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Abstract: Component functions of an additive model can be estimated at univariate

rate of convergence, by such methods as backfitting, marginal integration, etc. An

alternative direct method is developed when the components are proportional. This

new direct local polynomial estimator requires as little computing as a univariate

estimator, less than the integration method by a factor of the sample size. Combi-

nation with one-step backfitting yields an improved estimator with univariate rate

of convergence and “oracle” efficiency, and retains comparable computational effi-

ciency. Monte-Carlo results indicate good performance of both estimators, which

work much better than the integration method. The direct method is applied to

a GARCH type model, illustrated by an analysis of the daily returns of Deutsche

Mark/British Pound (DEM/GBP).
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1. Introduction

The volatility of foreign exchange daily returns depends on many past vari-
ables. This persistence is commonly modeled by exponentially decaying depen-
dence, for example the GARCH(p, q) model in Bollerslev (1986). A GARCH(1, 1)
with mean zero describes a time series {Yt}∞t=0 as

Yt =σtξt, σ2
t =w+βY 2

t−1+γσ2
t−1, w ≥ 0, β, γ > 0, β + γ < 1, (1.1)

where the ξt’s are i.i.d. with Eξt = Eξ3
t = 0, Eξ2

t = 1, Eξ4
t = m4 ∈ (0,∞).

Equivalently, the conditional volatility σ2
t =Var (Yt|Yt−1, Yt−2, . . .) is σ2

t =g(Yt−1)
+γg(Yt−2) + γ2g(Yt−3) + · · ·, g(y) = w + βy2.

The quadratic form of g(y), however, is inadequate for certain data. To
remove this restriction, Hafner (1998) proposed an alternative nonparametric
model

σ2
t = g(Yt−1) + γg(Yt−2) + γ2g(Yt−3) + · · · , (1.2)

where g is any smooth function. Model (1.2) is a compromise between nonpara-
metric flexibility and GARCH simplicity. An iterative procedure was developed
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in Hafner (1998) to estimate γ and g. Theoretical properties of these estimators
are unavailable, due to an infinite number of explanatory variables. A manage-
able finite model is

σ2
t = g(X1) + γg(X2) + · · · + γd−1g(Xd) (1.3)

for some sufficiently large integer d, where one denotes Xi = Yt−i, i = 1, . . . , d.
Note that for Zt = Y 2

t , Zt = m(Xt) + σ(Xt)εt, m(Xt) =
∑d

α=1 γα−1g(Xα),
σ(Xt)=m(Xt)

√
m4−1, where εt =

(
ξ2
t −1

)
/
√

m4−1 satisfies Eεt =0, Var (εt)=1.
The model (1.3) is a special case of the proportional additive model (PAM)

Y = m(X) + σ(X)ε, (1.4)

where Y is a scalar dependent variable, X = (X1,X2, . . . ,Xd) a vector of ex-
planatory variables (here one no longer has Xi = Yt−i), ε is independent of X
with Eε = 0, V ar(ε) = 1, and the regression function is

m(X) = c1(γ)g(X1) + c2(γ)g(X2) + · · · + cd(γ)g(Xd). (1.5)

Here c1, . . . , cd are known coefficients functions, and γ = (γ1, . . . , γr) is a vector
of parameters. For identifiability, we set c1 equal to 1 throughout.

Model (1.5) is an additive model. In a regression model of the general
form (1.4), without the restriction (1.5), m(·) can be estimated at the rate
O
(
n−(p+1)/(2p+d+2)

)
, where n is the sample size and m(·) has p+1 Lipschitz con-

tinuous derivatives. This rate is improved to the univariate O
(
n−(p+1)/(2p+3)

)
if

the function m(·) is additive:

m(X) = c +
d∑

β=1

gβ(Xβ). (1.6)

Properties of (1.6) were studied by Stone (1985). A backfitting algorithm was
proposed by Hastie and Tibshirani (1990) for estimating the functions {gβ(·)}d

β=1
and m(·), and theoretical properties were established by Opsomer and Ruppert
(1997) in the case d = 2. Marginal integration was proposed by Tjøstheim
and Auestad (1994), Linton and Nielsen (1995) Masry and Tjøstheim (1996)
and Yang, Härdle and Nielsen (1999), and has univariate rate of convergence.
Carroll, Härdle and Mammen (1999) proposed to estimate g(·) and γ in (1.3) via
integration or backfitting. In high dimensions (d > 2), however, the integration
method behaves poorly when the data is sparse, while the backfitting method
has no asymptotic distribution theory.

I present a direct local polynomial estimator of the function g(·) in (1.5) that
takes advantage of the proportional structure. An improved estimator based on



PROPORTIONAL ADDITIVE MODEL 803

direct estimation and one-step backfitting achieves the optimal convergence rate.
If the parameters γ1, . . . , γr are unknown, they are estimated by minimizing
the prediction error of the direct estimator. The proposed methods require less
computing than the integration method by a factor O(n), and perform better in
practice, as seen in the Monte-Carlo study.

In Section 2, I describe the technical setting and propose direct and rate
optimal estimators when the parameter vector γ is known. Section 3 proposes a√

n-convergent estimator of γ. Implementation is detailed in Section 4. Section 5
presents simulation examples of PAM and the nonparametric GARCH model, and
the GARCH fit to the daily returns of Deutsche Mark/British Pound exchange
rates. Proofs are in the Appendix.

2. Estimation When Parameters are Known

Suppose for now that the parameters γ1, . . . , γr are known. Let (Xi, Yi),
i = 1, 2, . . . , n be a sample following (1.4) with m(·) as in (1.5). Recall that c1

is 1. The observations are assumed to be i.i.d., but the method also works if the
Xi’s are geometrically β-mixing and strictly stationary.

