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Abstract: Supersaturated experimental designs are often assessed by the E(s2) cri-
terion, and some methods have been found for constructing E(s2)-optimal designs.
Another criterion for assessing experimental designs is discrepancy, of which there
are several different kinds. The discrepancy measures how much the empirical
distribution of the design points deviates from the uniform distribution. Here it
is shown that for 2-level supersaturated designs the E(s2) criterion and a certain
discrepancy share the same optimal designs.
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1. Introduction

In the context of factorial designs, there has been recent interest in the study
of supersaturated designs. Whenever the run size of a design is insufficient for
estimating all the main effects represented by the columns of the design matrix,
the design is called supersaturated. In industrial statistics and other scientific
experiments, especially in their preliminary stages, very often there are a large
number of factors to be studied and the run size is limited because of cost. How-
ever, in many situations only a few factors are believed to have significant effects.
Under this assumption of effect sparsity (Box and Meyer (1986)), supersaturated
designs can be used effectively, allowing the simultaneous identification of the
active factors. Most studies have focused on 2-level supersaturated designs, al-
though recent work by Yamada and Lin (1999) and Fang, Lin and Ma (2000)
has considered multi-level designs. Booth and Cox (1962), in the first system-
atic construction of supersaturated designs, proposed the E(s2) criterion defined
below.

Throughout this paper let X be an n × m matrix of a factorial design with
elements ±1, and rows and columns, identified with the runs and factors re-
spectively. Also assume that each column of X has the same number of ±1
elements, and no two columns are proportional to each other. When n < m + 1,
the design is supersaturated. The commonly used E(s2) criterion for comparing
supersaturated designs is

E(s2) =
2

m(m − 1)

∑
1≤i<j≤m

s2
ij, (1.1)
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where sij is the (i, j)th entry of XT X. The quantity E(s2) is a measure of
non-orthogonality under the assumption that only two out of the m factors are
active. So, it should be minimized. That is, an E(s2)-optimal design minimizes
E(s2) over all possible supersaturated designs of the same size.

After Booth and Cox (1962), there was not much work on the subject of
supersaturated designs until Lin (1993). Other recent work focusing on con-
structions of supersaturated designs includes Wu (1993), Lin (1995), Nguyen
(1996), Tang and Wu (1997), Cheng (1997), Li and Wu (1997), Yamada and Lin
(1997), Lu and Meng (2000) and Liu and Zhang (2000). These papers described
different methods for constructing E(s2)-optimal supersaturated designs. Cheng
(1997) gave a unified treatment of the optimality result of Tang and Wu (1997)
and the optimality of Lin’s half Hadamard matrices.

Another measure used in constructing designs is the discrepancy, D(X)
(Fang and Wang (1994), Fang and Mukerjee, Fang (2000), Lin, Winker and
Zhang (2000), Fang, Ma and Winker (2002)). The discrepancy measures how
much the empirical distribution of the design points departs from the uniform
distribution (Hickernell (1999a)), and so minimum discrepancy designs are often
called uniform designs. The discrepancy has been used to construct space-filling
designs in computer experiments (Bates, Buck, Riccomagno and Wynn (1996)),
and to construct designs for evaluating multiple integrals (Niederreiter (1992)).
Fang and Wang (1994) gave the details of uniform designs and Hickernell (1999b)
described several examples of discrepancies.

This article shows that the E(s2) criterion shares the same optimal designs
with a certain discrepancy. The next section defines discrepancy in general and
constructs a particular discrepancy on the discrete domain {−1, 1}m. Section
2 also shows that for 2-level factorial designs both E(s2) and the discrepancy
defined on {−1, 1}m can be expressed in terms of the Hamming distances between
any two runs of the design. These expressions in terms of Hamming distances lead
to lower bounds on E(s2) and the discrepancy for 2-level supersaturated designs
in Theorem 3 of Section 3. In certain cases considered in Theorem 4 these lower
bounds can be achieved. Moreover, in these cases the E(s2)-optimal designs are
the same as the minimum discrepancy designs, even though the discrepancy is
not equivalent to the E(s2) criterion.

