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Abstract: Dimension reduction is helpful and often necessary in exploring nonlinear

or nonparametric regression structures with a large number of predictors. We

consider using the canonical variables from the design space whose correlations
with a spline basis in the response space are significant. The method can be viewed

as a variant of sliced inverse regression (SIR) with simple slicing replaced by B-

spline basis functions. The asymptotic distribution theory we develop extends to
weakly dependent stationary sequences and enables us to consider asymptotic tests

that are useful in determining the number of significant dimensions for modeling.

We compare several tests for dimensionality and make specific recommendations
for dimension selection based on our theoretical and empirical studies. These tests

apply to any form of SIR. The methodology and some of the practical issues are
illustrated through a tuition study of American colleges.
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1. Introduction

Consider a regression problem with a response variable y and a predictor
vector x ∈ Rp. If the relationship between x and y cannot be easily parameter-
ized, it is often suggested that we turn to the modern arena of nonparametric
regression. In recent years, advances in multivariate function estimation (see,
e.g., Stone (1994)), in neural nets (see, e.g., Ripley (1994)) and in tree-based
regression and classification methods (see, e.g., Breiman, Friedman, Olshen and
Stone (1984)) have made it possible to quantify a highly nonlinear predictive
relationship from a large number of predictors. However, the so-called curse of
dimensionality can only be avoided through a simplification in the model. In the
present paper, we consider a sub-dimensional model such that

yi ⊥ xi|(xT
i β1, . . . , x

T
i βK), (2.1)

where the response y is independent of x given a K ≤ p dimensional sub-space
spanned by {β1, . . . , βK}. Special cases of (2.1) include transformed linear re-
gression

h(yi) = xT
i β1 + ei, (2.2)
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or nonparametric additive model

yi =
K∑

j=1

gj(xT
i βj) + ei, (2.3)

where h is a monotone function, gj are univariate functions, and the ei represent
random noise independent of xi. If a suitable sub-space is found with a small
K, then we would be working with a lower dimensional model favored by both
interpretability and statistical efficiency.

Note that the model specification (2.1) does not uniquely determine the
vectors β1, . . . , βK . Cook’s notion of minimal and central dimension reduction
subspaces is designed to address this issue. We refer to Cook (1998) for details.
In this paper, we assume that the central dimension reduction subspace exists so
K is the smallest possible integer for (2.1) to hold.

A rather innovative tool, sliced inverse regression (SIR), for this dimension
reduction problem has been developed by Li (1991) and Duan and Li (1991).
Let Σ = Cov (x) and ∆ = Cov [E(x|y)]. The work of SIR is based on a simple
idea that under appropriate conditions Σ−1/2 times the eigenvectors of the ma-
trix Σ−1/2∆Σ−1/2 with nonzero eigenvalues fall into the space spanned by the
effective directions βi.

Several methods have been proposed in the literature to estimate ∆ or Λ =
Σ −∆ based on local averages or local covariances computed from points with
neighboring yi; see Aragon and Sarraco (1997) for a recent comparison. An
alternative point of view is taken by He and Shen (1997). They consider finding
the direction β1 for model (2.2) that has the maximal correlation with some
function of y; see also Chen and Li (1998). In this paper we follow the same
approach and consider using all significant canonical directions.

Canonical correlation is a well understood notion in multivariate statistics.
Most statistics software includes calculations of canonical variates as a standard
procedure. In the special case K = 1, it was shown by Shi and Fung (1998)
that the canonical correlation approach of He and Shen (1997) can be viewed
as an iterative limit of the graphical method of transformation of Cook and
Weisberg (1994). We hope that the use of splines and canonical correlation
makes dimension reduction easier to understand and to fit into the nonparametric
regression framework.

The second part of the paper is to consider tests on the dimensionality K

that are asymptotically valid for rather general predictor variables. We compare
three tests that are motivated from different aspects of the ∆ matrix. These
tests apply to any form of SIR with the canonical correlation based method
(CANCOR) as a leading example.
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Most asymptotic studies in the literature on dimension reduction or nonpara-
metric function estimation have assumed independent and identically distributed
observations. In this paper, we relax the independence assumption and replace
it by the β-mixing condition. This allows some common form of dependence in
the data and makes the methodology applicable to some time series data as well.

The rest of the paper is organized as follows. We present the method of di-
mension reduction by canonical correlation in Section 2 and establish the asymp-
totic distributions of the estimated correlation in Section 3. The relationship
between CANCOR and SIR is also made more explicit in these two sections.
We consider the problem of determining the number of effective dimensions in
Section 4 with several alternative tests discussed and compared. We find that
the usual chi-square test on canonical correlations works well except for skewed
or heavy-tailed predictors. In such highly non-Gaussian cases, a matrix rank test
is preferable. In Section 5, our proposed method is applied to a dataset collected
by U.S. News and World Report in an effort to model the out-of-state tuition of
U.S. colleges using twenty available variables. We make some concluding remarks
about CANCOR in Section 6 and provide technical proofs in Section 7.

2. Dimension Reduction by CANCOR

Suppose that W n = {(x1, y1), . . . , (xn, yn)} is a sample of size n, where yi is
real-valued and xi ∈ Rp. We assume that the response variable y is supported
on a finite interval [a, b], see a discussion of this assumption in He and Shen
(1997). The basic idea is to build a B-spline basis for the y variable and find
their correlations with other variables x. Following Schumaker (1981, p.224) and
He and Shi (1994), we consider a partition a = t0 < t1 < · · · < tH < tH+1 = b

and let π(y) ∈ RH+m be the set of normalized B-spline basis functions of order
m associated with this partition. H will be referred to as the number of internal
knots. The common choices of m are 2 for linear splines, 3 for quadratic splines
and 4 for cubic splines. In this paper, we use ti as uniform partitions of [a, b] or
as the (i/H)th quantile of the observed y values so they are uniform in percentile
ranks. The latter is used in all our empirical investigations reported in Sections 4
and 5. The minimum size of partition H should be chosen such that H+m ≥ K,
where K is the number of effective dimensions being sought. Here, we do not
need the exact value K, but a reasonable upper bound will help. Note that our
asymptotic analysis allows H = Hn to grow with n.