For any x ∈ A, with set A defined in Assumption A4, one has a special
Taylor expansion

m(z)≈g(x)
d∑

α=1

cα(γ)+g′(x)
d∑

α=1

cα(γ)(zα−x)+· · ·+g(p)(x)
p!

d∑
α=1

cα(γ)(zα−x)p, (2.1)

which suggests that one estimate quantities g(x), g′(x), . . . , g(p)(x) by regressing
Yi’s on terms

∑d
α=1 cα(γ)(Xiα − x)λ, λ = 0, 1, . . . , with d-dimensional kernel

weights.
To implement the idea, define derivative and function estimators

ĝ(λ)(x)=λ!h−λE′
λ

(
Z ′

γWZγ

)−1
Z ′

γWY, ĝ(x)=E′
0

(
Z ′

γWZγ

)−1
Z ′

γWY, (2.2)

where

Zγ =

{
d∑

α=1

cα(γ)
(

Xiα − x

h

)λ
}

1≤i≤n,0≤λ≤p

, W =diag
{

1
n

Kh(Xi − x)
}n

i=1
,

Y = (Yi)n×1, Eλ is a (p + 1)− vector with the (λ + 1)− element being 1 and
0 elsewhere, p > 0 is an integer, x = (x, . . . , x), K is a kernel function, h > 0
the bandwidth. In the following, I denote Kh(u) = K(u/h)/h for any function
K, and K∗

λ,γ(u) =
∑d

α=1

∑p
λ′=0 cα(γ)sλλ′(γ)uλ′

α K(u) with {sst(γ)}0≤s,t≤p = S−1
γ ,

where Sγ is defined in (A.3).
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Theorem 1. Under assumptions A1-A4 and A6, for any fixed x ∈ A and λ ≥ 0
such that p − λ is odd, as nh2λ+d → ∞, h → 0, the estimator ĝ(λ)(x) defined by
(2.2) satisfies

√
nh2λ+d

{
ĝ(λ)(x)− g(λ)(x)−hp+1−λbλ(x)

}
D→ N {0, vλ(x)},where

bλ(x)=λ!Λλ,p+1,γg
(p+1)(x)/(p+1)!, vλ(x)=(λ!)2

∥∥∥K∗
λ,γ

∥∥∥2
2
σ2(x)ϕ−1(x), (2.3)

ϕ(·) is the design density of X, and Λλ,p+1,γ is defined in (A.4). In particular, for

odd p, and nhd → ∞, h → 0,
√

nhd
{
ĝ(x) − g(x) − hp+1b0(x)

} D→ N {0, v0(x)} .

Performance of the proposed function estimator is measured by
∑d

α=1 E
∫
A

{ĝ(x) − g(x)}2 ϕα(x)dx, where ϕα(·) is the marginal density of Xα.

Corollary 1. The global optimal bandwidth for estimating the function g(·) is

hopt =

d {(p + 1)!}2
∥∥∥K∗

0,γ

∥∥∥2
2

∑d
α=1

∫
A σ2(x)ϕ−1(x)ϕα(x)dx

2n(p + 1) (Λ0,p+1,γ)
2∑d

α=1

∫
A

{
g(p+1)(x)

}2
ϕα(x)dx


1/(2p+d+2)

. (2.4)

which yields mean integrated squared error of ĝ(x) of order n−2(p+1)/(2p+2+d).

The suboptimal rate of convergence in Theorem 1 can be improved by a
one-step backfitting procedure. Let

Yi1 = Yi − {c2(γ)g(Xi2) + · · · + cd(γ)g(Xid)} , (2.5)

and define the “oracle” smoother

g1(x) = E′
0

(
Z ′

1W1Z1

)−1
Z ′

1W1Y1, (2.6)

with

Z1 =

{(
Xi1−x

h1

)λ
}

1≤i≤n,0≤λ≤p

, W1 =diag
{

1
n

Kh1(Xi1−x)
}n

i=1
, Y1 =(Yi1)n×1,

and h1 = Cn−1/(2p+3), C > 0. Define next the sample analogs of (2.5) and (2.6):

Ỹi1 = Yi − {c2(γ)ĝ(Xi2) + · · · + cd(γ)ĝ(Xid)} , (2.7)

ĝ1(x) = E′
0

(
Z ′

1W1Z1
)−1

Z ′
1W1Ỹ1, Ỹ1 = (Ỹi1)n×1, (2.8)

in which the estimator ĝ(·) is as defined in (2.2).

Theorem 2. Under assumptions A1-A4 and A6, for any fixed x ∈ A and odd p,
as nhd → ∞, h/h1 → 0, h1 = Cn−1/(2p+3), C > 0, the estimator ĝ1(x) defined by
(2.8) satisfies √

nh1

{
ĝ1(x) − g(x) − hp+1

1 b∗1(x)
}

D→ N {0, v∗1(x)} , (2.9)
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b∗1(x) = Λ0,p+1g
(p+1)(x)/(p + 1)!,

v∗1(x) = ‖K∗
0‖2

2 ϕ−2
1 (x)

∫
σ2(x, u2, . . . , ud)ϕ(x, u2, . . . , ud)du2 · · · dud, (2.10)

and Λ0,p+1, K∗
0 are univariate constants Λ0,p+1,γ, K∗

0,γ. In particular, if σ(x) ≡
σ0 > 0, v∗1(x) = ‖K∗

0‖2
2 σ2

0/ϕ1(x), ĝ1(x) has the same asymptotic distribution as
the local polynomial estimator for the univariate model Yi1 = g(Xi1) + σ0εi.

