for a unified approach. The
approach is based on the pairwise comparison of probability measures. The non-
parametric MLE of Λ in this sense turns out to be the Nelson-Aalen estimator; see
Nelson (1972) and Aalen (1978). That is, the MLE Λ̂ of Λ has jump 1/[

∑ν
k=1 γk+

(φ−1)
∑

k∈M∗
t
γk] at t = tij . This yields L2(β, φ, Λ̂) = exp(−Nτ ), which is free of

the parameters ν and φ. Thus the profile likelihood L(β, φ, Λ̂) is proportional to
L1(β, φ) and the estimation of β and φ is simply based on L1(β, φ). Then it can
be seen that the resulting derivatives are identical to those given in (2.8) when the
unknown quantities

∑ν
i=1 γi and

∑ν
i=1 γiZi in the derivatives are, respectively,

replaced by
∑Mτ

i=1 γi/Pi and
∑Mτ

i=1 γiZi/Pi.
A variance estimator and confidence interval associated with the estimator

ν̂tbh under model Mtbh can be constructed by using a nonparametric bootstrap
procedure (Efron and Tibshirani (1993)). The “bootstrap population” consists of
ν̂tbh animals with two groups. The first group consists ofMτ animals with capture
history and covariates being the same as the observed ones in the data. The other
group consists of animals that were not captured in the data, and there are ν̂tbh−
Mτ such animals. Assume that all animals in this “bootstrap population” have
the same probability of being resampled. We draw ν̂tbh animals with replacement
from this population to form a bootstrap sample. When an animal in the first
group is selected, we record its associated capture times and covariates. (It is
possible that in the bootstrap sample there are two animals with identical capture
times and covariates.) Any animal selected from the second group represents a
non-capture in the bootstrap sample and thus is excluded in the analysis. We
remark that the number of animals selected from the first group varies with
replications, but the expected value is equal to Mτ . For each bootstrap sample, a
bootstrap estimate of ν can be obtained based on the data information of animals
from the first group. After B replications, the bootstrap variance estimator of
ν̂tbh is simply the sample variance of those B bootstrap estimates. The same
replications can subsequently be used to construct a confidence interval using a
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percentile method. For all submodels that will be discussed in Section 2.2, we
are able to derive asymptotic variance formulas and thus a simple traditional
approach with a log-transformation (Chao (1989)) can be used to construct a
confidence interval for each submodel.

2.2. Submodels

(1) Model Mth

Letting φ = 1 in the system of equations (2.8d), we obtain

Mτ∑
i=1

[
mi − γiΛτ

1− exp(−γiΛτ )

]
Z+

i = 0. (2.11)

The population size estimator is then ν̂th =
∑Mτ

i=1 1/[1 − exp(1 − γ̂iΛ̂τ )] using
(2.9). The asymptotic variance of the estimator can be derived following an
approach of Huggins (1989). For notational simplicity, we use a reparametrization
of Λτ = τ exp(β0) and define β+ = (β0, . . . , βp)′ and γ+

i = exp[(β+)′Z+
i ]. The

resulting asymptotic variance formula is

V̂ar (ν̂th) ≈
Mτ∑
i=1

1− Pi(β̂
+
)

[Pi(β̂
+
)]2

+ D̂′[I(β̂
+
)]−1D̂,

where Pi(β̂
+
) = 1− exp(−γ̂+

i τ), D̂ =
∑Mτ

i=1 [1− Pi(β̂
+
)]γ̂+

i τZ+
i /[Pi(β̂

+
)]2 is the

estimated first derivative of ν(β+) =
∑Mτ

i=1[1 − exp(−γ+
i τ)]−1 with respect to

β+, and I(β+) is the negative matrix of the second derivative of the conditional
likelihood, i.e.,

I(β+) = −∂2 logLc

∂β+2 =
Mτ∑
i=1

[
γ+

i τ

Pi(β+)
− [1− Pi(β+)](τγ+

i )
2

[Pi(β+)]2

]
Z+

i Z+′
i .

When an estimated variance is obtained, we can apply a log-transformation
(Chao (1989)) to obtain a confidence interval.