Let Π = (π(y1), . . . , π(yn))T and X = (x1, . . . , xn)T . We now consider the
canonical correlation between the H + m columns of Π and the p columns of
X. Let rn,l be the l-th canonical correlation coefficient (in decreasing order) and
zl = xT β̂l the corresponding canonical variate for X (l = 1, . . . ,min{H +m, p}).
The canonical directions β̂l (l = 1, . . . , K̂) are then taken to be the effective
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directions for dimension reduction. We take K̂ to be the largest integer such
that rn,K̂ is significantly different from zero. In Sections 3 and 4, we discuss in
more detail the issue of determining the number of effective dimensions.

We restrict ourselves to stationary observations W = {(xi, yi)}. The limiting
behavior of canonical directions β̂l can be understood through the matrix

∆ = Cov (E(x1|y1)) (2.1)

in a way similar to the sliced inverse regression (SIR). In fact, CANCOR is just a
variation of SIR. The method of SIR estimates ∆ using a step function obtained
from slicing. As we show in the proof of Theorem 1, the CANCOR method
amounts to estimating ∆ by

∆n = n−1X∗TΠ(ΠTΠ)−1ΠT X∗, (2.2)

whose eigenvalues and eigenvectors will be denoted by λ̂l and η̂l, where X∗ =
(x1 − x̄, . . . , xn − x̄)T , and x̄ = n−1 ∑n

i=1 xi. It is then easy to see that the
canonical variates for X are β̂l = (n−1X∗T X∗)−1/2η̂l. Here we have a spline-
based estimate. The idea of using splines to estimate ∆ was mentioned briefly in
the discussion of Li (1991) by Kent. The relationship between SIR and canonical
correlation was explored by Chen and Li (1998). In the next section we show
that CANCOR maintains the same asymptotic properties as SIR.

3. Asymptotic Properties of CANCOR

Let ∆ = QDQT be the spectral decomposition of ∆ where D=diag(λ1, . . . ,

λp). Here λ1 ≥ λ2 ≥ · · · ≥ λp are eigenvalues of ∆. The columns of Q, ηl

(l = 1, . . . , p), are the eigenvectors of ∆. We use K∗ to denote the number of
nonzero eigenvalues of ∆.

The number of CANCOR directions K̂ is an estimate of K∗. It was shown in
Li (1991) that if, for any given b ∈ Rp, the design variable x satisfies the linearity
condition

E(xT b|xTβ1, . . . , x
TβK) = c0 +

K∑
i=1

cix
Tβi (3.1)

for some constants ci, thenK∗≤Kand Σ−1/2 times the eigenvectors of Σ−1/2∆Σ−1/2

are contained in the space spanned by all the directions β1, . . . , βK . Furthermore
if K∗, the rank of ∆, is equal to K and Σ = I, we have βi = ηi (i = 1, . . . ,K).
These properties apply equally to any form of SIR (including CANCOR), and
we refer the readers to Li (1991) and Cook (1998) for more details. However, the
following two remarks are worth making.
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Remark 3.1. If the linearity condition (3.1) does not hold, the directions found
by CANCOR are not always characterizable by (2.1) but can still be useful in
identifying some main features of the regression model. They have their own
interpretation even when they are not estimating βi, that is, they are linear
components of x that have a significant correlation with some function of the
response. Whether these directions are useful depends on the specific purposes
of dimension reduction.

Remark 3.2. Asymptotic studies of SIR (see, e.g., Zhu and Ng (1995)) routinely
assume that Σ is known so it becomes I after standardization of xi. In fact, this
is a convenient device for consistently estimating βj . However, we emphasize
that the asymptotic distributions of the direction estimates do not remain the
same when Σ is estimated from data. This is further explained at the end of this
section. On the other hand, the method of CANCOR requires no standardiza-
tion, because the canonical variates are automatically scaled (even though the
eigenvectors η̂l are not).

We need some assumptions for the asymptotic distributional properties of λ̂l

and η̂l from CANCOR, but this section requires neither (3.1) nor standardization
of the xi.

First, we recall that, given a positive integer k and a sequence W = {(xi, yi)},
the β-mixing coefficient is bk(W ) = supj≥1E sup{|P (B|Fj)−P (B)| : B ∈ F j+k},
where Fj and F j denote respectively the σ-fields generated by {(xi, yi) : 1 ≤ i ≤
j} and {(xi, yi) : i ≥ j}. Now the assumptions are as follows.
(A1) There is a positive constant δ such that E||x1||4+δ <∞.
(A2) For some r > 2, the β-mixing coefficient bk(W ) = O(kr) as k → ∞.
(A3) Each component of ζ(v) = E(x1|y1 = v) is a function on [a, b] with bounded

derivative.
(A4) The marginal density of y1 is bounded away from 0 and infinity on [a, b].
(A5) For some δ0 > 0, n/H4

n → 0 and n1−δ0/H2
n → ∞.