While the “oracle” estimator ĝ1(x) enjoys the optimal convergence rate, its
computing time is roughly d times that for ĝ(x), but much less than the in-
tegration estimator. The proof of Theorem 2 relies on the facts that the bias
caused by substituting the ĝ(Xiα) for g(Xiα) is negligible (of order O

(
hp+1

)
=

o
(
hp+1

1

)
), and that the sum of the noises of these substitutions is of order

O

(√
n−1h−1

1 n−1h−d + n−1

)
= o

(√
n−1h−1

1

)
.

3. Estimating the Parameters

If the parameter γ is unknown, I present a procedure that estimates γ at
the usual

√
n-rate. Assume that γ ∈ the interior of Γ, a compact subset of Rr.

For each value γ′∈ Γ, define for any x ∈ A the estimator

ĝγ′(x)=E′
0

(
Z ′

γ′WZγ′
)−1

Z ′
γ′WY, Zγ′ =

{
d∑

α=1

cα(γ ′)
(

Xiα − x

h

)λ
}

1≤i≤n,0≤λ≤p

,

(3.1)

and define the function

L(γ′)=
1
n

n∑
i=1

{
Yi−ĝγ′(Xi1)−c2(γ ′)ĝγ′(Xi2)−· · ·−cd(γ

′)ĝγ′(Xid)
}2

π(Xi), (3.2)

where π(·) is a nonnegative and continuous weight function whose compact sup-
port is contained in A. Let γ̂ be the minimizer of the function L(γ ′), i.e.,

γ̂ = arg min
γ′∈Γ

L(γ′). (3.3)

Theorem 3. Under assumptions A1-A6, if hp+1 + n−1h−d = o(1/
√

n), then as
n → ∞, the γ̂ defined by (3.3) satisfies

√
n (γ̂ − γ) → N(0,Σγ) (3.4)

for some positive definite matrix Σγ.
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4. Implementation

The estimators defined in the previous sections are implemented with a sim-
ple rule-of-thumb (ROT) for the bandwidth hopt given by (2.4). If the

√
n-

convergent γ̂ has been obtained or if γ is known, the ROT bandwidth is

ĥopt =


d {(p+1)!}2

∥∥∥∥K∗
0,γ̂

∥∥∥∥2
2
σ̃2∑d

α=1

∑n
i=1ϕ̃

−1(Xiα)1A(Xiα)

2n(p+1)
(
Λ

0,p+1,γ̂

)2∑d
α=1

∑n
i=1

{
g̃(p+1)(Xiα)

}2 1A(Xiα)


1/(2p+d+2)

, (4.1)

where ϕ̃−1(Xiα) are kernel density estimates at points Xiα = (Xiα, . . . ,Xiα),
i = 1, . . . , n, α = 1, . . . , d, using Silverman’s kernel density estimation ROT
bandwidth (Silverman (1986), p.86-87). The g̃(p+1) and σ̃2 are obtained as in Fan
and Gijbels (1996, equation (4.3), p.111) by an ordinary p+2 degree polynomial

regression of the Yi’s on the Xi’s. Constants Λ
0,p+1,γ̂ and

∥∥∥∥K∗
0,γ̂

∥∥∥∥2
2

are calculated

exactly.
If one needs to estimate γ first, one sets d′ = min(d, 3) and denotes by p′

an odd positive integer such that p − d/2 > p′ > d/2 − 1. For any given γ′∈ Γ,
define

ĥγ′ =

 {(p′+1)!}2
∥∥∥K∗

0,γ′
∥∥∥2
2
σ̃2∑d′

α=1

∑n
i=1ϕ̃

−1(Xiα)1A(Xiα)

2(p′+1)
(
Λ0,p′+1,γ′

)2∑d′
α=1

∑n
i=1

{
g̃(p′+1)(Xiα)

}2 1A(Xiα)


1/(2p′+d+2)

, (4.2)

where g̃(p′+1), ϕ̃−1and σ̃2 are estimated as in (4.1). This bandwidth ĥγ′ satisfies
the order requirement hp+1 + n−1h−d = o(1/

√
n) of Theorem 3 and is suitable

for the
√

n consistent estimation of γ.
It is feasible to compute a plug-in (PI) bandwidth selector for hopt similar

to Yang and Tschernig (1999). The PI bandwidth is expected to improve on the
ROT bandwidth, but is also more computationally intensive.

5. Monte-Carlo and Examples

I begin by applying the direct and oracle estimators to simulated examples
of data (Xi, Yi), i = 1, 2, . . . , n, drawn from model (1.4), where the regression
function m(·) is given by (1.5). Motivated by (1.3), the setup is: Γ = [0.5, 0.9],
cα(γ) = γα−1, α = 1, . . . , d. Following common practice, I set σ2 (·) ≡ σ2. The
design variable X ∼ U

(
Ad
)
, where the estimation set A = [−0.5, 0.5] and the

weight function π = 1Ad . The component function g(x) is defined on A and
γ =0.7. Each experiment is carried out 100 times. Although many candidates of
g(x) are used in the experiments, I report only on two.
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Example 1. The function g(x) = 2 + sin(5πx).

Example 2. The function g(x) = 2 − 48(x + 0.5) + 218(x + 0.5)2 − 315(x +
0.5)3 + 145(x + 0.5)4.

The results of experiments are summarized in Figures 1, 2, and 3. For each
example, the 100 estimates (dashed lines) are overlaid with the true function
(thick solid line).

Function
estim

ates

Function
estim

ates

X X

(a) (c)

Function
estim

ates

Function
estim

ates

X X

(b) (d)

Figure 1. Function estimates with d=3, p=5, σ=0.5 : (a) and (b): n=100;
(c) and (d): n=200; (a) and (c) Example 1; (b) and (d) Example 2.