(2) Model Mbh

For this special model, λ0(t) = λ and Λt = λt for any t. Reparametrizing
λ = exp(β0) and adding a constant covariate, we obtain from (2.5) that the
equations for model Mbh are

Mτ∑
i=1

[(mi − 1)− φγiλ(τ − ti1)] = 0, (2.12a)

Mτ∑
i=1

[
mi − γiλτ

1− exp(−γiλτ)
+ (1− φ)γiλ(τ − ti1)

]
Z+

i = 0. (2.12b)
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After the estimator β̂+ is obtained, the resulting population size ν̂bh has the
same form as that given in Equation (2.9). Let θ̂′ = [α̂(β̂

+
)′] and the asymptotic

variance formula for the estimator can be shown to be

V̂ar (ν̂bh) ≈
Mτ∑
i=1

1− Pi(β̂+)
[Pi(β̂+)]2

+ D̂′[I(θ̂)]−1D̂, (2.13)

where Pi(β̂
+
) is defined in model Mth, and

D̂ =


0 ∑ 1− Pi(β̂

+
)

[Pi(β̂
+
)]2

γ̂+
i τZ+′

i



′

,

I(θ) =


 φ

∑
γ+

i (τ − ti1) φ
∑

γ+
i (τ − ti1)(Z+

i )
′

φ
∑

γ+
i (τ − ti1)Z+

i

∑ (
γ+

i τ

Pi(β
+

)
− [1−Pi(β

+
)](γ+

i τ)2

[Pi(β
+

)]2

)
Z+

i (Z
+
i )

′


 ,

and all the indices are from 1 to Mτ .

Remark. It can be verified (Hwang (1997)) that the system of estimating func-
tions given in (2.12) is a likelihood score with the optimal weight. Lin and Yip
(1999) adopted a likelihood score approach, but they used another weight func-
tion. One of their equations is identical to (2.12a) but the other equation turns
out to be

Mτ∑
i=1

[
mi − γiti1 − log

1− exp(−γiλτ)
1− exp[−γiλ(τ − ti1)]

+ (1− φ)γiλ(τ − ti1)
]
Z+

i = 0,

which is slightly different from (2.12b). The two approaches will be compared
numerically in Section 4.

(3) Model Mh

We can either let Λτ = λτ in model Mth or let φ = 1 in model Mbh. Both
approaches lead to the following equations:

Mτ∑
i=1

[mi − γiλτ

1− exp(−γiλτ)
]Z+

i = 0.

The asymptotic variance can be similarly obtained as in model Mth.

(4) Model Mtb

Substituting γi = 1 (i.e., β = 0) and
∑

i∈M∗
t
γi = Mt in Equation (2.8), we

have the following equations for model Mtb:
Kτ

φ
−

∫ τ

0

Mt

Mτ/[1− exp(−Λτ )] + (φ− 1)Mt
dNt = 0,

Λτ =
∫ τ

0

1
Mτ/[1− exp(−Λτ )] + (φ− 1)Mt

dNt.
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The population size estimator for homogeneous model is reduced to ν̂tb = Mτ/[1−
exp(−Λ̂τ )].

(5) Model Mb

Setting γi = 1 (i.e., β = 0) in model Mbh, we have

Mτ∑
i=1

[
mi − λτ

1− exp(−λτ)
+ (1− φ)λ(τ − ti1)

]
= 0,

Mτ∑
i=1

[(mi − 1)− φλ(τ − ti1)] = 0.

(6) Model Mt

We can either use the equations for model Mtb by setting φ = 1 or use those
for model Mth by setting γi = 1. Then the equation for model Mt reduces to

Aτ =
Nτ

Mτ/[1 − exp(−Λτ )]
.