Condition (A4) may appear to be a stringent requirement on the distribution
of y1, but note that we have an invariance property with a monotone transforma-
tion on the y variable so (A4) always holds if an appropriate transformation (such
as one that is close to the c.d.f of y) is used. To understand the invariance prop-
erty, note that λ1 =maxh,β corr(h(y1), xT

1 β) and β̂1 =argmaxh,βcorr(h(y1), xT
1 β)

where h is any monotone function on [a, b]; see He and Shen (1997) and Chen
and Li (1998) for more details. Since a monotone transformation on y does not
change the β-mixing coefficient, it is easy to see that, once properly re-written,
some common time series models like AR(p) can satisfy our conditions. Further
consideration of time series data is not made in this paper.
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Condition (A5) dictates that the number of knots used for the spline basis
grows with n at a rate between n1/4 and n1/2. The upper bound on Hn is nearly
necessary, but the lower bound can be relaxed for smoother functions of ζ(v) in
(A3). The number of knots here plays a similar role as the number of slices for
SIR.

Before we present the result, we need some notation. For any symmetric
matrix C, let vec(C) = (c11, . . . , cp1, c12, . . . , cp2, . . . , c1p, . . . , cpp)T be its vector
version in p2 dimensions and vech(C) = (c11, . . . , cp1, c22, . . . , cp2, c33, . . . , cpp)T

be a {p(p + 1)/2}-dimensional vector taking only the lower triangular elements
of C. The relationship between vec and vech is shown as vec(C) = Φvech(C),
where Φ is a p2 × p(p+ 1)/2 matrix with elements

[Φ]ij,kl =




1 if (i, j) = (k, l)
1 if (i, j) = (l, k)
0 otherwise,

with i = 1, . . . , p, j = 1, . . . , p, and k ≥ l = 1, . . . , p. For a singular matrix C, we
use C+ to denote its Moore-Penrose generalized inverse. Readers are referred to
Schott (1997) for more details on the matrix operations we use here.

Theorem 1. Under the conditions (A1) − (A5),
√
n(λ̂l − λl) → N(0, σ2

l ) (3.2)

for 1 ≤ l ≤ p. Furthermore, if λ1 > · · · > λK∗ > 0,
√
n(η̂l − ηl) → N(0,Σl)

for 1 ≤ l ≤ K∗, where σ2
l = V ar(ηT

l Nηl), Σl = Cov((∆ − λlI)+Nηl), and
N = (x− E(x))(x − E(x))T − (x− ζ(y))(x− ζ(y))T is a p× p random matrix.

It is important to note that asymptotic normality holds only when σl > 0.
Otherwise, λ̂l converges to 0 faster than the root-n rate. The same phenomenon
holds for SIR, even though it has not been pointed out in the existing literature.

For sliced inverse regression, and under the assumption of independence,
similar asymptotic results to those of Theorem 1 were given by Hsing and Car-
roll (1992) and Zhu and Ng (1995). However, the asymptotic variance of β̂l is
not provided in such results (including our Theorem 1), unless Σ is known. This
is because the definition of ∆n does not use standardized predictors. The es-
timated direction β̂l is the eigenvector of ∆n only when the predictors xi are
standardized by replacing xi by Σ−1/2

n xi where Σn = n−1 ∑n
i=1(xi − x̄)(xi − x̄)T .

Since
√
nvech(Σn − Σ) is asymptotically normal, it would contribute to the

variance-covariance of β̂l.
On the other hand, the number of nonzero eigenvalues for ∆ is invariant

under any such standardization of the predictor x, so it is simpler to use the
asymptotic results for λ̂l without standardization.



DIMENSION REDUCTION BASED ON CANONICAL CORRELATION 1099

4. Determining Dimensionality

One of the important questions in dimension reduction is to determine the
number of effective dimensions. Like the traditional SIR, CANCOR does not
always recover the central space in its entirety; in other words, the dimension
K may be larger than K∗ even when (3.1) holds. Other dimension reduction
methods such as SAVE of Cook and Weisberg (see discussion of Li (1991)) may
play a complementary role in finding directions missed by methods based on the
∆ matrix.

In this section, we aim to determine K∗, the number of nonzero eigenvalues
of the matrix ∆. This may be done through sequential tests. In particular,
we are interested in testing the null hypothesis H0,k: 0 = λk+1 < λk for some
k = 0, 1, . . . , p − 1, against the alternative λk+1 > 0, until the first time H0,k

cannot be rejected. A number of authors have considered this problem for sliced
inverse regression. Li (1991) used a chi-square approximation for normally dis-
tributed predictor x as a conservative guideline. Schott (1994) considered using
both the first and second moments of the conditional distribution of x given
y, and developed a chi-square test valid for any elliptically symmetric predictor
distribution. In a somewhat different setting, with the method of principal Hes-
sian directions (pHd), Cook (1998) constructed a test for the number of effective
dimensions whose limiting distribution is a mixture of chi-squares. In this pa-
per, we consider tests with simpler limiting distributions that are applicable to
CANCOR or any form of SIR.

The chi-square test for normal predictors used in Li (1991), when adopted
for CANCOR and called CHSQ-test here, is to reject H0,k for a given k if

−{n− (p+H +m+ 2)/2}
p∑

i=k

log(1 − λ̂2
i ) > χ2

(p−k+1)(H+m−k),α,

where χ2
ν,α is the upper α-th quantile of the chi-square distribution with ν degrees

of freedom. This form comes from Anderson (1984, p.498) but is first-order
equivalent to the chi-square test used in Li (1991). The test is asymptotically
correct if x has a symmetric distribution with finite fourth moment.