2. Discrepancy and Its Relationship with E(s2)

Most discrepancies that are easy to compute are defined in terms of a sym-
metric, positive definite kernel function, K(x,w), defined on X × X , where
the experimental domain, X , is a measurable subset of Rm. Let F denote
some fixed probability distribution on X , e.g., the uniform distribution. Let
X = (x1, . . . ,xn)T denote any design matrix with n runs (rows) and m factors
(columns), where each design point xi is in X . Let FX denote the empirical
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distribution of this design, i.e., FX (x) = 1
n

∑n
i=1 1[xi,+∞](x), where 1{·}(x) is

the indicator function. Then the discrepancy of the design X with respect to F ,
X , and K, denoted by D(X;K), is defined as (Hickernell, 1999a)

D2(X ;K) =
∫
X 2

K(x,w)d(F − FX )(x)d(F − FX )(w)

=
∫
X 2

K(x,w)dF (x)dF (w)− 2
n

n∑
i=1

∫
X

K(x,xi)dF (x)+
1
n2

n∑
i,j=1

K(xi,xj). (2.1)

For a fixed number of points, n, a design with low discrepancy is preferred.
Many discrepancies have been defined using the unit cube domain, X =

[0, 1]m. In situations where the variables in the experimental domain have a
continuous range of values, it may be reasonable to define the experimental do-
main as [0, 1]m and define the discrepancy there. However, in other situations
one restricts the number of possible levels for each factor to a finite number.
For example, a factor may have only two values (on and off) or three values
(low, medium and high). In these situations it makes more sense to represent
the experimental domain as a discrete set, e.g., X = {−1, 1}m for two levels or
X = {0, . . . , q − 1}m for q levels. A discrepancy of the form (2.1) can be defined
directly on such a discrete domain. Note that for the discrete domain with q lev-
els on each of m factors, a perfect design (in terms of coverage) would be a full
factorial design with qm points that samples every possible point once. For such
a design the discrepancy defined with respect to the discrete domain vanishes.

For a 2-level factorial design with m factors let the experimental domain
be Xd = {−1, 1}m, and let Fd be the uniform distribution corresponding to Xd,
i.e., Fd assigns probability 2−m to each member of this set. Define the following
kernel on X 2

d :

Kd(x,w) =
m∏

k=1

[1 + βK̂d(xk, wk)], for any x,w ∈ Xd, (2.2a)

K̂d(x,w) =

{
1, x = w,

ρ, x �= w,
(2.2b)

β some positive number and −1 ≤ ρ < 1. Then the discrepancy of a 2-level
design with an n × m design matrix X, whose rows are elements of Xd, is

D2(X ;Kd) = −
[
1 +

β(1 + ρ)
2

]m

+
1
n2

n∑
i,j=1

m∏
k=1

[1 + βK̂d(xik, xjk)]. (2.3)

Remark 1. Note that the definition of Kd is independent of the values of the two
levels. Thus, one may change the experimental domain from Xd = {−1, 1}m to



934 MIN-QIAN LIU AND FRED J. HICKERNELL

Xd = {0, 1}m, for example, and use the same definition of Kd to get an equivalent
discrepancy.

Next we show the relationship between discrepancy and E(s2) via Hamming
distance. For an n × m design matrix X with rows xT

i , the Hamming distance
between the ith and jth rows is defined as the number of places where they differ,
i.e., dij =

∑m
k=1 1{xik �=xjk}. Note that dii = 0. Also, note that for supersaturated

designs, since the number of ±1 elements in each column must be the same, it
follows that

n∑
j=1

dij =
mn

2
. (2.4)

The discrepancy D(X ;Kd) in (2.3) and E(s2) may be written in terms of Ham-
ming distance.

Theorem 1. For a supersaturated design X with n runs and m 2-level factors,

E(s2) = −(m + 1)n2

m − 1
+

4
m(m − 1)

∑
1≤i�=j≤n

d2
ij , (2.5)

D2(X;Kd) =−
[
1+

β(1+ρ)
2

]m

+
(1+β)m

n2


n+

∑
1≤i�=j≤n

(
1+ρβ

1 + β

)dij


 . (2.6)

Proof. From the definition of E(s2) in (1.1) and some basic matrix identities it
follows that

E(s2) =
tr(XT XXT X) − mn2

m(m − 1)
=

tr(XXT XXT ) − mn2

m(m − 1)

=
1

m(m − 1)


m2n − mn2 +

∑
1≤i�=j≤n

(m − 2dij)2



=
1

m(m − 1)


m2n2 − mn2 + 4

∑
1≤i�=j≤n

d2
ij − 4m

∑
1≤i�=j≤n

dij


 .

Substituting (2.4) into the above equation yields (2.5).
To derive (2.6) note that, for any runs xT

i and xT
j , one has xik �= xjk for dij

values of k and xik = xjk for m − dij values of k. Thus,

m∏
k=1

[1 + βK̂d(xik, xjk)] = (1 + β)m−dij (1 + ρβ)dij = (1 + β)m
(

1 + ρβ

1 + β

)dij

.

