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Abstract: Recently Fan and colleagues have proposed two measures of the strength

of dependency between failure time variates over a finite region of the sample space;

namely, an average relative risk measure and a finite region version of Kendall’s

tau. Here, these dependency measures are generalized to accommodate regres-

sion effects on marginal hazard functions. Specifically, the dependency measures

previously proposed are applied to possibly censored, estimated cumulative hazard

variates, calculated under Cox model marginal hazard function models. The result-

ing dependency estimators use a nonparametric estimator of the bivariate survivor

function and are shown to be consistent and asymptotically normally distributed,

with consistent bootstrap variance estimators, for certain classes of covariates. The

small sample properties of the estimators, and their variance estimators, are ex-

amined in simulation studies and the estimators are compared to corresponding

homogeneous dependency estimators that do not condition on covariates.
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1. Introduction

The statistical analysis of multivariate failure time data typically includes
characterization of the pairwise dependence between failure time variates. For ex-
ample, a difference in strength of disease association between monozygotic (MZ)
and dizygotic (DZ) twins may suggest a genetic component to disease risk. Most
previous approaches to estimating a summary measure of association (Clayton
and Cuzick (1985), Oakes (1982, 1986), Hsu and Prentice (1996)) assume a semi-
parametric bivariate failure time model in which a single parameter is assumed
to govern the association between the two failure times. The model of Clayton
(1978) is the most popular and most studied in this category, but it makes the
rather strong assumption that the so-called cross ratio (Clayton (1978), Oakes
(1989)) is constant over time. Hence, there is a need for nonparametric measures
of association that do not impose assumptions on the form of the bivariate sur-
vivor function. In the presence of independent right censoring, the support for
failure time variates (T1, T2) may be restricted, and measures that express the
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dependence between T1 and T2 over a finite region [0, t1]× [0, t2] are of particular
interest. One approach to the development of finite region dependency measures
is to consider a weighted average of some readily interpreted local dependency
measure over such a region.

Recently Fan, Hsu and Prentice (2000a) have proposed two finite region
dependency measures. One, an average relative risk measure, is given by

C(t1, t2) =
∫ t1

0

∫ t2

0
c(s1, s2) F (ds1, ds2) /

∫ t1

0

∫ t2

0
F (ds1, ds2), (1)

where F (s1, s2) = P (T1 > s1, T2 > s2) is the joint survivor function for (T1, T2),
F (ds1, ds2) is the corresponding density function and

c = F (ds1, s−2 ) F (s−1 , ds2)/{F (ds1, ds2) F (s−1 , s
−
2 )} (2)

is the reciprocal of the cross ratio function (Clayton (1978), Oakes (1989)). It can
also be written c = λ1(s1 | T2 ≥ s2)/λ1(s1 | T2 = s2) = λ2(s2 | T1 ≥ s1)/λ2(s2 |
T1 = s1), where λ1 and λ2 are hazard functions, explaining the relative risk
terminology. The other is an average concordance measure

T (t1, t2) =
∫ t1
0

∫ t2
0 F (ds1, ds2)F (s−1 , s

−
2 ) −

∫ t1
0

∫ t2
0 F (ds1, s−2 )F (s−1 , ds2)∫ t1

0

∫ t2
0 F (ds1, ds2)F (s−1 , s

−
2 ) +

∫ t1
0

∫ t2
0 F (ds1, s−2 )F (s−1 , ds2)

= E{sign(T11 − T21)(T12 − T22) | T11 ∧ T21 ≤ t1, T12 ∧ T22 ≤ t2}, (3)

where (T11, T12) and (T21, T22) are independent variates with survivor function
F , and “∧” denotes minimum. Note that T (t1, t2) takes values in [−1, 1] and
approaches Kendall’s τ as t1, t2 → ∞ in the absence of cersoring. Nonparametric
dependence estimators were obtained by inserting nonparametric estimators (e.g.,
Dabrowska (1988), Prentice and Cai (1992)) of the bivariate survivor function
and empirical estimators of the bivariate cumulative hazard functions into (1)
and (3). These estimators, as a function of (t1, t2), were shown to be strongly
consistent and weakly convergent to a Gaussian process, and the asymptotic
validity of the bootstrap was shown. Corresponding results for a more general
class of estimators are given in Fan, Prentice and Hsu (2000b).

In this article we generalize the dependence measures of Fan et al. (2000a)
to allow for covariate effects on marginal hazard rates. Beyond the usual inde-
pendent censorship assumption, our principal assumption is that the joint dis-
tribution of marginal cumulative hazard variates, which have unit exponential
marginal distributions if the failure times are absolutely continuous, is indepen-
dent of covariates. We comment in the Discussion section that this assumption
may be relaxed. Cox (1972) model marginal hazard functions are also assumed
for convenience. The average relative risk and finite region concordance measures
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of Fan et al. (2000a) are then applied to the estimated cumulative hazard vari-
ates, following the estimation of Cox model regression parameters and baseline
hazard functions. The resulting estimators have an attractive interpretation as
estimators of interpretable nonparametric dependency measures for the standan-
dized (unit exponential) variates that, by their construction, have accommodated
regression effects on marginal hazard rates. These estimators are shown to have
similar asymptotic properties to those previously given for homogeneous failure
times under i.i.d. sampling and standard regularity conditions, provided the sup-
port of the covariates is a finite set. Simulation results suggest that this latter
assumption is unlikely to be necessary, and indicate that the small sample per-
formance of the covariate-accommodated dependence estimates is similar to that
for the corresponding homogeneous data estimators. Finally, simulation results
are used to illustrate the major differences that may arise between dependence
measure estimates that do or do not allow for covariate effects on marginal hazard
rates.

2. Marginal Proportional Hazards Models

Suppose that the observed data consist of {Xki, δki, Zki}, i = 1, 2; k =
1, . . . ,K, where Xki = Tki ∧ Uki, the minimum of the failure time and the cen-
soring time; δki = I{Xki=Tki}; and Zki is a fixed vector of covariates. If Tki is
missing, let Uki = 0. This implies that Xki = 0 and δki = 0. By doing so, we
allow the rate of missingness to depend on covariate values at time zero. As
usual the failure times Tk = (Tk1, Tk2) are assumed to be independent of the po-
tential censoring times Uk = (Uk1, Uk2) given covariate values Z ′

K = (Z ′
k1, Z

′
k2).