Figures 1 shows that for Examples 1 and 2, the function estimates hit their
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targets well, and when the sample size n is increased from 100 to 200, there
is noticeable improvement. To verify the efficiency property (2.9) of the oracle
estimator ĝ1 in (2.8) against the univariate estimator g1, Figure 2 summarizes
the results of comparing ĝ1 and g1 for Example 1. Contrasting plots (a) and (b),
and plots (c) and (d) indicates that the oracle estimator ĝ1 is nearly as accurate
as g1. The empirical efficiency of ĝ1 against g1 is 74.2% for n = 100 and 90% for
n = 200, consistent both with the plots and the conclusion of Theorem 2.

Function
estim

ates

Function
estim

ates

X X

(a) (c)

Function
estim

ates

Function
estim

ates

X X

(b) (d)

Figure 2. Function estimates for Example 1 using oracle smoother and es-
timator, with d = 3, p = 5, σ = 0.5: (a) and (b): n = 100; (c) and (d):
n = 200; (a) and (c): g1(x); (b) and (d): ĝ1(x). Solid line represents the
true function. Empirical efficiency: 0.742 for n = 100, 0.9 for n = 200.
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The integration method is applied to Example 1 with optimal bandwidths.
The 100 direct and integration estimates are plotted in (a) and (c) of Figure 3,
respectively. One observes that the integration method has much larger errors
than the direct method estimators. This confirms the original motivation of
the direct method and, although the integration method has a faster rate of
convergence, this advantage does not kick in for moderate sample sizes.

Function
estim

ates

Function
estim

ates

X X

(a) (b)

Function
estim

ates

Function
estim

ates

X X

(c) (d)

Figure 3. Function estimates using direct and integration methods, with
d = 3, p = 5: (a) and (b): direct; (c) and (d): integration; (a) and (c):
Example 1, n = 100, σ = 0.5, γ = 0.7; (b) and (d): Example 3, n = 200,
γ = 0.8, MISE = 0.010303 for (d) and MISE = 0.058432 for (d). Solid line
represents the true function.
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A much more extensive study was done, but I have included only the most
important results due to space restriction. In addition, the study found that hav-
ing more variates (i.e., larger d) has little effect on function estimation precision,
while the effect of noise σ2 on function estimation is very significant. Similar
phenomena hold for the parameter estimation. The function g can be estimated
considerably more accurately when the parameter is known than when it is un-
known and has to be estimated. Details of the full study can be downloaded
from http://www.msu.edu/yangli/pam.pdf.

I now discuss model (1.3), the motivation for studying PAM. Under geomet-
ric ergodicity assumptions on {Yt}∞t=0, one can apply the estimation method of
Section 4 to the data {(Xt, Zt)}n

t=d. General methods of estimating volatility are
found in Härdle and Tsybakov (1997), Härdle, Tsybakov and Yang (1998) and
Fan and Yao (1998).

Example 3. For simulation, process {Yt}∞t=0 is generated according to (1.3) with
g(x) ≡ {2 − sin(2πx + 0.4π)} /40, γ = 0.8, d = 3. It is easy to verify geomet-
ric ergodicity of {Yt}∞t=0, see Doukhan (1994, Theorem 3, p.91). I use a total
of 100 replications. For each replication, n + 1000 observations {Yt}n−1

t=−1000 are
generated, with the last n taken as the data {Yt}n−1

t=0 to ensure stationarity. The
function g(x) ≈

{
1 + 2π2 (x − 0.05)2

}
/40 around x = 0.05, resembling the asym-

metric GARCH model of Engle and Ng (1993). I estimate g(x) on [−0.5, 0.5],
where over 90% of the data lie. For the 100 replications of size n = 200, the in-
tegration method took 90 hours to finish in Gauss Windows 95, while the direct
method took 2.5 hours. For larger n, the difference would grow at the rate of
O(n). Figure 3 (b) and (d) show estimates of g(x) and the superior performance
of the direct method over integration.

Example 4. A data example consists of the daily returns of Deutsche Mark/
British Pound (DEM/GBP) from January 2, 1980 to October 30, 1992, with
n = 3212. The data is trimmed at the 1.25 and 97.5 percentiles to reduce outlier
influence. The first 1606 returns are shown in Figure 4(a). I fit Model (1.3) to
these data with d = 5. The data is divided into 2 subsamples of n = 1606 ob-
servations each. The first subsample {Yt}1605

t=0 is used to construct the estimated
function ĝ(·) and parameter γ̂, and then the estimated volatility series and resid-
uals σ̂2

t =
∑d

ν=1 γ̂ν−1ĝ(Yt−ν), ξ̂t = Yt/σ̂t = (σt/σ̂t)ξt, t = d, . . . , 3211. The pa-
rameter estimate is γ̂ = 0.98, while the estimated function ĝ(·) is shown in Figure
4(c). The visual difference between ĝ(·) (solid line) and its least squares quadratic
fit (dotted line) strongly suggest that the nonparametric GARCH model (1.3)
deviates from the asymmetric GARCH model of Engle and Ng (1993). The auto-

correlation functions (ACFs) of
{
Y 2

t

}3211
t=0 and

{
ξ̂2
t

}3211

t=d
are shown in Figure 4 (b)

and (d) for both subsamples. The thick horizontal lines in (b) and (d) represent



PROPORTIONAL ADDITIVE MODEL 811

0 and the 95% confidence bounds around 0. The ACFs of the squared returns
(solid lines) die out slowly, showing strong positive correlation. The squared
residuals show almost no correlation for the in-sample prediction, and very little

R
eturns

A
utocorrelations

Lag Lag

(a) (b)

Function
estim

ates

A
utocorrelations

X Lag

(c) (d)

Figure 4. (a) the realization of 3212 DEM/GBP daily returns. (c) estimated
function ĝ as solid line, the least squares quadratic fit as dotted line. (b)
and (d) autocorrelation functions (ACFs) of the squared returns (solid line)
and squared residuals (dotted line): (b) for the first subsample; (d) for the
second subsample. The upper and lower horizontal lines are at the 95%
confidence bounds for the ACF’s, the middle horizontal line is at 0.
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for out-of-sample prediction. It is significant that predicted volatilities based on
the first subsample remove much of the dependence from the second subsam-
ple {Yt}3211

t=1606. This shows that the model fits well the intrinsic dynamics of
DEM/GBP daily returns.