3. Simulation

A limited simulation study was carried out to investigate the performance
of the proposed estimators. Here we focus on the heterogeneous models Mth

and Mtbh. The true population size ν was fixed to be 400. The heterogeneity
effect was modeled by two covariates: Z1 and Z2, where Z1 corresponds to a
discrete covariate (e.g., sex) and Z2 corresponds to a continuous covariate (e.g.,
weight). The intensity function for the most general model Mtbh was assumed to
be λi(t) = λ0(t) exp(β1Zi1 +β2Zi2+αXi(t)), where Zi1 = 0 for i = 1 to 200, and
Zi1 = 1 for i = 201 to 400, {Zi2, i = 1, . . . , ν} is a random sample from a normal
distribution with mean 20 and variance 4, and Xi(t) denotes the prior capture
history (yes or no). The true parameters are (β1, β2) = (1,−0.02). A positive
β1 implies that the sex taking value 1 is more catchable, whereas a negative β2

means that the catchability decreases with weight. We considered the following
six combinations of two time-varying functions of λ0(t) and three values of φ.
The two types of time-varying functions of λ0(t) are λ0(t) = 1/(t + 0.5) and
λ0(t) = 1 + sin(2πt); three values of φ are 1, 1.2 and 0.8. The reader is referred
to Hwang (1997) for more simulation results.

The results for three stopping times (τ = 1, 2, 4) are shown in Table 2. For
each combination of φ and λ0(t), capture-recapture data were generated. Then
for each generated data set, the estimates under four models Mth, Mbh, Mtb
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and Mtbh were calculated, along with their estimated s.e.’s and 95% confidence
intervals. The four estimates are designated as ν̂th, ν̂bh, ν̂tb and ν̂tbh, respectively,
in Table 2. For model Mtbh, the estimated s.e. was calculated by the bootstrap
method with 500 replications, and the confidence interval was constructed by a
percentile method. For the other estimators, the estimated s.e.’s were obtained
by their asymptotic formulas. The iterative steps for computing ν̂tbh failed to
converge for some trials. We excluded those data sets until 200 data sets had
been generated. The resulting 200 estimates and their estimated s.e.’s were
averaged to give the results of “average estimate” and “average estimated s.e.”
in Table 2. The proportion of divergence is given in the last column of the table.
Here “divergence” means that either the estimates increased without a limit or
the iterations failed to converge within 1000 steps. Divergence might be due
to insufficient capture information or improper choices of initial values. These
failure rates are generally negligible as more data become available. Based on the
resulting 200 estimates, the sample s.e. and the sample root mean squared error
(RMSE) for each estimator were calculated. The percentage of the 200 simulated
data sets in which the 95% confidence intervals covered the true value was also
recorded.

Table 2 shows the simulation results for the case of λ0(t) = 1/(t + 0.5) for
φ = 1, 1.2 and 0.8, respectively. Results for λ0(t) = 1 + sin(2πt) are generally
consistent. In the table, we also list the averages of Mτ (the number of distinct
individuals captured in the experiment) and Nτ (the total number of captures).

(a) Model Mth(φ = 1):

Since the underlying model is Mth, the estimator ν̂th derived under this
model has the smallest bias and RMSE. The coverage probabilities of the 95%
confidence interval associated with ν̂th are close to the anticipated nominal level.
The estimator ν̂bh yields severe negative bias and most confidence intervals do
not cover the true parameter. The estimator ν̂tb that does not account for het-
erogeneity is also negatively biased and the coverage probabilities are between
70% and 80%. When the capture rate is low, as in the case of τ = 1, for which
only a small fraction of individuals is captured, the estimator ν̂tbh has the largest
variation due to estimating all effects. For this case, we feel the data information
is insufficient for making a stable estimation of all effects. When data improve,
this estimator ν̂tbh works well, although its variation is unavoidably the largest.

The s.e. estimates (with the heading “average estimated s.e.” in Table 2)
for all four estimators are generally comparable to sample s.e. (with the heading
“sample s.e.”). The percentile-based confidence interval associated with ν̂tbh also
performs satisfactorily as regards coverage probability.
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(b) Model Mtbh(φ = 1.2 and 0.8)

Except for the correct estimator ν̂tbh, all other estimators that do not con-
sider all effects are biased. The estimator that ignores the behavioural response
effect (i.e., ν̂th) severely underestimates in the trap-happy cases (φ = 1.2), but
overestimates in the trap-shy cases (φ = 0.8). The two estimators ν̂bh and ν̂tb are
biased downwards in both trap-happy and trap-shy cases. The estimator ν̂bh that
does not account for time variation performs worst because it has the largest bias
and RMSE as well as the lowest coverage probabilities. When there are enough
captures to estimate all the parameters well, the estimator ν̂tbh is preferable in
terms of bias, RMSE and coverage probability.