It is helpful that we have an asymptotically valid test for dimensional-
ity for more general predictor distributions including those without elliptical
symmetry. Here, a natural approach is to use the asymptotic distribution of
λ̂k+1. We reject H0,k if λ̂k+1 > zασ̂k+1/

√
n, where σ̂2

k+1 is taken to be the
sample variance of (η̂T

k+1(xi − x̄))2 − (η̂T
k+1(xi − mi))2, (i = 1, . . . , n) with

mT
i = π(yi)T (ΠTΠ)−1ΠT X . This test, which will be called an ASNM-test in

the paper, is valid when σk+1 > 0. If σk+1 = 0, the asymptotic level of the
ASNM-test will not be α. Unfortunately, this is not rare.
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A related test based on Sn = n
∑

i≥k+1 λ̂i is considered by Velilla (1998), who
considered another form of SIR using a finitely many number of observations per
slice (corresponding to Hn in the same order as n). The limiting distribution
of Sn was shown to be normal, but Velilla (1998) did not address the problem
of whether the asymptotic variance is always positive. Since we do not suggest
using a large Hn in CANCOR, we do not include this test in our comparisons.

One can also test dimensionality by considering the null hypothesis that
the rank of the matrix ∆ is k. In fact, the problem of assessing the rank of
a limit matrix has been studied by Tomǐsić and Simeon (1993) in chemometric
applications and by Biok (1986) for ANOVA models. A rather general approach
taken by Gill and Lewbel (1992) and Cragg and Donald (1996) is applicable here
with some modifications to suit symmetric matrices. We proceed as follows.

Perform Gaussian elimination for k steps with rows and columns of ∆n, so
that we have

P n,k∆nP T
n,k =

(
Ω11 0
0 Ω22

)
(4.1)

for some matrix P n,k, where Ω22 is a (p − k) × (p − k) matrix. Each step of
Gaussian elimination involves a possible exchange of rows and columns (in search
of the largest absolute value among the diagonal elements whose row numbers
are no smaller than the current one), and a row and then column operation to
make zero all the off-diagonal elements whose row or column numbers are smaller
than the current one. Under H0,k, the matrix P n,k has a limit P k as n→ ∞, so
(4.1) holds in its limit as the k-step Gaussian elimination on ∆.

If no rows or columns need to be exchanged in the process of Gaussian
elimination, we have a simple expression for Ω22 = ∆n,22 − ∆n,21∆−1

n,11∆n,12

when ∆n is naturally partitioned.
We later show in Lemma 7.1 that

√
nvec(∆n −∆) → N(0,Cov (vec(N ))), (4.2)

and by arguments similar to those used in Cragg and Donald (1996) we get
√
nvec(Ω22) → N(0,V ) (4.3)

under H0,k, where V = Cov (vec(Q)) and Q is the lower (p − k) × (p − k) sub-
matrix of P kNP T

k . Thus

ξ̂ = n vec(Ω22)T V +vec(Ω22) (4.4)

converges to the chi-square distribution with ν degrees of freedom, ν being the
rank of V . We reject the hypothesis H0,k when ξ̂ is large and call this the
RANK-test.
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Although a test based on (4.4) does not require any particular form of the
predictor distribution, it is not without caveats. The problem arises when ν

equals 0. This can occur when E(xi|y) = E(xi) for at least p − k predictors.
In our implementation, both V + and ν are estimated. We estimate ν to be
the number of eigenvalues of V exceeding a constant factor cn times its largest
eigenvalue, where cn is taken to be the smaller of 1/100 and n−3/4. With this
strategy, the RANK test is asymptotically correct as long as ν is nonzero. In
case ν = 0, the test is carried out assuming at least one degree of freedom so it
is too conservative with type I error close to 0.

To investigate the finite-sample performance of our tests, we conducted a
Monte Carlo simulation for a number of different models with p = 5 and n = 100
or 500. We also varied the predictor distribution.

The 1-dimensional model we consider is

y = x1 + x2 + e, (4.5)

and the 2-dimensional model takes one of the two forms

y = x1(1 + x1 + x2) + e, (4.6)

y = x1/(0.5 + (x2 + 1.5)2) + 0.5e, (4.7)

where xi (i = 1, 2, 3, 4, 5) is distributed as Fi but e comes from some distribution
G. A total of seven cases are reported in Table 1.

Table 1. Specification of Cases 1-7.

Case F1 F2 F3 F4 F5 G Model K K∗ (3.1)
1 Z Z Z Z Z t5 (4.5) 1 1 Yes
2 Z B B Z L 0.05Z (4.6) 2 2 Yes
3 C -C C C C Z (4.5) 1 2 No
4 C C C C C C (4.6) 2 2 Yes
5 t3 t3 t3 t3 t3 t3 (4.5) 1 1 Yes
6 Z Z Z Z Z Z (4.7) 2 2 Yes
7 Z Z Z Z * Z (4.5) 1 1 Yes

Columns 2-6 of Table 1 specifiy the distributions of Fi and G, where Z stands
for the standard normal, B for Bernoulli, C for χ2

1−1, L for lognormal, and tv for
Student’s distribution with v degrees of freedom. All the xi and ε are independent
of one another with the exception * in the table for F5 of Case 7. In this case, x5

is taken from the distribution N(x1 + x2, 10−6). Column 8 specifies the form of
the model, and Column 10 indicates whether the linearity condition (3.1) holds.
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The central space exists in all the above cases, although the linearity condi-
tion fails in Case 3, and linear dependence among predictors is present in Case
7. To see that (3.1) fails in Case 3, let g(s) = E[x1|x1 + x2 = s] where x1 and
−x2 are independent and identically distributed as χ2

1. Then it is easy to show
by symmetry that g(s) = s+ g(−s), which cannot hold if g(s) > 0 were linear in
s ∈ R.

For each case, we draw 300 samples of size n = 100 and 300 samples of size
n = 500. For each sample, we sequentially apply the CHRQ, ASNM and RANK
tests to select the dimension. Tables 2−8 contain the frequencies with which the
three tests select various dimensions with the two sample sizes.