Furthermore, we assume that (Tk1, Tk2, Uk1, Uk2, Z
′
k1, Z

′
k2)

′, k = 1, . . . ,K, are in-
dependent replicates of random variables (T1, T2, U1, U2, Z

′
1, Z

′
2). Suppose that

the marginal hazard rate for the ith individual in the kth pair follows a propor-
tional hazards model (Cox, 1972)

λki(t;Zk) = λ0i(t)eβ
′
0Zki , t ≥ 0 (4)

where Z ′
ki = (Zki1, . . . , Zkip) is a p-dimensional covariate vector, λ0i is an un-

known and unspecified baseline hazard pertaining to the ith member of each
pair, and β0 is a p-vector of unknown regression coefficients. Note that this
model does allow distinct failure-specific regression coefficients (different β0’s for
i = 1, 2) by a suitable definition of Zki on the right side of (4) and that a straight-
forward extension of the methods presented here, in conjunction with the results
of Lee, Wei and Amato (1992), would apply if the baseline hazard functions λ01

and λ02 were restricted to be equal.
If, in addition, Tk1 and Tk2, given ZK , were assumed to be statistically

independent of each other for each k = 1, . . . ,K, the partial likelihood function
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for β based on data from the K pairs of individuals could be written in counting
process notation as

L(β) =
K∏

k=1

2∏
i=1

∏
t≥0

[
eβ

′Zki∑K
l=1 Yli(t)eβ

′Zli
]Nki(dt) ,

where Yki(t) = I{Xki ≥ t} and Nki(t) = I{Xki ≤ t, δki = 1} for t ≥ 0, i = 1, 2
and k = 1, . . . ,K, and where I{·} is an indicator function. Wei, Lin and Weissfeld
(1989) proposed that, in the dependent failure time case, β0 still be estimated by
β̂ that maximizes L(β). It can be shown that this estimator β̂ is consistent and
asymptotically Gaussian (e.g., Wei, Lin and Weissfeld (1989), Cai and Prentice
(1995)) under departure from the independence of Tk1 and Tk2 given Zk, though
it is typically not semiparametrically efficient.

Under (4), the cumulative marginal hazard function Λki(t) can be estimated
by Λ̂ki(t) = eβ̂

′ZkiΛ̂0i(t; β̂), where Λ̂0i is the Breslow (1972, 1974) cumulative
hazard estimator

Λ̂0i(t;β) =
∫ t

0

∑K
k=1Nki(du)∑K

k=1 Yki(u)eβ
′Zki

. (5)

It can be shown that the estimator Λ̂0i(t; β̂) is uniformly consistent for Λ0i(t) for
t ≤ r, where r = (r1, r2) satisfies P{X1 ≥ r1,X2 ≥ r2) > 0. The proof follows
the arguments of Andersen and Gill (1982) and is not presented here.

3. Covariate-Adjusted Average Relative Risk Estimator and a Finite
Region Version of Kendall’s τ

The average relative risk dependency measure (1) can be adjusted to accom-
modate covariate effects on marginal hazard rates by defining

CΛ(t1, t2) =
∫ t1

0

∫ t2

0
cΛFΛ(ds1, ds2)/

∫ t1

0

∫ t2

0
FΛ(ds1, ds2), (6)

where FΛ (s1, s2) = P {Λ1 (T1 ) > s1, Λ2 (T2 ) > s2 }. Note that Λi (Ti ) =∫ Ti
0 λ0i(ui)eβ

′
0Zidui is the “standardized” cumulative hazard variate that is dis-

tributed as exponential(1) for absolutely continuous Ti, and that {Λ1(T1),Λ2(T2)}
is assumed to be independent of Z ′ = (Z ′

1, Z
′
2) (see Discussion for relaxation of

this assumption). Also cΛ is the cross ratio function in (2) with F replaced by
FΛ, and (t1, t2) is in the support of {Λ1(X1),Λ2(X2)}, so that P{Λ1(T1) ≥ t1,
Λ2(T2)≥ t2, Λ1(U1)≥ t1, Λ2(U2)≥ t2} > 0. Define HΛ =(H11

Λ ,H10
Λ ,H01

Λ ) with

H11
Λ (t1, t2) =

∫ t1

0

∫ t2

0
P{Λ(T ) ∈ [s, s+ ds) | Λ(T ∧ U) ≥ s},

H10
Λ (t1, t2) =

∫ t1

0
P{Λ1(T1) ∈ [s1, s1 + ds1) | Λ(T ∧ U) ≥ s},
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H01
Λ (t1, t2) =

∫ t2

0
P{Λ2(T2) ∈ [s2, s2 + ds2) | Λ(T ∧ U) ≥ s},

where s = (s1, s2), Λ(T ) ∈ [s, s + ds) represents Λ1(T1) ∈ [s1, s1 + ds1) and
Λ2(T2) ∈ [s2, s2 + ds2), etc. Then (6) can be rewritten as

CΛ(t1, t2)=
∫ t1

0

∫ t2

0
H10

Λ (ds1, s2)H01
Λ (s1, ds2)FΛ{

∫ t1

0

∫ t2

0
FΛ(s1, s2)}−1.

Since FΛ is a Hadamard differentiable functional of HΛ (Dabrowska (1989), Gill,
van der Laan and Wellner (1995)), one has CΛ = Φ(HΛ), where the functional Φ
is a special case of that considered in Fan et al. (2000a, 2000b).