The s.e. estimates based on a bootstrap method tend to overestimate in most
cases. A possible explanation is that there were some bootstrap samples with
few captures. Therefore, extremely large population size estimates were obtained
due to little capture information in those samples. The coverage probabilities of
the associated confidence interval are thus slightly higher than the nominal level.

In summary, when there is enough capture and recapture information to al-
low for the stable estimation of the effects of various covariates, the most general
model Mtbh that considers time dependence, behavioural response and hetero-
geneous covariates can be recommended.

4. Numerical Example

The house mouse data considered in this section were originally collected
by Coulombe in his 1965 master’s thesis, University of California, Los Angeles,
and given as an illustrative example in the program CAPTURE (Rexstad and
Burnham (1991)). Otis et al. (1978, pp.62-64) and Huggins (1989) provided some
discussions about this data set. Totally 173 mice were caught and associated with
two covariates: age (juvenile, semi-adult or adult) and sex (male or female). We
excluded two records in the analysis because the covariates for the two mice were
missing. These 171 distinct mice were caught out of 581 captures in 10 trapping
occasions. Since there were only 8 juveniles, we combined the groups of juveniles
and semi-adults into a “non-adult” class. The data consist of 77 non-adults (45
males, 32 females) and 94 adults (41 males, and 53 females). On average, the
capture frequencies for males and females were 3.08 and 3.72, respectively; the
capture frequencies for adults and non-adults were 3.81 and 2.90, respectively.
Since there were ten trapping occasions, it would be interesting to compare the
results under discrete-time and continuous-time models with time units 1, . . . , 10.

We first discuss the approaches that do not consider the covariates. Otis et
al. (1978) adopted discrete-time models and indicated that the most likely model
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is model Mth and the next most likely model is model Mtbh, using a model
selection procedure. At that time, no estimators had yet been available for these
two models and they concluded that the whole population was caught based on
a detailed investigation of the data. The discrete-time sample coverage method
for model Mth (Chao et al. (1992)) yields a population size estimate of 174 with
an estimated s.e. 1.0; a similar continuous-time approach (Chao and Lee (1993))
gives an estimate of 172 with an estimated s.e. 3.3. All these procedures without
using covariates imply that almost no or only few individuals were missed in the
experiment.

If the heterogeneity can be modeled via observable covariates of the individ-
uals in a continuous-time framework, then model Mtbh can be implemented with
an intensity function λi(t) = λ0(t) exp(β1Zi1 + β2Zi2 + αXi(t)), where Zi1 = I

[the ith individual is a male], Zi2 = I [the ith individual is an adult], and
Xi(t) = I [the ith individual has been captured in (0, t)]. We remark that for
this data set five samples were conducted in the mornings and the others in the
evenings. This covariate was not included in our analysis because it can be ex-
plained in the time-varying effect in model Mtbh. The parameter estimates are
β̂1 = −0.155 (s.e. 0.08), β̂2 = 0.329 (s.e. 0.08) and α̂ = 0.687 (s.e. 0.253 ). Hence
it implies that females are more catchable and adults have higher intensity than
do non-adults, which is consistent with the data. The resulting population size
estimate is ν̂tbh = 206 (s.e. 14.8 based on 500 bootstrap replications). The vari-
ation is inevitably larger because of estimating more parameters. For this data
set, a large portion of individuals was caught and thus the results for the most
general model Mtbh merit consideration.

For this data set, Otis et al. (1978) selected model Mth as the most parsi-
monious model. Dropping the behavioural response effect and fitting model Mth

with age and sex gives an estimate of ν̂th = 179 with an estimated s.e. of 3.3.
Model Mh shows the same result as that for model Mth.