To understand Tables 2−8 consider, for example, Table 2 with n = 500.
When the true model is one-dimensional and the predictors are all normal, CHSQ
chooses a one-dimensional model 284 out of 300 times. The method of RANK
always picks a one-dimensional model in this case, while ASNM makes frequent
errors (64+4 times out of 300) in picking one or two extra dimensions.

Table 2. Frequencies of Selected Model Dimensions with Case 1.

Test n K = 0 K = 1 K = 2 K = 3 K = 4
CHSQ 100 0 292 8 0 0

500 0 284 15 1 0
ASNM 100 0 249 50 1 0

500 0 232 64 4 0
RANK 100 21 279 0 0 0

500 0 300 0 0 0

Table 3. Frequencies of Selected Model Dimensions with Case 2.

Test n K = 0 K = 1 K = 2 K = 3 K = 4
CHSQ 100 0 47 246 7 0

500 0 0 289 12 0
ASNM 100 78 156 54 10 2

500 0 55 212 32 1
RANK 100 104 80 93 22 1

500 0 28 254 18 0

Table 4. Frequencies of Selected Model Dimensions with Case 3.

Test n K = 0 K = 1 K = 2 K = 3 K = 4
CHSQ 100 0 1 280 18 1

500 0 0 279 21 0
ASNM 100 36 31 197 35 1

500 0 0 248 52 0
RANK 100 0 77 187 36 0

500 0 0 300 0 0
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Table 5. Frequencies of Selected Model Dimensions with Case 4.

Test n K = 0 K = 1 K = 2 K = 3 K = 4
CHSQ 100 0 2 270 27 1

500 0 0 280 20 0
ASNM 100 53 36 175 36 0

500 0 0 246 52 2
RANK 100 101 150 49 0 0

500 0 3 297 0 0

Table 6. Frequencies of Selected Model Dimensions with Case 5.

Test n K = 0 K = 1 K = 2 K = 3 K = 4
CHSQ 100 0 181 112 7 0

500 0 106 192 2 0
ASNM 100 58 190 49 3 0

500 22 254 21 3 0
RANK 100 66 233 1 0 0

500 9 290 1 0 0

Table 7. Frequencies of Selected Model Dimensions with Case 6.

Test n K = 0 K = 1 K = 2 K = 3 K = 4
CHSQ 100 0 101 191 8 0

500 0 0 291 8 1
ASNM 100 1 58 187 54 0

500 0 0 231 69 0
RANK 100 86 188 26 0 0

500 0 0 300 0 0

Table 8. Frequencies of Selected Model Dimensions with Case 7.

Test n K = 0 K = 1 K = 2 K = 3 K = 4
CHSQ 100 0 289 11 0 0

500 0 286 12 2 0
ASNM 100 0 287 13 0 0

500 0 282 18 0 0
RANK 100 0 300 0 0 0

500 0 300 0 0 0

It is worth noting that Case 3 is a one-dimensional model (K = 1) with
K∗ = 2. We find through our investigation that the first CANCOR direction is
close to (1, 1, 0, 0, 0), the direction given in model (4.5), but the tests point to
K∗ = 2 dimensions in consistency with theory.
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Our study suggests that the CHSQ test is a simple and reliable choice except
when the variables are highly skewed or heavy-tailed. In Case 5, CHSQ often
picks some extra dimensions even when the right direction has already been well
estimated by the first CANCOR direction. The RANK test is more robust but
tends to be conservative for small to modest sample sizes. The ASNM test is less
predictable. These results are rather consistent with the theoretical aspects we
discussed in this section.

There is severe collinearity in the predictors in Case 7. The tests for dimen-
sionality are hardly affected by collinearity, even though the estimated CANCOR
direction is unable to choose between (1, 1, 0, 0, 0) and (0, 0, 0, 0, 1).

Our recommendation is to use the simple CHSQ test except for the cases with
highly skewed or heavy-tailed predictors. The CHSQ test is especially nonrobust
against outliers. In cases where CHSQ tends to fail, we suggest using the RANK
test as a conservative way to choose dimensionality. We also suggest examination
of the plots of y against the next canonical variate not chosen by RANK to see
if one is missing a meaningful dimension. A more effective graphical strategy to
approximate the central space “from above” can be found in Cook (1998a) and
Chiaromonte and Cook (1997).

5. College Tuition Example

We consider an example of college tuition based on data from the U.S.
News & World Report’s Guide to America’s Best Colleges (1995). The data
contains information on tuition, room and board costs, SAT or ACT scores,
application/acceptance rates, graduation rate, student/faculty ratio, spending
per student, and a number of other variables for over 1300 schools in the U.S.
We wish to explore the relationship between tuition and 20 other character-
istics variables listed below. The out-of-state tuition is taken to be the re-
sponse for both public and private schools. For illustration, only a subset of
271 schools without missing values are used in this analysis. The issue of po-
tential bias in this selection is not pursued here. The full data may be found in
http://lib.stat.cmu.edu/datasets/colleges/.

The predictor variables used in our analysis are as follows: 1. Public/private
indicator (public=1, private=2); 2. Average Combined SAT score; 3. Average
ACT score; 4. Number of applications received; 5. Number of applicants ac-
cepted; 6 Number of new students enrolled; 7. Percent of new students from top
10% of high school class; 8. Percent of new students from top 25% of high school
class; 9. Number of full-time undergraduates; 10. Number of part-time under-
graduates; 11. Room and board costs; 12. Additional fees; 13. Estimated book
costs; 14. Estimated personal spending; 15. Percent of faculty with Ph.D.’s; 16.
Percent of faculty with terminal degree; 17. Student/faculty ratio; 18. Percent of
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alumni who donate; 19. Instructional expenditure per student; 20. Graduation
rate.