In summary, both the function and the parameter estimation work well given
the moderate sample sizes and the high dimension d used in the simulation. The
direct estimator substantially improves upon the integration method, contrary
to asymptotic analysis. The oracle estimator performs nearly as well as its com-
peting univariate estimator, just as Theorem 2 has concluded.
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Appendix

The following assumptions are used.

A1: The kernel K (·) is a symmetric, compact supported and continuous proba-
bility density.

A2: The function g (·) has a Lipschitz continuous (p + 1)-st derivative.

A3: The variance function σ2 (·) is Lipschitz continuous.

A4: The design variable X has density ϕ(·) and marginal densities ϕα(·), α =
1, . . . , d, which are Lipschitz continuous and satisfy inf1≤α≤d,x∈A ϕα(x) ≥
cA > 0 , where A is a compact subset of R with nonempty interior.

A5: The set γ is an r-dimensional submanifold of Rr with C2 boundary, while
the map γ ′ → {cα(Γ′)}d

α=1 is a C2 diffeomorphism from Γ onto its image.
There exists a constant C > 0 such that for a given compactly supported
weight function π(·), the following condition holds:

∫  d∑
α,α′=1

{
cα′(γ′)cα(γ ′′) − cα′(γ ′′)cα(γ ′)

}
g(wα)

2

π(w)dw≥C
∥∥γ ′′ − Γ′∥∥2 ,

∀γ′′, γ ′ ∈ Γ. (A.1)

A6: There exists a constant C > 0 such that∣∣∣∣∣
d∑

α=1

cα(γ ′)

∣∣∣∣∣ ≥ C,γ ′ ∈ Γ. (A.2)
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One should note that assumptions A1-A6 are satisfied in all our Monte-Carlo
examples.

Denote µr(K) =
∫

urK(u)du and let {sst(γ)}0≤s,t≤p = S−1
γ , where the ma-

trix Sγ is defined as

S1,γ =
d∑

α=1

c2
α(γ) (µλ+λ′(K))p

λ,λ′=0 +
∑

α�=α′
cα(γ)cα′(γ) (µλ(K))p

λ=0

{
(µλ(K))pλ=0

}T
.

(A.3)
Note here by the definition of matrix Sγ, the multivariate equivalent kernel

K∗
λ,γ(u) satisfies

d∑
α′=1

∫
K∗

λ,γ(u)cα′(γ)uλ′′
α′ du =


1 λ′′ = λ

0 0 ≤ λ′′ ≤ p, λ′′ �=λ

Λλ,p+1,γ λ′′=p+1,
(A.4)

where Λλ,p+1,γ is a mixture of (p + 1)-st moments depending on the parameters
γ = {γα}q

α=1.

Lemma A.1. As n → ∞,

Z ′
γWZγ =ϕ(x)Sγ {I + op(1)} ,

(
Z ′

γWZγ

)−1 =ϕ(x)−1S−1
γ {I + op(1)} . (A.5)

Proof. The (λ, λ′)-th entry of Z ′
γWZγ is of the form

1
n

n∑
i=1

Kh(Xi − x)

{
d∑

α=1

cα((γ)
(

Xiα − x

h

)λ
}{

d∑
α=1

cα(γ)
(

Xiα − x

h

)λ′}

=
d∑

α=1

d∑
α′=1

1
n

n∑
i=1

Kh(Xi − x)cα(γ)
(

Xiα − x

h

)λ

cα′(γ)
(

Xiα′ − x

h

)λ′

=
d∑

α=1

d∑
α′=1

∫
Kh(w−x)cα(γ)

(
wα−x

h

)λ

cα′(γ)
(

wα′−x

h

)λ′

ϕ(w)dw {1+op(1)} .

By a change of variable w = x+hu, this becomes
d∑

α=1

d∑
α′=1

∫
K(u)cα(γ)cα′(γ)uλ

αuλ′
α′ϕ(x+hu)du {1 + op(1)}

= ϕ(x)
d∑

α=1

d∑
α′=1

cα(γ)cα′(γ)
∫

K(u)uλ
αuλ′

α′du {1 + op(1)} .

By direct calculation,

∫
K(u)uλ

αuλ′
α′du =


µλ(K)µλ′(K) α �= α′, both λ and λ′ even

0 α �= α′, λ or λ′ odd
0 α = α′, λ + λ′odd

µλ+λ′(K) α = α′, λ + λ′ even,
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and so the (λ, λ′)-th entry of Z ′
γWZγ is

ϕ(x)
{∑d

α=1 c2
α(γ)µλ+λ′(K)

+
∑

α�=α′ cα(γ)cα′(γ)µλ(K)µλ′(K)
}

both λ and λ′ even
0 λ and λ′ one odd, one even

ϕ(x)
{∑d

α=1 c2
α(γ)µλ+λ′(K)

}
both λ and λ′ odd.

Now (A.5) follows from the definitions of S1,γ and S2,γ, see (A.3). The second
equation follows from the first.