A natural estimator of CΛ is given by ĈΛ=Φ(ĤΛ), where ĤΛ=(Ĥ11
Λ , Ĥ10

Λ , Ĥ01
Λ )

with

Ĥ11
Λ (t1, t2) =

∫ t1

0

∫ t2

0

1
K

∑K
k=1 I(Λ̂k(Tk) ∈ [s, s+ ds), Λ̂k(Uk) ≥ s)
1
K

∑K
k=1 I(Λ̂k(Tk) ≥ s, Λ̂k(Uk) ≥ s)

and similar expressions for Ĥ10
Λ (t1, t2) and Ĥ01

Λ (t1, t2), and where Λ̂ki (t) =
eβ̂

′ZkiΛ̂0i(t; β̂) and Λ̂0i is the Breslow estimator as given in (5). Note that in the
absence of covariates, one has CΛ(t1, t2) = C{Λ−1

1 (t1),Λ−1
2 (t2)} and ĈΛ(t1, t2) =

Ĉ{Λ̂−1
1 (t1), Λ̂−1

2 (t2)}.
A regression generalization can also be developed for the finite region con-

cordance measure (3) by considering a general hazard function HΛ with respect
to Λ1(T1) and Λ2(T2). Similarly, TΛ = Ψ(HΛ), with Ψ a uniformly Hadamard
differentiable function, which can be estimated by T̂Λ = Ψ(ĤΛ). In the ab-
sence of covariates one has TΛ(t1, t2) = T {Λ−1

1 (t1),Λ−1
2 (t2)} and T̂Λ(t1, t2) =

T̂ {Λ̂−1
1 (t1), Λ̂−1

2 (t2)}.

4. Asymptotic Properties of the Proposed Estimators

In this section we state strong consistency, weak convergence and asymptotic
validity of the bootstrap results for the covariate-adjusted average relative risk
estimator ĈΛ and outline the proofs, with much of the technical details deferred
to the Appendices. The asymptotic properties and corresponding proofs for T̂Λ

are essentially the same and are omitted for the sake of brevity.

Theorem 1. [Strong consistency of ĈΛ] Suppose

1. The absolutely continuous failure times (T1, T2) and the censoring times
(U1, U2) are independent given the covariate vectors (Z1, Z2);

2. The joint survivor function for the unit exponential cumulative hazard vari-
ates Λ1(T1) and Λ2(T2), denoted by FΛ, is independent of (Z1, Z2). To avoid
singular distributions FΛ is required to possess a density FΛ(ds1, ds2) relative
to Lebesgue measure;
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3. (Tk1, Tk2, Uk1, Uk2, Z
′
k1, Z

′
k2)

′, k = 1, . . . ,K, are independent with the same
distribution as (T1, T2, U1, U2, Z

′
1, Z

′
2);

4. There exist δ = (δ1, δ2) and γ = (γ1, γ2) with 0 < δi < γi, i = 1, 2, such that∫ δ1

0

∫ δ2

0
FΛ(ds1, ds2) > 0, (7)

P{Λ1(T1) ≥ γ1,Λ2(T2) ≥ γ2,Λ1(U1) ≥ γ1,Λ2(U2) ≥ γ2} > 0; (8)

5. The marginal hazard rates λ1(t1 | Z) and λ2(t2 | Z) are of Cox model form
with λi(ti | Z) = λ0i(ti)eβ

′
0Zi, where Z1 and Z2 are time-independent and take

values only in a finite set.
Then ĈΛ(t1, t2) converges to CΛ(t1, t2) almost surely and uniformly for t ∈ [δ, γ].

To prove this strong consistency result for ĈΛ, it suffices to prove the strong
consistency of ĤΛ since ĈΛ = Φ(ĤΛ) and the functional Φ is Hadamard differen-
tiable (and thus continuous). Note in the definition of ĤΛ that the K indicator
functions are not independent because all K pairs are used in estimating Λ̂ki.
Thus the usual laws of large numbers (or central limit theorems) do not apply
here. The indicator functions also complicate the asymptotic distribution theory
for ĈΛ. Since the indicator function is not smooth, Taylor expansion type meth-
ods also do not apply. The key to the asymptotic results for ĈΛ is the lemma
given in Appendix A, which establishes asymptotic equivalence between depen-
dent sums and independent sums. The strong consistency of ĤΛ then follows
from the Glivenko-Cantelli Theorem and the Continuous Mapping Theorem.

Theorem 2. [Weak convergence of ĈΛ and C#
Λ ] Under the conditions of The-

orem 1,
√
K(ĈΛ − CΛ) converges weakly on D[δ, γ] to a Gaussian process and,

given observed data, the bootstrapped process
√
K(C#

Λ − ĈΛ) converges weakly to
the same Gaussian process almost surely, where D[δ, γ] denotes all cadlag func-
tions on [δ, γ].

Using the lemma in Appendix A, it can be shown that
√
K(ĤΛ − HΛ) is

a uniformly Hadamard differentiable functional of empirical processes. Thus
the weak convergence of ĤΛ and H#

Λ (a.s.) follows from the weak convergence of
empirical processes, by using the functional delta-method (e.g., Gill et al. (1995),
van der Vaart and Wellner (1996)). Applying the functional delta-method to Φ
in turn gives the weak convergence of ĈΛ and C#

Λ . See Appendix B for details.
This method does not give an explicit variance formula for ĈΛ due to the

complexity of Φ, which inherits from the complexity of the bivariate survivor
function representations (e.g., Gill et al. (1995)). However, the convergence of
ĈΛ and C#

Λ to the same limiting process implies that a bootstrap procedure can
be used for variance estimation of ĈΛ.
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5. Simulation Study

5.1. Small sample properties of ĈΛ and T̂Λ

The performances of the average relative risk estimator ĈΛ and finite region
concordance estimator T̂Λ were studied in samples of moderate size, when there
were covariate effects on marginal hazards. For simplicity, we restricted ourselves
to the situation where there is only one time-independent covariate for each
individual. The small sample properties of ĈΛ were investigated when (i) Zi, i =
1, 2, take values independently in {0, 1} with P (Z1 = 1) = P (Z2 = 0) = 0.2;
and (ii) Zi, i = 1, 2, follow independent exponential distributions with the same
means as in (i).

Failure times were generated under independence, Clayton (1978) and Frank
(e.g., Genest (1987)) models with unit exponential margins. For example, the
extension of the Frank family model with covariates can be written as

F (t1, t2) = e−t1eβ′Z1 +e−t2eβ′Z2−1+logα{ 1+
(α1−e−t1eβ′Z1 −1)(α1−e−t2eβ′Z2 −1)

α− 1
}.