A simple examination of those variables shows that many are heavily skewed
and there are outliers in some of them. We take the logx transform of variables
4, 5, 6, 9, 10, 12, 13, 14, 17, 19 and the log(x/(100−x)) transform of percentage
variables 7, 8, 15, 16 and 18 before using CANCOR. These transformations
improve symmetry and normality but a few outliers remain.

We use four internal knots to construct the B-spline basis functions of order
three. The results change little when we use one more or one fewer knot and
vary the order of splines. All three tests of dimensionality discussed in Section
3 are performed with the resulting p-values in Table 9. All tests agree that the
first two CANCOR directions are significant. Only CHSQ leads to significance
of the third direction, probably due to the effect of outlying observations.

Table 9. P-values from dimensionality tests for tuition example.

H0,k k = 0 k = 1 k = 2 k = 3 k = 4
CHSQ-test 0.0000 0.0000 0.0212 0.3137 0.8029
ASNM-test 0.0000 0.0171 0.2525 0.3862 0.2717
RANK-test 0.0000 0.0366 0.7844 0.9502 0.9990
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Figure 1. Scatter plots of tuition versus first four CANCOR directions.

Figure 1 shows the scatter plots of tuition against the first four directions
found by CANCOR. The first canonical variate z1 appears linearly related to
tuition and the trend is major, the second variate z2 provides a refinement. It
turns out that z1 is almost the same as a multiple linear regression fit. This
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is consistent with a result of Duan and Li (1991) that, under (3.1), the OLS
estimates a direction within the central space. A closer inspection shows that z1
is highly related to quality of the schools. The variable z2 is highly related to
school size. From Figure 1, we see that tuition generally increases with z2 for
larger values of z1 but decreases with z2 for smaller values of z1. There is no
visible relationship between tuition and the third variate, which fits well with a
2-dimensional model. Not surprisingly the results are also very similar to those
obtained by sliced inverse regression. The most important contribution to z1
comes from instructional expenditure per student.
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Figure 2. Scatter plots of the first two CANCOR directions.

Figure 2 shows there is a nonlinear relationship between the first and the
second CANCOR directions. This “nonlinear confounding” issue, addressed by
Li (1997), can make it difficult to analyze data using SIR or CANCOR. We
also refer to the Boston Housing data example in Chen and Li (1998) where a
similar phenomenon occurs. More discussions may be found in Velilla (1998) and
Cook (1998a, Section 13.2). In our example, the first CANCOR direction plays
a dominant role, but the quasi-helix plot found in the second direction explains
the data from a different angle, and leads us to pay more attention to the school
size that might be neglected without CANCOR or a similar procedure. Further
examination of the first two variates indicate that they are not dominated by a
small number of original variables. This suggests that projection is preferred to
variable selection in building a model with a large number of variables.

Neural networks are known to be flexible in approximating functional rela-
tionship. We compare our results with those obtained from single hidden layer
neural networks. We fit the following form of the feed-forward single layer neural
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network

f(x) = α0 +
K∑

l=1

αlψ(γT
l x)

where ψ(u) = eu/(1+eu). The function fitted in this way may be compared with
CANCOR if we take γT

l x as reduced variables. Computations are made with the
FUNFITS package written at the North Carolina State University, more detail
is in Nychka et. al (1998). Figure 4 shows the plots of tuition against the two
directions found by FUNFITS. The first one appears to reveal the same, mostly
linear, relationship as in Figure 2, but the second direction is less informative.
R2 from this neural network is 83%, as compared to 86% from a tensor-product
spline model (see He and Shi, 1996) based on the two canonical variates we found
with CANCOR. Also note that the multiple linear regression gave an R2 of 80%,
which is consistent with the dominating linear relationship between our response
and the first canonical variate in this example.
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Figure 4. Scatter plots of tuition versus two directions chosen by FUNFITS.

Finally we note that with 20 variables but only 271 observations, we are
pushing the limits of the asymptotic theory in Section 3. The example also shows
that it is the best to combine test of dimensionality with graphical inspection in
data exploration and analysis.

6. Concluding Remarks

In this paper, we provide a variant of SIR by using canonical correlation
between the predictors and a spline basis in the space of the response variable. Its
properties are parallel to those of the traditional SIR. In particular, the CANCOR
and SIR directions are estimating the same quantities and are consistent for
vectors in the central dimension reduction space under the same conditions on the
model. However, the CANCOR directions are more directly interpretable outside
the context of a central space. The asymptotic distributions obtained in Section 3
do not assume the linearity condition (3.1) and form the basis for determining the
number of nonzero correlations. Unlike earlier work on SIR, we do not assume the
predictor variables to be normalized to have unit covariance matrix. This allows
some inference on the matrix ∆ to be carried out without having to incorporate
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the sampling distribution of Σ̂. In this paper, we also extend the applicability
of the dimension reduction method by relaxing the assumption of independent
observations.

A comparison of three different types of tests (CHSQ, ASNM, RANK) for
dimensionality reveals the strength and weakness of each test. Our findings can
help us make good use of these tests in real applications.

7. Proofs

Theorem 1 and the asymptotic results in Section 4 are derived from the
following lemma. Without loss of generality, assume E(x1) = 0.

Lemma 7.1. Under the conditions of Theorem 1,
√
n(∆n − ∆) −→ N , in

distribution, where N is as defined in Theorem 1.

Proof of Theorem 1. By Lemma 7.1 above and Theorem 8.5 of Schott (1997,
pp. 342-344), we have

√
n(η̂l − ηl) = −(∆ − λlI)+

√
n(∆n −∆)ηl + oP (1), and√

n(λ̂l − λl) = ηT
l

√
n(∆n −∆)ηl + oP (1), from which the theorem follows.