Before I proceed to prove Theorem 1, note by definition that

S−1
γ Z ′

γW =
1

nϕ(x)


K∗

0,γ,h(X1−x) · · · K∗
0,γ,h(Xn−x)

...
. . .

...
K∗

p,γ,h(X1−x) · · · K∗
p,γ,h(Xn−x)

 . (A.6)

Proof of Theorem 1. By definition of the matrices, for a fixed λ,E′
λ

(
Z ′

γWZγ

)−1

Z ′
γWZγEλ = 1, E′

λ

(
Z ′

γWZγ

)−1
Z ′

γWZγEλ′ = 0, 0 ≤ λ′ ≤ p, λ′ �= λ, so

ĝ(λ)(x)−g(λ)(x)=λ!h−λE′
λ

(
Z ′

γWZγ

)−1
Z ′

γWY−g(λ)(x)E′
λ

(
Z ′

γWZγ

)−1
Z ′

γWZγEλ

−
∑

λ′≥0,λ′ �=λ

λ!
λ′!

g(λ′)(x)hλ′
E′

λ

(
Z ′

γWZγ

)−1
Z ′

γWZγEλ′

=
λ!

ϕ(x)hλ
E′

λS−1
γ Z ′

γW

Y− g(λ)(x)hλ

λ!
ZγEλ−

∑
λ′≥0,λ′ �=λ

1
λ′!

g(λ′)(x)hλ′
ZγEλ′


×{1 + op(1)} = I1 + I2, (A.7)

I1 =
λ!

nϕ(x)hλ

n∑
i=1

K∗
λ,γ,h(Xi − x) ×

[
d∑

α=1

cα(γ)

{
g(Xiα)−g(x)−

p∑
λ′=1

1
λ′!

g(λ′)(x) (Xiα−x)λ
′
}]

{1+op(1)} , (A.8)

I2 =
λ!

nϕ(x)hλ

n∑
i=1

K∗
λ,γ,h(Xi − x)σ(Xi)εi {1 + op(1)} , (A.9)

by (A.5) and (A.6). Note next that

λ!
nϕ(x)hλ

n∑
i=1

K∗
λ,γ,h(Xi−x)

[
d∑

α=1

cα(γ)

{
g(Xiα)−g(x)−

p∑
λ=1

1
λ!

g(λ)(x) (Xiα−x)λ
}]
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=
λ!

nϕ(x)hλ

∫
K∗

λ,γ,h(u−x)

[
d∑

α=1

cα(γ)

{
g(uα)−g(x)−

p∑
λ=1

1
λ!

g(λ)(x) (uα−x)λ
}]

×ϕ(u)du {1 + op(1)} .

By a change of variable u = x+hv, this last becomes

λ!
nϕ(x)hλ

∫
K∗

λ,γ(v)

[
d∑

α=1

cα(γ)

{
g(x+hvα)−g(x)−

p∑
λ=1

1
λ!

g(λ)(x)hλvλ
α

}]
ϕ(x+hv)dv

=
λ!

ϕ(x)hλ
ϕ(x)

hp+1

(p + 1)!
g(p+1)(x)

∫
K∗

λ,γ(v)

{
d∑

α=1

cα(γ)vp+1
α

}
dv {1 + op(1)} ,

which yields

I1 =
λ!Λλ,p+1,γg

(p+1)(x)
(p + 1)!

hp+1−λ + op(hp+1−λ). (A.10)

On the other hand, I2 is asymptotically normal, with variance

(λ!)2

nϕ2(x)h2λ
E
{
K∗

λ,γ,h(X1 − x)σ(X1)ε1

}2 {1 + op(1)}

=
(λ!)2

nϕ2(x)h2λ

∫ {
K∗

λ,,h(u − x)σ(u)
}2

ϕ(u)du {1 + op(1)} .

By a change of variable u = x+hv, this becomes

var(I2) =
(λ!)2

∥∥∥K∗
λ,γ

∥∥∥2
2
σ2(x)

nh2λ+dϕ(x)
{1 + op(1)} . (A.11)

Combining (A.10) and (A.11), I have finished the proof of the Theorem.

Proof of Theorem 2. In order to show (2.9), one shows√
nh1

{
g1(x) − g(x) − hp+1

1 b∗1(x)
}

D→ N {0, v∗1(x)} , (A.12)

√
nh1 {ĝ1(x) − g1(x)} → 0, (A.13)

respectively. To prove (A.12), one uses arguments similar to those used in the
proof of Theorem 1 which easily yield the bias formula of b∗1(x) in (2.10). To
derive the variance formula of v∗1(x), notice the noise term in g1(x) − g(x) is

1
nϕ1(x)

n∑
i=1

K∗
0,h1

(Xi1 − x)σ(Xi)εi {1 + op(1)} ,
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whose variance is

1
nϕ2

1(x)
EK∗2

0,h1
(X11 − x)σ2(X1)ε2

1 {1 + o(1)}

=
1

nϕ2
1(x)

∫
K∗2

0,h1
(u1 − x)σ2(u)ϕ(u)du {1 + o(1)}

=
1

nϕ2
1(x)h1

∫
K∗2

0 (v)σ2(x + h1v, z)ϕ(x + h1v, z)dvdz {1 + o(1)}

=
v∗1(x)
nh1

+ o

(
1

nh1

)
according to the definition of v∗1(x) in (2.10).