The failure times (t1, t2) were generated from independent uniform (0, 1) variates
(v1, v2) using transformations t1 = −e−β0z1 log v1, t2 = −e−β0z2 log v2 for the
independence configuration; t1 = (θ− 1)−1 e−β0z1 log {(1− a) + av

−(θ−1)/θ
1 }, t2 =

−e−β0z2log v2, where a = v
−(θ−1)
2 for the Clayton model with θ = 4; and t1 =

−e−β0z1log v1, t2 = −e−β0z2log(logα[a/{a + (1 − α)v2}]), where a = αv1 + (α −
αv1)v2 for the Frank family model with α = 0.0023. The value α = 0.0023 was
chosen for the Frank family to give CΛ(0.6931, 0.6931) = 0.25 in order to match
the constant cΛ(t1, t2) = CΛ(t1, t2) = 0.25 for all t1, t2 under the Clayton model,
0.6931 being the median of the unit exponential distribution. Covariate values
were obtained by transforming independent uniform (0, 1) variates.

The censoring distribution was allowed to depend on covariates according
to P (U1 > u1, U2 > u2;Z1, Z2) = e−

u1
2

eβ′Z1e−
u2
2

eβ′Z2 , so that each failure time
still has a marginal probability of 1/3 of being censored. Three sets of 200
simulations were carried out with sample size K = 100 in each configuration.
When the performance of the estimator was poor at K = 100, larger sample
sizes were also considered. The bootstrap approximation to the variance was
evaluated based on 50 bootstrap samples. The Newton-Raphson method was
used to find the root of the score equation ∂ logL(β)/∂β = 0 (see Section 2).
The true β0 was specified as 1 throughout, which represents a 2.72-fold increase
in the hazard rate on each margin, for each unit increase in the covariate value.

Table 1 shows simulation summary statistics for the average relative risk
estimator ĈΛ when there is a single exponentially distributed covariate for each
subject. The performance of ĈΛ with Bernoulli distributed covariates was similar,
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and is not shown for the sake of brevity. The entries of Table 1 are the true
values of covariate-adjusted average relative risk CΛ, sample means and sample
standard deviations for ĈΛ, the means of bootstrap standard deviation estimates,
and corresponding estimated coverage rates for nominal 95% confidence intervals,
for values of (t1, t2) in the grid formed by the 25th, 50th and 75th percentiles of
the marginal distributions for Λ1(T1) and Λ2(T2).

Table 1. Simulation summary statistics for the covariate-adjusted average
relative risk estimator ĈΛ at selected percentiles of the unit exponential
marginal distributions for Λ1(T1) and Λ2(T2). Also shown are the average of
bootstrap estimates of standard deviation of ĈΛ, based on 50 bootstrap sam-
ples, and corresponding estimated 95% confidence interval coverage probabil-
ities. Each entry is based on 200 simulation runs of K = 100 pairs of failure
times, with independent exponential censoring times having a mean of two
and time-independent exponentially distributed covariates with E(Z1) = 0.2
and E(Z2) = 0.8. Summary statistics are shown for (T1, T2) independent, as
well as for positively dependent failure times from Clayton and Frank family
models.

Λ1(T1) (T1, T2) Λ2(T2) Percentile

Percentile Distribution 25 50 75

25 Indep. 1.00 1.22 (1.016,2.143,0.950)∗ 1.00 1.08 (0.514,1.030,0.945) 1.00 1.00 (0.309,0.463,0.935)

Clayton 0.25 0.27 (0.108,0.129,0.945) 0.25 0.27 (0.080,0.086,0.955) 0.25 0.27 (0.085,0.081,0.960)

Frank 0.20 0.22 (0.068,0.084,0.955) 0.22 0.23 (0.065,0.073,0.955) 0.23 0.24 (0.070,0.076,0.935)

50 Indep. 1.00 1.06 (0.504,0.911,0.920) 1.00 1.01 (0.278,0.315,0.940) 1.00 0.96 (0.209,0.219,0.910)

Clayton 0.25 0.26 (0.077,0.080,0.960) 0.25 0.27 (0.063,0.063,0.945) 0.25 0.27 (0.062,0.065,0.960)

Frank 0.22 0.23 (0.059,0.072,0.960) 0.25 0.26 (0.057,0.063,0.945) 0.28 0.28 (0.063,0.071,0.945)

75 Indep. 1.00 0.99 (0.312,0.517,0.915) 1.00 0.97 (0.227,0.225,0.910) 1.00 0.92 (0.177,0.153,0.845)

Clayton 0.25 0.26 (0.073,0.074,0.945) 0.25 0.27 (0.062,0.063,0.965) 0.25 0.28 (0.064,0.069,0.975)

Frank 0.23 0.24 (0.069,0.077,0.935) 0.28 0.28 (0.064,0.073,0.930) 0.33 0.33 (0.075,0.080,0.955)

∗ Entries are the true value of covariate-adjusted average relative risk CΛ, the mean of covariate-adjusted
average relative risk estimates ĈΛ, and in parentheses the sample standard deviation of ĈΛ, the average
of bootstrap standard deviation estimates, and the estimated coverage probabilities for nominal 95%
confidence intervals for CΛ given by ĈΛ ± 1.96 (bootstrap standard deviation).

One sees that the covariate-adjusted average relative risk estimators, boot-
strap variance estimators and 95% coverage probabilities seem to be fairly accu-
rate under the positively dependent Clayton and Frank models for (T1, T2). The
slight overestimation by ĈΛ under the Clayton model can be mostly corrected by
increasing sample size to K = 200 (not shown). As was the case without covari-
ates (Fan et al. (2000a)), ĈΛ appears to be positively biased at smaller values of
(t1, t2) and negatively biased at larger values of (t1, t2) if T1 and T2 are indepen-
dent. The inadequacy of the asymptotic approximation to the distribution of ĈΛ
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under independence seems to be related to the small number of double failures
in [0, t1]× [0, t2] for small t1 and t2 and to the high probability of empty risk set
at large t1 and t2, as discussed in detail in Fan et al. (2000a). The performance
of ĈΛ under independence can be improved by increasing sample size. Note that
continuously distributed covariates were used in these simulations. Hence, the
simulation results seem to suggest that the Theorem 1 and 2 condition that the
covariates take values only from a finite set may be able to be relaxed.