Substituting this into (2.3) gives (2.6).
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3. Bounds on E(s2) and the Discrepancy

Although (2.5) and (2.6) differ, there is enough similarity that under certain
conditions the same design minimizes both. The following lemma and theorem
make this statement precise.

Lemma 2. Let d be an integer vector containing M elements, and let f(d) be
an arbitrary function of d satisfying: (i) f(d) is invariant if any two elements
of d are interchanged, and (ii) f(d) is strictly convex. For any integer α define
fmin = min{f(d) : 1T d = α}, γ = �α/M�, and L = M(γ + 1) − α. Then
fmin = f(dopt), where dopt has L elements with the value γ and M−L = α−Mγ

elements with the value γ + 1.

Proof. First, it is shown that the elements of dopt = (dopt,i) must satisfy

|dopt,i − dopt,j| ≤ 1 for all i, j. (3.1)

Suppose that (3.1) is false, i.e., there exists an i and j such that dopt,i−dopt,j > 1.
Let d1 be obtained from dopt by exchanging the ith and jth elements, and note
that f(d1) = f(dopt) = fmin. Let λ = 1/(dopt,i − dopt,j), and let d2 = (1 −
λ)dopt + λd1. The vector d2 also has integer elements and satisfies 1T d = α.
By the strict convexity assumption f(d2) < (1 − λ)f(dopt) + λf(d1) = fmin, a
contradiction.

Given (3.1) it follows that the elements of dopt must take on the integer
values γ and γ + 1. The condition 1T d = α determines the value of γ and the
number of times γ appears in dopt.

Theorem 3. Let X be a 2-level supersaturated design with n runs and m factors,
let γ = �mn/[2(n − 1)]�, and suppose that ρβ > −1. Then the following lower
bounds hold.

E(s2) ≥ n2(m−n+1)
(m−1)(n−1)

+
4n(n−1)
m(m−1)

[
γ+1− mn

2(n−1)

] [
mn

2(n−1)
−γ

]
, (3.2a)

D2(X;Kd) ≥ −
[
1 +

β(1 + ρ)
2

]m

+
(1 + β)m

n

+
(1 + β)m−γ(1 + ρβ)γ(n − 1)

n

{[
γ + 1 − mn

2(n − 1)

]

+
[

mn

2(n − 1)
− γ

]
1 + ρβ

1 + β

}
. (3.2b)

Proof. The proof proceeds in a straightforward manner by applying Lemma 2.
The result of this lemma is a lower bound, since there is no guarantee from the
lemma that there exist designs X whose Hamming distances satisfy condition
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(3.1). Discrepancy and the E(s2) criterion are functions of d = (dij)i<j . In this
case the parameters in Lemma 2 may be identified as α = mn2/4, M = n(n−1)/2,
γ = �mn/[2(n − 1)]�. Thus, under condition (2.4), Lemma 2 implies that∑

1≤i�=j≤n

d2
ij ≥ 2{Lγ2 + (M − L)(γ + 1)2} = 2{Mγ2 + (M − L)(2γ + 1)}

= 2{Mγ2 + (α − Mγ)(2γ + 1)} = 2{−Mγ(γ + 1) + α(2γ + 1)}

= 2M

{[
γ + 1 − α

M

] [
α

M
− γ

]
+

α2

M2

}
.

Substituting this expression into (2.5) and substituting the values of M and α
gives (3.2a).

To prove (3.2b), note from (2.6) that D(X;Kd) is a strictly convex function
of d = (dij)i<j provided 1 + ρβ > 0, which has been assumed. Substituting γ
for L values of dij and γ + 1 for M − L values of dij leads to (3.2b), after some
straightforward algebraic manipulation.

The lower bound on E(s2) in (3.2a) is a generalization of those obtained
by Nguyen (1996), Tang and Wu (1997), and Cheng (1997). The bound on the
discrepancy is new. It is interesting to note that if a design X can attain one
of the lower bounds above, then it attains both of them. In other words, an
E(s2)-optimal design is also uniform (minimal discrepancy) for the discrepancy
D(X;Kd), provided that ρβ > −1.

For some values of m and n one can show that the lower bounds in Theorem
3 are attainable, i.e., one knows how to construct E(s2)-optimal and minimum
discrepancy designs.

Theorem 4. Let X be a 2-level design with n runs and m factors, where each
column has the same number of ±1 elements. Suppose that ρβ > −1, and that
m = c(n−1)+e for e = −1, 0 or 1. Also, suppose that either (a) n is a multiple of
4 and there exists an n×n Hadamard matrix, or (b) c is even and there exists a
2n×2n Hadamard matrix. Then the lower bounds in Theorem 3 can be attained.