To prove (A.13), note by definitions in (2.6), (2.5), (2.8) and (2.7),

ĝ1(x) − g1(x) = E′
0

(
Z ′

1W1Z1
)−1

Z ′
1W1

(
Ỹ1 − Y1

)
= E′

0

(
Z ′

1W1Z1
)−1

Z ′
1W1

[
d∑

α=2

cα(γ) {g(Xiα) − ĝ(Xiα)}
]n

i=1

which, according to the decomposition formula (A.7) and equations (A.10) and
(A.9), equals Be + Ve, where

Be=
1

n2ϕ1(x)

n∑
i=1

K∗
0,h1

(Xi1−x)
d∑

α=2

cα(γ)
Λ0,p+1,γg

(p+1)(Xiα)
(p+1)!

hp+1 {1+op(1)} ,

(A.14)

Ve=
1

n2ϕ1(x)

n∑
i=1

n∑
j=1

K∗
0,h1

(Xi1−x)
d∑

α=2

cα(γ)
K∗

0,γ,h(Xj−Xiα)
ϕ(Xiα)

σ(Xj)εj{1+op(1)}. (A.15)

Under the assumption that h/h1 → 0, it is clear from (A.14) that the extra bias
term Be = op

(
hp+1

1

)
.

The extra noise term Ve is comprised of sums of diagonal and off-diagonal
terms:

Ved=
1

n2ϕ1(x)

n∑
i=1

K∗
0,h1

(Xi1−x)
d∑

α=2

cα(γ)
K∗

0,γ,h(Xi−Xiα)
ϕ(Xiα)

σ(Xi)εi {1+op(1)} , (A.16)

Veod=
1

n2ϕ1(x)

n∑
i,j=1,i�=j

K∗
0,h1

(Xi1−x)
d∑

α=2

cα(γ)
K∗

0,γ,h(Xj−Xiα)
ϕ(Xiα)

σ(Xj)εj {1+op(1)} .

(A.17)
The diagonal sum Ved is a mean zero sample mean whose variance is
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EV 2
ed =

1
n3ϕ2

1(x)
E

{
K∗

0,h1
(X11−x)

d∑
α=2

cα(γ)
K∗

0,γ,h(X1−X1α)
ϕ(X1α)

σ(X1)

}2

{1+o(1)}

=
1

n3ϕ2
1(x)

∫ {
K∗

0,h1
(u1−x)

d∑
α=2

cα(γ)
K∗

0,γ,h(u−uα)
ϕ(uα)

σ(u)

}2

ϕ(u)du {1+o(1)}.

After doing a change of variable u1 − x = h1v, this becomes

=
1

n3h1ϕ2
1(x)ϕ2(x)

∫ {
K∗

0 (v)
d∑

α=2

cα(γ)
K∗

0,γ,h(u−uα)
ϕ(uα)

σ(u)

}2

ϕ(x+h1v, u2, . . . , ud)

dvdu2 · · · dud {1+o(1)}
= O

(
1

nh1nhdnhd

)
= o

(
1

nh1

)
,

because nhd → ∞.
The variance of the off-diagonal sum Ved is

EV 2
eod=

{1 + o(1)}
n2ϕ2

1(x)ϕ2(x)
E

{
K∗

0,h1
(X11−x)

d∑
α=2

cα(γ)
K∗

0,γ,h(X2−X1α)
ϕ(X1α)

σ(X2)ε2

}2

+
{1 + o(1)}

nϕ2(x)ϕ2(x)
× E

[
K∗

0,h1
(X11 − x)K∗

0,h1
(X21 − x)

×
{

d∑
α=2

cα(γ)
K∗

0,γ,h(X3−X1α)
ϕ(X1α)

}{
d∑

α=2

cα(γ)
K∗

0,γ,h(X3−X2α)
ϕ(X2α)

}
σ2(X3)ε2

3

]

=
{1+o(1)}
n2ϕ2

1(x)

∫
E

{
K∗

0,h1
(v1−x)

d∑
α=2

cα(γ)
K∗

0,γ,h(u−vα)
ϕ(vα)

σ(u)

}2

ϕ(u)duϕ(v)dv

+
{1+o(1)}
nϕ2

1(x)
×
∫

K∗
0,h1

(u1−x)K∗
0,h1

(v1−x)

{
d∑

α=2

cα(γ)
K∗

0,γ,h(w−uα)
ϕ(uα)

}

×
{

d∑
α=2

cα(γ)
K∗

0,γ,h(w−vα)
ϕ(vα)

}
σ2(w)ϕ(u)duϕ(v)dvϕ(w)dw.

After applying appropriate changes of variables, this is O
(
n−1h−1

1 n−1h−d+n−1
)
=

o
(
n−1h−1

1

)
. Having shown that both Ved in (A.16) and Ved in (A.17) have vari-

ances of order o
(
n−1h−1

1

)
, it follows that Ve in (A.15) is of order o

(
1/
√

nh1
)
.

Now since both Be and Ve are of order o
(
1/
√

nh1
)
, (A.13) is proved, and hence

(2.9).
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Proof of Theorem 3. First note that L(γ ′) apparently allows the following
decomposition:

L(γ ′)=
1
n

n∑
i=1

{
m(Xi) − ĝγ′(Xi1) − c2(γ′)ĝγ′(Xi2) − · · · − cd(γ ′)ĝγ′(Xid)

}2
π(Xi)

+
2
n

n∑
i=1

{
m(Xi)−ĝγ′(Xi1)−c2(γ ′)ĝγ′(Xi2)−· · ·−cd(γ′)ĝγ′(Xid)

}
σ(Xi)εiπ(Xi)

+
1
n

n∑
i=1

σ2(Xi)ε2
i π(Xi),

where the third term does not affect the minimization, and the second term is
asymptotically normal with

√
n-rate uniformly for all γ′ ∈ Γ. So one is interested

in minimizing the first term, which is equivalent to minimizing

L1(γ ′)=
∫ {

m(w) − ĝγ′(w1) − c2(γ ′)ĝγ′(w2) − · · · − cd(γ ′)ĝγ′(wd)
}2

π(w)dw

=
∫ [{

m(w)−
d∑

α=1

cα(γ′)g(wα)

}
+

d∑
α=1

cα(γ ′) {g(wα)−ĝγ′(wα)}
]2

π(w)dw

=
∫ [ d∑

α=1

{
cα(γ)−cα(γ ′)

}
g(wα)+

d∑
α=1

cα(γ ′) {g(wα)−ĝγ′(wα)}
]2

π(w)dw.