A logarithmic transformation to ĈΛ seems beneficial for enhancing asymp-
totic distributional approximations at small (t1, t2) values. For example at K =
100 and T1 and T2 independent, the sample mean of log ĈΛ(0.2877, 0.2877),
0.2877 being the 25th percentile of the distribution for Λ1(T1) and Λ2(T2), was
0.02, in agreement with the theoretical value of 0.00; the sample standard devi-
ation was 0.55, in agreement with the bootstrap standard deviation estimate of
0.55; and the estimated 95% confidence interval coverage probability was 0.940,
based on 200 simulation runs and 50 bootstrap samples. As a “rule of thumb”
based on our simulation studies, the logarithmic transformation may lead to
useful improvements to asymptotic approximations when the number of doubly
uncensored failures in the integration region is under ten.

Simulations were also carried out with binary covariates when there was
no covariate effect on the marginal survivor functions, in which case the true
regression coefficient β0 was specified as 0. The sample means and variances
(not shown) for ĈΛ when the regression coefficient β0 was estimated from the
data, were comparable to the corresponding sample means and variances (Fan
et al. (2000a), Table 1) for Ĉ, the corresponding non-regression dependence es-
timate, under all three configurations.

As discussed in Section 1, an important feature of our approach is that it
can quantify association between two failure times for any region in the support
of the observed failure times, while most previous approaches only estimate a
single association parameter. For comparison, the association between T1 and T2

was also estimated in simulations, assuming that they follow the Clayton model
(Clayton (1978), Clayton and Cuzick (1985))

F (t1, t2) = {e−t1(1−θ) + e−t2(1−θ) − 1}1/(1−θ). (9)
The concordance estimator (Oakes (1986)) was used for the estimation of the as-
sociation parameter in (9). In particular, let (Ti1, Ti2) and (Tj1, Tj2) be the under-
lying failure times for the ith and jth pairs and let ∆ij = sign(Ti1−Tj1)(Ti2−Tj2),
i.e., ∆ij = 1 for concordant pairs and 0 for discordant pairs. The concordance
estimator of the association parameter in (9) can be written as∑

i<j

∆ijZij

∑
i<j

(1 − ∆ij)Zij

, (10)
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where Zij = 1 if the sign of (Ti1 − Tj1)(Ti2 − Tj2) can be determined by the
observed data and 0 otherwise.

The sample mean and sample standard deviation of estimator (10) were cal-
culated in the same simulations as in Tables 1 and 2. The results corresponding
to Table 1 are 1.00 (0.217), 0.26 (0.060) and 0.25 (0.051), respectively, under
independence, Clayton and Frank family models. Hence, the estimates seem to
be accurate when the assumed model is correct, with somewhat smaller standard
deviations than our nonparametric estimators. However, when the true under-
lying model is not of the Clayton model form (9), one arrives at some kind of
average of the true cross ratios which typically will depend on follow-up dura-
tions. Moreover, the association parameter estimate will depend on the censoring
distribution when the data are not from the Clayton’s model, as is evident from
simulation results based on the same data as for Table 2. Specifically, the sample
means and sample standard deviations are 0.51 (0.048), 0.60 (0.068) and 0.65
(0.097), respectively, under our no, light and heavy censoring configurations.

Table 2. Simulation summary statistics for T̂Λ, the covariate-adjusted finite
region version of Kendall’s τ , at various percentiles of the unit exponen-
tial marginal distributions for Λ1(T1) and Λ2(T2). Also shown are average
of bootstrap estimates of the standard deviation of T̂Λ, based on 50 boot-
strap samples, and corresponding estimated 95% confidence interval coverage
probabilities. Each entry is based on 200 simulation runs of K = 100 pairs
of failure times, with time-independent exponentially distributed covariates
having means of 0.2 and 0.8. Summary statistics are shown for (T1, T2) from
a Frank family model under three censoring conditions: no censoring, “light”
censoring in which T1 and T2 have a probability of 1/3 of being censored,
and “heavy” censoring under which these marginal censoring probabilities
are 2/3.

Λ1(T1) Λ2(T2) Percentile

Percentile Censoring 25 50 75

25 No 0.67 0.65 (0.076,0.087,0.955)∗ 0.65 0.63 (0.071,0.073,0.940) 0.64 0.62 (0.072,0.072,0.955)

Light 0.64 (0.088,0.098,0.965) 0.62 (0.085,0.082,0.930) 0.62 (0.081,0.080,0.945)

Heavy 0.63 (0.111,0.129,0.985) 0.61 (0.115,0.114,0.970) 0.60 (0.112,0.114,0.965)

50 No 0.65 0.64 (0.066,0.072,0.945) 0.61 0.60 (0.057,0.056,0.940) 0.59 0.58 (0.056,0.052,0.920)

Light 0.63 (0.079,0.081,0.960) 0.60 (0.069,0.065,0.920) 0.58 (0.064,0.062,0.930)

Heavy 0.63 (0.096,0.110,0.975) 0.59 (0.094,0.103,0.970) 0.57 (0.093,0.107,0.970)

75 No 0.64 0.63 (0.068,0.072,0.940) 0.59 0.58 (0.055,0.054,0.935) 0.56 0.55 (0.049,0.046,0.915)

Light 0.62 (0.083,0.080,0.930) 0.58 (0.070,0.063,0.885) 0.55 (0.061,0.056,0.910)

Heavy 0.62 (0.096,0.108,0.970) 0.57 (0.093,0.105,0.970) 0.55 (0.092,0.108,0.975)

∗ Entries are the theoretical value TΛ, the average of T̂Λ values, and in parentheses the sample standard
deviation of T̂Λ, the average of bootstrap standard deviation estimates, and the estimated coverage
probabilities for nominal 95% confidence intervals for TΛ given by T̂Λ ± 1.96 (bootstrap standard devi-
ation).
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To evaluate the covariate-adjusted finite region version of Kendall’s τ , failure
times were generated according to the extended Frank model as described earlier.
Three censoring schemes were used, namely, no censoring; light censoring as
above with independent censoring variates arising from an exponential regression
model giving marginal censoring probabilities of 1/3; and heavier censoring with
independent exponential regression censoring variates giving a censoring rate of
2/3 on each margin. Table 2 shows summary statistics based on 200 simulation
runs of K = 100 pairs of failure times. The theoretical value of finite region
concordance measure TΛ(t1, t2) decreases as a function of t1 or t2 from 0.67 at
the 25th percentiles of the Λ1(T1) and Λ2(T2) distributions to 0.56 at the 75th
percentiles of the marginal distributions of Λ1(T1) and Λ2(T2), and further to
the usual Kendall’s τ value of 0.52 as t1 and t2 approach infinity. From Table
2, the asymptotic approximations appear to be adequate under these sampling
configurations.