To prove Lemma 7.1, it suffices to show that

√
n (∆n −∆) =

√
n

(
∆̃n −∆

)
+ oP (1), (7.1)

where ∆̃n = n−1 ∑n
k=1 xkx

T
k − n−1 ∑n

k=1(xk − ζ(yk))(xk − ζ(yk))T . Recall that
we have assumed E(xk) = 0.

The rest of this section is devoted to the proof of (7.1). For convenience,
we first quote three lemmas that will be used in the proof. Lemma 7.2 can be
obtained from Corollary 6.21 of Schumaker (1981, p.227) or Theorem XII.4 of
de Boor (1978, p.178) for splines of order m > 1. In the case of m = 1, it
can also be verified directly. Lemma 7.3 can be found in Chen (1991). Lemma
7.4 is a generalization of Lemma 4.4 of Shi (1997) to the sample with β-mixing
conditions.

Let ζj(v) be the j-th component of ζ(v) and θ(j) be its spline coefficient with
ζj(v) = π(v)T θ(j) +Rnvj .

Lemma 7.2. Assume Condition (A3). There exists a constant c depending only
on m and ζ(v) such that, for all j = 1, . . . , p,

sup
v

|Rnvj | ≤ cH−1
n . (7.2)

Lemma 7.3. Assume Conditions (A2), (A4), and (A5). There exist positive
constants c1 and c2 (c2 > c1) such that all eigenvalues of Hn

n (ΠTΠ) lie in (c1, c2)
with probability tending to 1 as n→ ∞.
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Lemma 7.4. Under the conditions of Theorem 1, we have

sup
αT α=1

1√
n
|

n∑
k=1

(xki − ζi(yk))π(yk)Tα| = n−1/2||
n∑

k=1

(xki − ζi(yk))π(yk)|| = OP (1),

(7.3)
and

n−1/2Hn|
n∑

k=1

(xki − ζi(yk))Rnkj | = OP (1), (7.4)

for all i, j = 1, . . . , p.

Proof of (7.1). We define some vectors in bold face that will only be used in
this proof. Let xij be the j-th component of xi ∈ Rp (i = 1, . . . , n) and x̄j be the
average of xij over i. Similarly, ζ̄j is the average of ζj(yi) over i. Let ξj = (x1j −
x̄j, . . . , xnj − x̄j)T ∈ Rn be the j-th column of X∗, uj = (u1j , . . . , unj)T ∈ Rn

with uij = xij − x̄j − ζj(yi) + ζ̄j. Finally, let G = Π(ΠTΠ)−1ΠT .
It is easy to see that the ij-th element of ∆̃n is equal to n−1(ξT

i ξj −uT
i uj)+

oP (n−1/2). On the other hand, decomposing ξT
i (I − G)ξj yields

ξT
i ξj − uT

i uj = ξT
i Gξj − uT

i Guj + 2uT
i (I − G)νj + νT

i (I − G)νj. (7.5)

So it remains to show that

−uT
i Guj + 2uT

i (I − G)νj + νT
i (I − G)νj = oP (n1/2). (7.6)

We show that each term in (7.6) is of the desired order. Here, it helps to
note that G and I − G are idempotent. Since (I − G)νj are the residuals of
projecting νj onto the space of Π, we have

| 1nνT
i (I − G)νj | ≤ (

1
n

n∑
k=1

(Rnki − ζ̄i)2)
1/2(

1
n

n∑
k=1

(Rnkj − ζ̄j)2)
1/2. (7.7)

Observe, from Lemma 7.2, that

1
n

n∑
k=1

(Rnkj − ζ̄j)2 ≤ 2
n

n∑
k=1

R2
nkj + 2(ζ̄j)2 = O(H−2

n ) +OP (n−1).

Together with (7.7) and Condition (A5), one has

νT
i (I − G)νj = oP (n1/2). (7.8)

Let u∗
i = (x1i−ζi(y1), . . . , xni−ζi(yn))T ∈ Rn, κi = ||

n∑
k=1

(xki−ζi(yk))π(yk)T

(ΠTΠ)−1/2|| and κ∗i = ||
n∑

k=1

(xki − ζi(yk))π(yk)||(Hn/n)1/2. From Lemma 7.3 we

have (Hn
n ΠTΠ)−1 = OP (1) and

|u∗
i
T Gu∗

j | ≤ κiκj ≤ OP (κ∗i κ
∗
j ) (7.9)
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for i, j = 1, . . . , p. Note that πl(·) is locally supported, supt π(t)Tπ(t) ≤ m + 3
and E(π(y1)) = O(H−1

n ). By Lemma 7.4 we have κ∗i = OP (Hn), and therefore

|u∗
i
T Gu∗

j | = OP (Hn) for all 1 ≤ i, j ≤ p. (7.10)

Let 1 be the n-vector of ones. We have ui = u∗
i + 1(ζ̄i − x̄i), and

uT
i Guj −u∗

i
T Gu∗

j = (ζ̄i − x̄i)(ζ̄j − x̄j)1T G1+u∗
i
T G1(ζ̄j − x̄j)+ (ζ̄i− x̄i)1T Gu∗

j .

(7.11)
By the Cauchy-Schwartz inequality and the fact that 1T G1 ≤ n (due to the
eigenvalue of G being at most 1), we see that each term on the right hand side
of (7.11) is OP (Hn). Therefore, we have

uT
i Guj = OP (Hn) = oP (n1/2) for all 1 ≤ i, j ≤ p. (7.12)

Similar arguments show that

uT
i (I − G)νj = uT

i Rnj − uT
i GRnj + uT

i (I − G)1(µj − ζ̄j) = oP (n1/2). (7.13)

The proof of (7.1) is then complete.