Proof. Note that n must be even because each column of X is assumed to have
the same number of ±1 elements. For the values of m considered here one may
compute

γe =
⌊

mn

2(n − 1)

⌋
=

⌊
cn

2
+

en

2(n − 1)

⌋
=

{
cn/2 − 1, e = −1,
cn/2, e = 0, 1,

Le = M(γe + 1) − α

=
n(n − 1)(γe + 1)

2
− [c(n − 1) + e]n2

4
=




n2/4, e = −1,
n(n − 1)/2, e = 0,
n(n − 2)/4, e = 1.
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For case a let H l = (1, H̃ l), l = 1, . . . , c, be n×n Hadamard matrices, where the
first column of each H l has been normalized to 1, and H̃ l denotes the last n− 1
columns of H l. Define the n× c(n− 1) design matrix to be X0 = (H̃1, . . . , H̃c).
Since the columns of H̃ l are all orthogonal to 1, they each must have the same
number of ±1 elements. Because the rows of each H l are orthogonal, all L0 =
n(n − 1)/2 Hamming distances for this matrix are dij = γ0 for i < j. Thus,
from Lemma 2 and the proof of Theorem 3, it follows that the lower bounds in
Theorem 3 are attained using X0 for m = c(n − 1), i.e., the case e = 0.

For the case of e = −1, define X−1 as all but the last column of X0. Because
the column removed has the same number of ±1 elements, for any fixed i, in
comparison to X0 there are n/2 Hamming distances dij , i �= j, that are reduced
from γ−1 + 1= cn/2 to γ−1 = cn/2 − 1, while the other dij remain unchanged.
Thus, there are a total of L−1 = n2/4 Hamming distances dij , i < j, having the
value γ−1 with the rest having the value γ−1 + 1. Thus, X−1 attains the lower
bounds in Theorem 3.

For the case of e = 1, define X1 as a column with equal numbers of ±1
elements appended to X0. By a similar argument as above, there are now a
total of M −L1=n2/4 Hamming distances dij , i<j, having the value γ1+1, with
the rest having the value γ1. Thus, X1 attains the lower bounds in Theorem 3.

For case b choose c/2 2n × 2n Hadamard matrices

H l =
(

1 1 Hh
l

1 −1 ∗
)

, l = 1, . . . , c/2,

where the n× (2n− 2) matrix Hh
l denotes the upper right part of Hl. Note that

the rows of each H l are orthogonal. Define X0 = (Hh
1 , . . . ,Hh

c/2). Then X0

attains the lower bounds in Theorem 3. Defining X−1 and X1 as in case a also
gives design matrices that attain the lower bounds in Theorem 3.

Remark 2. The construction in case a is due to Tang and Wu (1997), and the
construction in case b is due to Lin (1993). However, here it is shown that these
constructions minimize the discrepancy as well as E(s2).

Remark 3. The constructions above do not guarantee that no two columns of
X are multiples of each other. In many cases one may choose the Hadamard
matrices so that this condition is satisfied. However, if m becomes too large,
e.g., m > n!/[2(n/2)!(n/2)!], then it is impossible to have no two columns of X

be constant multiples of each other.

4. Conclusion

The concept of discrepancy dates back to Weyl (1916). It is used in construct-
ing Kolmogorov-Smirnov and Cramér-von Mises statistics for testing goodness-
of-fit (D’Agostino and Stephens (1986)). In this article it has been shown that
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the E(s2) criterion for supersaturated designs is closely related to discrepancy.
As mentioned in Remark 2, for certain choices of m and n, the E(s2)-optimal
designs also minimize the discrepancy D(X;Kd) defined on {−1, 1}m. For other
choices of m and n one would expect that E(s2)-optimal designs would have
nearly minimal discrepancy D(X ;Kd), and vice versa, based on the argument in
the proof of Theorem 3.

However, discrepancy is a more general, and thus more flexible criterion than
E(s2). For example, E(s2) ignores possible interactions of more than one factor.
However, the discrepancy D(X ;Kd) includes interactions of all possible orders,
and their importance may be increased or decreased by changing the value of β.
The discrepancy D(X;Kd) may be extended to q-level experimental domains,
Xd = {0, . . . , q − 1}m for any positive integer q, using the same definition of Kd

in (2.2). One only need ensure that −(q − 1)−1 ≤ ρ < 1.
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