5.2. Comparison between Ĉ and ĈΛ

Some additional simulation studies were carried out to compare the rela-
tive risk summary estimate Ĉ, that does not accommodate regression effects on
marginal hazard rates, to ĈΛ proposed here, that does make such accommoda-
tion.

First, independent unit exponential failure times (T1, T2) were generated with
a single covariate affecting Cox model marginal hazards as in Section 5.1. The
censoring times were also independent exponential variates with covariate effects
incorporated as above so that the marginal censoring probabilities are each one-
third. The regression variable was taken to be common within a pair, so that Z1 =
Z2, and Z1 was sampled from a uniform (0, 3) distribution with corresponding
regression coefficients β01 = β02 = 1. From Table 3 we wee that Ĉ estimates
average about 0.5 implying a positive dependence between T1 and T2 when the
marginal relationship between T1 and T2 is considered without conditioning on
Z. Also in Table 3 we see that ĈΛ estimates average about 1.0 (independence)
indicating that accommodating the regression effects on marginal hazard rates
can yield the more insightful inference that the regression variables appear to
affect the marginal hazards only, with correspondng cumulative hazard variates
approximately independent.

A second simulation was carried out under the Clayton model with θ = 2,
so that CΛ ≡ 0.5, with Z1 and Z2 independent uniform (0, 3) variates and with
other specifications as before. From the lower portion of Table 3 one sees that
ĈΛ values average about 0.5 while Ĉ averages are in the 0.60 to 0.65 range, indi-
cating that a stronger dependence can be identified between cumulative hazard
variates, conditional on covariates, than can be identified between T1 and T2

unconditionally.
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Table 3. Simulation summary statistics for ĈΛ and Ĉ, the relative risk sum-
mary estimates that do and do not adjust for covariate effects on marginal
hazard rates, at various percentiles of the unit exponential marginal distri-
butions for Λ1(T1) and Λ2(T2). Each entry is based on 200 simulation runs
of K = 100 pairs of failure times, with independent exponential regression
censoring variates giving a marginal censoring rate of 1/3. Summary statis-
tics are shown for (T1, T2) under independence, in which case the covariate
is common within a pair and is from a uniform (0, 3) distribution; and for
(T1, T2) from the Clayton model with positive dependence, in which case the
covariates are independent uniform (0, 3) variates.

T1, Λ1(T1) T2, Λ2(T2) Percentile

Scheme Percentile Estimator 25 50 75

Independence 25 Ĉ 1.00 0.53 (0.10)∗ 1.00 0.52 (0.10) 1.00 0.51 (0.09)

ĈΛ 1.22 (1.03) 1.02 (0.36) 0.96 (0.28)

50 Ĉ 1.00 0.53 (0.10) 1.00 0.52 (0.09) 1.00 0.50 (0.08)

ĈΛ 1.05 (0.37) 0.99 (0.25) 0.95 (0.22)

75 Ĉ 1.00 0.51 (0.10) 1.00 0.50 (0.08) 1.00 0.47 (0.08)

ĈΛ 1.01 (0.31) 0.96 (0.22) 0.92 (0.17)

Positive 25 Ĉ 0.50 0.63 (0.19) 0.50 0.65 (0.13) 0.50 0.64 (0.14)

dependence ĈΛ 0.55 (0.30) 0.54 (0.20) 0.53 (0.17)

50 Ĉ 0.50 0.63 (0.18) 0.50 0.65 (0.14) 0.50 0.63 (0.13)

ĈΛ 0.54 (0.21) 0.53 (0.14) 0.54 (0.12)

75 Ĉ 0.50 0.63 (0.19) 0.50 0.65 (0.14) 0.50 0.62 (0.11)

ĈΛ 0.53 (0.17) 0.52 (0.12) 0.53 (0.11) Γ

∗ Entries are the theoretical value C (or CΛ), the sample mean and, in parentheses, sample variance of

Ĉ (or ĈΛ).

6. Discussion

The assumption that the joint distribution of marginal cumulative hazard
variates is independent of covariates could be relaxed by allowing Λ1(T1) and
Λ2(T2) to have a distribution that is stratified, with strata defined by the Z1 and
Z2 values. Provided the number of strata is finite and the stratum probabilities
are nonzero the Appendix arguments could be applied to each stratum, and a
summary dependence estimator could be formed as a weighted linear combination
of the stratum-specific estimators. This stratification approach can be expected
to work well when the sample size is large enough to allow reliable estimation in
each stratum.
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Appendix A

Lemma. Suppose that the assumptions in the statement of Theorem 1 hold, so
that (Tk1, Tk2, Uk1, Uk2, Z

′
k1, Z

′
k2)

′, k = 1, · · · ,K, are independent and identically
distributed, while the covariates Zki are time-independent and take values only
in a finite set {c1, · · · , cd}. Then

K− 1
2

K∑
k=1

I{eβ̂′Zk1Λ̂01(Tk1) ≥ s1, e
β̂′Zk2Λ̂02(Tk2) ≥ s2,

eβ̂
′Zk1Λ̂01(Uk1) ≥ s1, e

β̂′Zk2Λ̂02(Uk2) ≥ s2}

−K− 1
2

K∑
k=1

I{eβ′
0Zk1Λ01(Tk1) ≥ s1, e

β′
0Zk2Λ02(Tk2) ≥ s2,

eβ
′
0Zk1Λ01(Uk1) ≥ s1, e

β′
0Zk2Λ02(Uk2) ≥ s2} →p 0 (A.1)

as K → ∞ uniformly for s1, s2 ∈ R.