Finally, we prove (7.3) in Lemma 7.4. The proof for (7.4) is similar and thus
omitted.

For an integer pair (υn, τn) with τn = [n/(2υn)], we divide the strictly sta-
tionary n-sequence W n = {(x1, y1), . . . , (xn, yn)}) into 2τn blocks of length υn

and the remainder block of length n − 2υnτn (≤ υn). Denote the index sets of
the odd blocks and the even blocks by O’s and E’s respectively, and denote the
index set of the remainder block by Re. That is, Re = {i : 2υnτn + 1 ≤ i ≤ n},
Oj = {i : 2(j−1)υn+1 ≤ i ≤ (2j−1)υn} and Ej = {i : (2j−1)υn+1 ≤ i ≤ 2jυn}
for j = 1, . . . , τn. Let W (Oj) = {(Xi, Yi) : i ∈ Oj} for j = 1, . . . , τn.

Under the mixing conditions, we can choose υn large enough so that the de-
pendence between the odd υn-blocks is weak and therefore the odd υn-blocks can
be approximated by a sequence of independent blocks with the same within-block
structure. On the other hand υn is not so large and the odd υn-blocks together
behave similarly to the original mixing sequence. Specifically, we construct an in-
dependent sequence of blocks W ∗(Oj) = {(X∗

i , Y
∗
i ) : i ∈ Oj} such that W ∗(Oj)

and W (Oj) have the same distribution and W ∗ = {W ∗(Oj) : j = 1, . . . , τn}
is independent of W n. W ∗ is called an independent block υn-sequence (IB se-
quence), which is connected implicitly with a pair of integers. The following
lemma is used by Yu (1994).

Lemma A.1. Let the distributions of W n and W ∗ be Q and Q∗ respectively.
For any measurable function h on Rτnυn with bound C, we have |EQh(W n) −
EQ∗h(W ∗)| ≤ C(τn − 1)bυn(W ).
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For simplicity, we assume uniform partitions for our B-spline knot sequences:
tk = k/Hn, k = 1, . . . ,Hn and N = Hn +m− 1. Only nonessential modifications
are needed to deal with the percentile-based partitions described in Section 2.
The letter M is used in the rest of the proof to denote a generic constant whose
value may vary from line to line.

To prove (7.3) for any l = 1, . . . , p, just write Ψk=̂xkl−ζl(yk) for k = 1, . . . , n.
We have suppressed the index l here. It has been assumed that E(Ψ2+c0

1 ) < ∞
with constant c0 = 2 + δ. Let υn = nb with b = 1/(r − c1 + 1), where 0 < c1 <

min{r− 1, [(r− 1)(2 + c0)− 2]/(2 + c0)}), and r is a constant given in Condition
(A2). Then, we have

2b ∈ (0, 1) and 2b/(1 − 2b) = 2/(r − c1 − 1) < 2 + c0. (7.14)

Lemma A.2. Under the conditions of Theorem 1, for q = 2+c0, s−1+2q−1 = 1,
we have

E


 ∑

i∈Oj

∑
k∈Oj

π(yi)Tπ(yk)ΨiΨk


 ≤

∑
i∈Oj

E
(
|π(yi)|2Ψ2

i

)
+M υ1−δ0

n ,

where δ0 = rc0/(2+ c0)− 1 = r(2+ δ)/(4+ δ)− 1 > 0, and M is some constant.
The proof of Lemma A.2 is based on a result of Dehling and Philipp (1982,

p. 692), but the details are omitted here.

Lemma A.3. Under the conditions of Theorem 1,

lim
n→∞P


n−1/2|

n∑
i=2τnυn+1

Ψiπ(yi)| ≥ L


 = 0 for any L > 0.

Lemma A.3 can be verified using the Tchebychev inequality. We now prove
(7.3). Let S∗

i = (X∗
i , y

∗
i ), i ≥ 1, be the IB sequence corresponding to W . Since

W is strictly stationary we have, from Lemmas A.1 and A.3, that for large L

P{n−1/2 sup
|α|=1

|
n∑

i=1

Ψiπ(yi)Tα| > L}

≤ 2P{n−1/2 sup
|α|=1

|
τn∑

j=1

∑
i∈Oj

Ψ∗
i π(y∗i )Tα| > L/4} + 2(τn − 1)bυn(W ) + o(1).(7.15)

Note that {(Xi, Yi) i ∈ Oj} and {(X∗
i , y

∗
i ) i ∈ Oj} have the same distribution.

Thus, E(
∑

i∈Oj
Ψ∗

iπ(y∗i )Tα)=E(
∑

i∈Oj
Ψiπ(yi)Tα)=E(

∑
i∈Oj

π(yi)TαE(Ψi | yi))
= 0. Together with (7.15), Lemma A.2, the Tchebychev inequality and the
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independence between the blocks of the IB sequence,

P{n−1/2 sup
|α|=1

|
τn∑

j=1

∑
i∈Oj

Ψ∗
iπ(y∗i )Tα| > L/4} ≤ P{n−1/2|

τn∑
j=1

∑
i∈Oj

Ψ∗
iπ(y∗i )| > L/4}

≤ 16
L2n

τn∑
j=1

trace


E ∑

i∈Oj

∑
k∈Oj

Ψiπ(yi)Ψkπ(yk)T


≤ 16

L2
(4(m+3)EΨ2

1+M υ−(r−1)
n ).

(7.16)
Since υn = n−b and r > 2, the desired result follows from (7.15) and (7.16).
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