Huggins (1989) considered a linear logistic relationship to the covariates and
obtained an estimate of 177 (s.e. 3.6). Applying the likelihood score method
proposed in Lin and Yip (1999) to this data for model Mbh, we have β̂1 =
−0.170 (s.e. 0.075), β̂2 = 0.272 (s.e. 0.073) and α̂ = −0.067 (s.e. 0.09), which
subsequently gives a population size estimate of 176 (s.e. 5.0). Using our approach
for fitting a model Mbh, we have β̂1 = −0.175 (s.e. 0.091), β̂2 = 0.293 (s.e. 0.094)
and α̂ = −0.022 (s.e. 0.113). The resulting estimate is ν̂bh = 179 (s.e. 3.9).
Therefore, the results for continuous-time models Mh, Mth and Mbh are very
close to the previous estimates given in Huggins (1989) and Lin and Yip (1999).
All these results incorporating the observable heterogeneous covariates conclude
that there were some mice uncaptured in the experiment.
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Table 2. Comparison of Various Estimators for Models Mth and Mtbh, 200
Trials, ν = 400, λ0(t) = 1/(t+ 0.5).

Stopping
Time(τ) Estimator

Average
Estimate

Sample
s.e.

Average
Estimated

s.e.

Sample
RMSE

95% C. I.
Coverage

(%)

Divergence
Rate
(%)

Model Mth(φ = 1)

ν̂th 405 24.3 26.1 24.7 97.5
τ = 1 ν̂bh 318 15.2 13.0 83.6 5.0

Mτ = 277 ν̂th 375 54.0 51.6 59.4 86.0
Nτ = 550 ν̂tbh 418 60.6 68.4 63.2 98.5 3.4

ν̂th 400 9.2 15.8 15.5 95.0
τ = 2 ν̂bh 336 9.2 5.7 64.7 0

Mτ = 321 ν̂tb 375 23.4 21.8 34.0 80.0
Nτ = 802 ν̂tbh 403 26.4 28.4 26.5 97.5 1.0

ν̂th 399 10.3 10.5 10.3 95.5
τ = 4 ν̂bh 354 6.1 2.4 46.4 0

Mτ = 350 ν̂tb 381 12.5 11.8 22.7 71.5
Nτ = 1093 ν̂tbh 400 14.8 15.6 14.8 95.0

Model Mtbh(φ = 1.2)

ν̂th 375 21.2 20.4 32.6 75.0
τ = 1 ν̂bh 318 16.1 12.9 83.2 4.5

Mτ = 278 ν̂tb 371 43.4 45.5 52.3 87.5
Nτ = 601 ν̂tbh 410 51.3 58.4 52.2 96.0 0.5

ν̂th 380 13.0 12.5 23.8 70.0
τ = 2 ν̂bh 337 9.1 5.9 63.7 0

Mτ = 321 ν̂tb 377 22.2 21.8 32.2 82.0
Nτ = 898 ν̂tbh 404 25.8 27.0 26.0 97.0 0.5

ν̂th 387 8.9 8.4 15.3 79.0
τ = 4 ν̂bh 355 6.4 2.5 45.0 0

Mτ = 350 ν̂tb 383 12.4 11.8 21.0 76.5
Nτ = 1243 ν̂tbh 402 14.0 14.9 14.1 96.0

Model Mtbh(φ = 0.8)

ν̂th 452 35.3 35.5 62.8 59.0
τ = 1 ν̂bh 319 17.1 13.6 82.4 6.0

Mτ = 278 ν̂tb 391 67.4 69.3 80.1 92.5
Nτ = 497 ν̂tbh 428 79.8 79.0 73.0 98.5 13.4

ν̂th 434 22.6 21.7 41.0 52.5
τ = 2 ν̂bh 336 9.4 5.7 64.3 0

Mτ = 321 ν̂tb 377 26.6 23.1 35.3 83.5
Nτ = 710 ν̂tbh 405 30.3 30.9 30.6 98.0 2.9

ν̂th 425 14.3 14.5 28.7 45.5
τ = 4 ν̂bh 355 6.8 2.4 45.6 0

Mτ = 351 ν̂tb 382 13.0 12.1 22.2 76.0
Nτ = 949 ν̂tbh 402 15.8 17.2 15.9 94.5 0.5
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