Proof. Many subsequent citations and notation are from van der Vaart and
Wellner (1996), hereafter, VW. We deal with the indicator function with only
one of the four inequalities first. Let Mi = {1[h(xi;β,Λi)≥s] : s ∈ R, ‖ β − β0 ‖≤
η, ‖ Λi − Λ0i ‖≤ η}, where xi = (ti, zi) or (ui, zi), and h(xi;β,Λi) = eβ

tziΛi(ti).
Note that the Λ̂0i(t) in (A.1) is uniformly consistent for Λ0i(t) for t in the support
of {Xki} and i = 1, 2. We show that Mi is a Donsker class.

For ease of notation, we omit all the i’s in the function h for the moment. Also
set f(z) = eβ

tz, g(t) = Λ(t), F = {f : ‖ β−β0 ‖≤ η} and G = {g : ‖ Λ−Λ0 ‖≤ η}.
Note that G is a VC-major class since it is a set of bounded monotone functions
from R to R. We claim that F · G = {fg : f ∈ F , g ∈ G} is VC-major, that
is, the sets {(t, z) : f(z)g(t) > r} with f ranging over F , g over G and r over
R form a VC-class of sets {(t, z) : f(z)g(t) > r} =

⋃d
i=1 {(t, ci) : f(ci)g(t) > r}.

For each fixed f and ci, the sign of f(ci) is fixed: it is greater than, equal to, or
less than zero. The sets {(t, ci) : f(ci)g(t) > r} with f ranging over F , g over
G and r over R form a VC-class in each case. For example, if f(ci) < 0, then
{(t, ci) : f(ci)g(t) > r} = {(t, ci) : g(t) < r

f(ci)
}. The sets {(t, ci) : g(t) ≥ r

f(ci)
}

with f ranging over F , g over G and r over R form a VC-class, since G is a
VC-major class. The sets {(t, ci) : g(t) < r

f(ci)
} are the complements of {(t, ci) :

g(t) ≥ r
f(ci)

} and hence form a VC-class. Finally, {(t, z) : f(z)g(t) > r} with f
ranging over F , g over G and r over R form a VC-class of sets following Lemma
2.6.17 (iii) (VW, p.147).

By Lemma 2.6.19 (VW, p.148), the class of functions Mi is VC-major. Since
a bounded VC-major class is a VC-hull class, Mi is Donsker by Corollary 2.6.12
(VW, p.145). The fact that Mi are uniformly bounded gives that

{1
[eβtz1Λ1(t1)≥s1,eβtz2Λ2(t2)≥s2,eβtz1Λ1(u1)≥s1,eβtz2Λ2(u2)≥s2]

:
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s1, s2 ∈ R, ‖ β − β0 ‖≤ η, ‖ Λi − Λ0i ‖≤ η, i = 1, 2}
forms a Donsker class.

Using Lemma 3.3.5 of van der Vaart and Wellner (p.311), the lemma is
established if sups1,s2∈R P (ψβ,Λ1,Λ2,s1,s2−ψβ0,Λ01,Λ02,s1,s2)

2→0 as β→β0, Λi→Λ0i,
i = 1, 2, whereQf ≡

∫
fdQ for a given measurable function f and signed measure

Q, and ψβ,Λ1,Λ2,s1,s2 =
∏2

i=1 1
[eβtZiΛi(Ti)≥si]

1
[eβtZiΛi(Ui)≥si]

. This is true as can be
seen in the following simplified case: for all s, P (1[h(X,β,Λ)≥s]−1[h(X,β0,Λ0)≥s])2 =
P ( 1[h(X,β,Λ)≥s] 1[h(X,β0,Λ0)<s] ) + P ( 1[h(X,β,Λ)<s] 1[h(X,β0,Λ0)≥s] ) → 0 as β → β0,
Λi → Λ0i, i = 1, 2. The corresponding proof for the product of the four indicator
variables proceeds in the same way.

Appendix B. Weak Convergence of ĈΛ and C
#
Λ

First, we want to show
√
K(ĤΛ − HΛ) is asymptotically equivalent to a

uniformly Hadamard differentiable functional of empirical processes under the
conditions of Theorem 1.

Let us consider
√
K(Ĥ11

Λ −H11
Λ ) first.

√
K{Ĥ11

Λ (t1, t2) −H11
Λ (t1, t2)}

=
√
K

∫ t1

0

∫ t2

0

1
Wk(s1, s2)

[
1
K

K∑
k=1

I{Λ̂k1(Tk1)=s1, Λ̂k2(Tk2)=s2, Λ̂k1(Uk1)≥s1,

Λ̂k2(Uk2)≥s2}−P{Λ1(T1)=s1, Λ2(T2)=s2, Λ1(U1)≥s1, Λ2(U2)≥s2}
]

(B.1)

+
√
K

∫ t1

0

∫ t2

0

P{Λ1(T1) = s1,Λ2(T2) = s2,Λ1(U1) ≥ s1,Λ2(U2) ≥ s2}
WkW (s1, s2)

×{Wk(s1, s2)}, (B.2)

where Λ̂ki(Tki) = si in (B.1) is an abbreviation of Λ̂ki(Tki) ∈ [si, si+dsi), i = 1, 2,
and similarly for Λi(Ti) = si in (B.1) and (B.2), and where

Wk =
1
K

K∑
k=1

I{Λ̂k1(Tk1)≥s1, Λ̂k2(Tk2)≥s2, Λ̂k1(Uk1)≥s1, Λ̂k2(Uk2)≥s2},

W = P{Λ1(T1) ≥ s1, Λ2(T2) ≥ s2, Λ1(U1) ≥ s1, Λ2(U2) ≥ s2}.
Term (B.1) is asymptotically equivalent to

√
K

∫ t1

0

∫ t2

0

1
W (s1, s2)

[
1
K

K∑
k=1

I{Λ̂k1(Tk1)=s1, Λ̂k2(Tk2)=s2, Λ̂k1(Uk1)≥s1,

Λ̂k2(Uk2)≥s2}−P{Λ1(T1)=s1, Λ2(T2)=s2, Λ1(U1)≥s1, Λ2(U2)≥s2}
]

(B.3)
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since the difference between these two terms (B.1) and (B.3) is
√
K

∫ t1

0

∫ t2

0
{ 1
Wk(s1, s2)