(A.18)

In the following, note hp+1 = o(1/
√

n) and nhd = o(1/
√

n), so one is free to
collect any terms of order hp+1 or nhd into o(1/

√
n).

For general L1(γ ′), start by calculating ĝγ′(·). Using (A.5) of Lemma A.1,(
Z ′

γ′WZγ′
)−1

= ϕ(x)−1S−1
γ′ {I + op(1)} and, by definition (3.1) of ĝγ′(x),

ĝγ′(x) − g(x)

= E′
0

(
Z ′

γ′WZγ′
)−1

Z ′
γ′WY − g(x)E′

0

(
Z ′

γ′WZγ′
)−1

Z ′
γ′WZγ′E0

−
p∑

λ=1

1
λ!

g(λ)(x)hλE′
0

(
Z ′

γ′WZγ′
)−1

Z ′
γ′WZγ′Eλ

=
1

ϕ(x)
E′

0S
−1
γ′ Z ′

γ′W

{
Y − g(x)Zγ′E0 −

p∑
λ=1

1
λ!

g(λ)(x)hλZγ′Eλ

}
{1 + op(1)}

= I1 + I2,

I1 =
{1 + op(1)}

nϕ(x)

n∑
i=1

K∗
0,γ′,h(Xi − x)

d∑
α=1

[
cα(γ)g(Xiα) − cα(γ ′)

×
{

g(x) +
p∑

λ=1

1
λ!

g(λ)(x) (Xiα − x)λ

}]
,
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I2 =
1

nϕ(x)

n∑
i=1

K∗
0,γ′,h(Xi − x)σ(Xi)εi {1 + op(1)} ,

by (A.6). The term I1 is then calculated the same way as in the case when the
correct parameter γ is used, successively

I1=
{1+op(1)}

nϕ(x)

n∑
i=1

K∗
0,γ′,h(Xi−x)

d∑
α=1

cα(γ ′)

{
g(Xiα)−g(x)−

p∑
λ=1

1
λ!

g(λ)(x)(Xiα−x)λ
}

+
{1 + op(1)}

nϕ(x)

n∑
i=1

K∗
0,γ′,h(Xi − x)

d∑
α=1

{
cα(γ) − cα(γ ′)

}
g(Xiα),

I1=
Λ0,p+1,γ′g

(p+1)(x)
(p + 1)!

hp+1 + op(hp+1)

+
{1 + op(1)}

ϕ(x)

∫
K∗

0,γ′,h(w − x)
d∑

α=1

{
cα(γ) − cα(γ ′)

}
g(wα)ϕ(w)dw.

=
{1+op(1)}

ϕ(x)

∫
K∗

0,γ′(u)
d∑

α=1

{
cα(γ)−cα(γ ′)

}
g(x+huα)ϕ(x+hu)du+op(

1√
n

)

=g(x)
∫

K∗
0,γ′(u)

d∑
α=1

{
cα(γ) − cα(γ ′)

}
du {1 + op(1)}+op(

1√
n

)

=g(x)
∑d

α=1 {cα(γ) − cα(γ′)}∑d
α=1 cα(γ′)

{1 + op(1)}+op(
1√
n

).

Meanwhile, it is easy to verify by U-statistic arguments that I2
2 , when inte-

grated, is of order nhd, and hence op(1/
√

n). Using these properties of ĝγ′(·) and
(A.18), L1(γ′) is

∫ [ d∑
α=1

{
cα(γ)−cα(γ ′)

}
g(wα)−

d∑
α′=1

{cα′(γ)−cα′(γ ′)}
d∑

α′=1
cα′(γ ′)

d∑
α=1

cα(γ ′)g(wα)
]2

π(w)

dw {1 + op(1)}

=

{
d∑

α′=1

cα′(γ ′)
}−2∫  d∑

α,α′=1

{
cα′(γ′)cα(γ)−cα′(γ)cα(γ′)

}
g(wα)

2

π(w)dw{1+op(1)}

≥ C ′ ∥∥γ − γ′∥∥2 {1 + op(1)}



820 LIJIAN YANG

for all γ′ ∈ Γ, based on (A.2) and (A.1). Now note that

L1(γ)

=
∫ [ d∑

α=1

cα(γ) {g(wα) − ĝγ(wα)}
]2

π(w)dw

=
∫ [ d∑

α=1

cα(γ)

{
b(wα)hp+1+

1
nϕ(wα)

n∑
i=1

K∗
0,γ,h(Xi−wα)σ(Xi)εi

}]2

π(w)dw{1+op(1)}

=op(h2p+2)+
∫ { d∑

α=1

cα(γ)
1

nϕ(wα)

n∑
i=1

K∗
0,γ,h(Xi−wα)σ(Xi)εi

}2

π(w)dw

=Op(1/n).

This implies Op(1/n) = L1(γ) ≥ L1(γ̂) ≥ C ′ ‖γ − γ̂‖2 {1 + op(1)}, which
entails that

‖γ − γ̂‖ = Op(1/
√

n). (A.19)

One can then use (A.19) and proceed by routine differentiation of L1(γ ′) to
obtain the asymptotic normality (3.4) of γ̂.
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