− 1
W (s1, s2)

}

×
[

1
K

K∑
k=1

I{Λ̂k1(Tk1)=s1, Λ̂k2(Tk2)=s2, Λ̂k1(Uk1)≥s1, Λ̂k2(Uk2)≥s2}

−P{Λ1(T1) = s1,Λ2(T2) = s2, Λ1(U1) ≥ s1, Λ2(U2) ≥ s2}
]
,

which converges in probability to zero following the Continuous Mapping Theo-
rem since W−1

k −W−1 →p 0 uniformly by the lemma in Appendix A (hereafter,
Lemma) and the Glivenko-Cantelli Theorem, and since

√
K

[
1
K

K∑
k=1

I{Λ̂k1(Tk1) ≥ s1, Λ̂k2(Tk2) ≥ s2, Λ̂k1(Uk1) ≥ s1, Λ̂k2(Uk2) ≥ s2}

−P{Λ1(T1) ≥ s1,Λ2(T2) ≥ s2,Λ1(U1) ≥ s1,Λ2(U2) ≥ s2}
]

a=
√
K

[
1
K

K∑
k=1

I{Λk1(Tk1) ≥ s1,Λk2(Tk2) ≥ s2,Λk1(Uk1) ≥ s1,Λk2(Uk2) ≥ s2}

−P{Λ1(T1) ≥ s1,Λ2(T2) ≥ s2,Λ1(U1) ≥ s1,Λ2(U2) ≥ s2}
]

by Lemma

⇒ Z

where a= denotes “asymptotic equivalence” and Z is a Gaussian process.
Term (B.3) is in turn asymptotically equivalent to

√
K

∫ t1

0

∫ t2

0

1
W (s1, s2)

[
1
K

K∑
k=1

I{Λk1(Tk1)=s1, Λk2(Tk2)=s2, Λk1(Uk1)≥s1,

Λk2(Uk2)≥s2}−P{Λ1(T1)=s1, Λ2(T2)=s2, Λ1(U1)≥s1, Λ2(U2)≥s2}], (B.4)

which is a sum of i.i.d. random variables.
By similar arguments, term (B.2) is asymptotically equivalent to

−
√
K

∫ t1

0

∫ t2

0

P{Λ1(T1) = s1,Λ2(T2) = s2,Λ1(U1) ≥ s1,Λ2(U2) ≥ s2}
W 2(s1, s2)

×[
1
K

K∑
k=1

I{Λk1(Tk1) ≥ s1,Λk2(Tk2) ≥ s2,Λk1(Uk1) ≥ s1,Λk2(Uk2) ≥ s2}

−P{Λ1(T1) ≥ s1,Λ2(T2) ≥ s2,Λ1(U1) ≥ s1,Λ2(U2) ≥ s2}], (B.5)

a sum of i.i.d. random variables.
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The asymptotic equivalence between
√
K(Ĥ10

Λ −H10
Λ ),

√
K(Ĥ01

Λ −H01
Λ ) and

sums of i.i.d. random variables can be established in the same way.
Define

B11(t1, t2) =
∫ t1

0

∫ t2

0
P{Λ1(T1) = s1,Λ2(T2) = s2,Λ1(U1) ≥ s1,Λ2(U2) ≥ s2},

B10(t1, t2) =
∫ t1

0
P{Λ1(T1) = s1,Λ2(T2) ≥ t2,Λ1(U1) ≥ s1,Λ2(U2) ≥ t2},

B01(t1, t2) =
∫ t2

0
P{Λ1(T1) ≥ t1,Λ2(T2) = s2,Λ1(U1) ≥ t1,Λ2(U2) ≥ s2},

B00(t1, t2) = P{Λ1(T1) ≥ t1,Λ2(T2) ≥ t2,Λ1(U1) ≥ t1,Λ2(U2) ≥ t2}.

Let B = (B11, B10, B01, B00). Denote the empirical distribution of B by B̂K =
(B̂11

K , B̂
10
K , B̂01

K , B̂
00
K ), with B̂11

K (t1, t2) =
∫ t1
0

∫ t2
0

1
K

∑K
k=1 I{Λ̂k1(Tk1)=s1, Λ̂k2(Tk2)=

s2, Λ̂k1(Uk1)≥s1, Λ̂k2(Uk2)≥s2}, where Λ̂k1(Tk1) = eβ̂
′Zk1Λ̂01(Tk1), etc.

After re-writing the i.i.d. sums in terms of B and B̂K , we get
√
K(Ĥ11

Λ −H11
Λ ) a=

∫ t1

0

∫ t2

0

1
W (s1, s2)

√
K{B̂11

K (ds1, ds2) −B11(ds1, ds2)}

−
∫ t1

0

∫ t2

0

B11(ds1, ds2)
W 2(s1, s2)

√
K{B̂00

K −B00(s1, s2)},

√
K(Ĥ10

Λ −H10
Λ ) a=

∫ t1

0

1
W (s1, t2)

√
K{B̂10

K (ds1, t2) −B10(ds1, t2)}

−
∫ t1

0

B10(ds1, t2)
W 2(s1, t2)

√
K{B̂00

K (s1, t2) −B00(s1, t2)},

√
K(Ĥ01

Λ −H01
Λ ) a=

∫ t2

0

1
W (t1, s2)

√
K{B̂01

K (t1, ds2) −B01(t1, ds2)}

−
∫ t2

0

B01(t1, ds2)
W 2(t1, s2)

√
K{B̂00

K (t1, s2) −B00(t1, s2)}.

Thus we have established that
√
K(ĤΛ −HΛ) is asymptotically equivalent to a

functional, say ϕ, of empirical process
√
K(B̂K −B), where ϕ is defined as above.

The functional ϕ is uniformly Hadamard differentiable by the differentiability of
W �→ 1/W when W > 0 uniformly on [δ, γ] (this is guaranteed by condition
(8) and by Lemma 5.1 of Gill et al. (1995)). The weak convergence of ĈΛ and
C#

Λ follows from the weak convergence of empirical processes and by applying
the functional delta-method (e.g., Gill et al. (1995), van der Vaart and Wellner
(1996)) first to ϕ, then to Φ.
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