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Abstract: We develop a new estimator of population size when data come from

an independent double sampling experiment and at least one continuous covariate

for each detection is measured. The new estimator has two features: (i) detection

probabilities are estimated by non-parametric smoothing of redetections; (ii) pop-

ulation size is estimated with a Horvitz-Thompson type estimator. Expressions for

asymptotic bias and variance are developed. The estimators are shown to be effi-

cient when sampling is unbiased. We provide an illustration on two-stage recapture

data on aboriginals in Canada.
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1. Introduction

This paper concerns the analysis of population survey data where individuals
are heterogeneous and sampling is biased. We begin then with a two-stage model
describing these main features. Imagine a finite population of N individuals,
each carrying a measurable covariate x of dimension d ≥ 1. At the first stage,
prior to experimental observation, the covariate values x1, . . . , xN are drawn by
nature from an unknown density f , sometimes called a ‘super-population’. At the
second stage, the experimenter draws an independent sample of size n from the
population but the probability g(x) of being sampled depends on the covariate
x. Let S ⊂ {1, . . . , N} denote the indices of those individuals who are sampled.
The observed values {xk : k ∈ S} are a random sample on the weighted density
fw(x) = g(x)f(x)/

∫
g(x)f(x)dx. The number sampled, n, follows a binomial

distribution with parameter N and p =
∫

g(x)f(x)dx = pr(k ∈ S). When g

is not a constant function, fw and f are distinct and the sampling is called
biased. Biased sampling is especially common in ecological and public health
studies, where being sampled requires some degree of volition on the part of the
individual.

The three quantities, N , fw(x) and p, determine the distribution of the data.
However, they are not all estimable from a single sample. This is clear if we
consider the effect of dividing the detection function g(x) by a positive constant
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c and multiplying N by the same constant c. Then the weighted density fw(x) for
the distribution of the covariates is unchanged. The distribution of the observed
number n changes from Bi(N, p) to Bi(Nc, p/c), however N and p cannot both
be estimated from the single binomial observation. Some information about p, or
better still the entire detection function g(x), is required to make N estimable.
This requires either further assumptions or further data.

When g(x) is fully specified, the Horvitz-Thompson estimator

N̂ =
N∑

j=1

Ij∈S

g(xj)
. (1)

has optimal properties as an estimator of N . In a conventional line-transect
survey (LTS) lack of identifiability is overcome by assuming that f(x) is uniform
and that g(0) = 1, where the covariate x is distance from the transect line to a
detected animal. There are also methods available for estimating f(x) under the
assumptions that g(x) ∝ x, so-called length-biased sampling (see Vardi (1982)
and Jones (1991)), but these methods do not give an estimator for N . Parametric
models for f(x) and g(x) could be assumed, but bearing in mind that these
functions are not identifiable, results would be highly model sensitive. Moreover,
plausible parametric models for g(x) and f(x) are seldom available in wildlife or
public health contexts.

In this paper we consider a sampling design which we call independent dou-
ble sampling (IDS). This design includes the classical mark recapture experiment
(MRE) (Seber(1982)) and the independent observer line transect survey (IOLTS)
as introduced by Butterworth and Borchers (1988) and Schweder (1990), who
have already pointed out the mathematical equivalence of the two designs. The
defining feature of the IDS design is that the same population is sampled twice
independently, and that there is some cross-validation mechanism by which pop-
ulation units that appear on both samples can be identified. In MRE cross-
validation is done by tagging; in IOLTS by a third judge who cross-validates
sightings by two independent observers. Why does taking two samples solve the
problem of identifiability? Because, each sample can then be treated as a pop-
ulation of known size and the remaining unknown parameters estimated from
data on individuals that reappear in the other sample.

We use the term ‘detection’ to mean that an individual and its covariate value
are observed. While the IDS design makes g(x) theoretically identifiable (see Sec-
tion 2), its estimation remains difficult. Indeed, modeling the detection function
in terms of observable covariates remains the central statistical issue. Huggins
(1989) and Alho (1990) have advocated logistic linear models for g. Parame-
ters are then estimated by maximizing the likelihood, conditional on detection
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at all. Buckland and Turnock (1992) modified the Huggins-Alho approach by
replacing the conditional by an unconditional logistic regression of redetections
of animals already detected by observer 1. A weakness of this approach is that
results depend on which observer is designated “observer 1”. Once detection
probabilities are known or estimated, population size can be estimated in several
ways, for instance by maximum likelihood, using optimally weighted estimating
equations (Lloyd and Yip (1990)), or using Horvitz-Thompson type estimators,
as suggested by Huggins/Alho. Confidence intervals are best constructed on the
log-scale, see Chao (1989).

Huggins/Alho methods have seen little application in the MRE context but
have been applied in the IOLTS context. Borchers, Buckland, Goedhart, Clark
and Hedley (1998) applied them to an aerial survey of porpoise. One of their
findings was that a ‘shoulder’ in the sighting distances was not easily accounted
for by logistic models. They concluded that “it seems likely that, in general, a
more flexible form than the logistic will be required for the analysis of double
platform LT surveys” and went on to describe some non-linear parametric forms.
Kernel smoothing methods have been considered in Chen (1999,2000), but under
the extra assumption that f(x) is uniform.

In this paper we introduce a Horvitz-Thompson(HT) type estimator based on
non-parametric kernel regression estimators of the probability function g assum-
ing data from an IDS design. The method enjoys several advantages over other
approaches: (i) no assumptions about f(x) or g(x); (ii) invariance to relabeling
the detection occasions; (iii) flexibility because of its non-parametric nature; (iv)
computational simplicity, in contrast to conditional logistic regression methods
which require custom maximization; (v) availability of asymptotic expressions
for bias and variance. Estimation of f is not covered in this paper, however we
note that once g(x) is estimated the methods considered in Jones (1991) may be
directly applied.

The plan of the paper is as follows. Details of our notation and estimator
are given in Sections 2–3 and asymptotics of the estimator are established in
Section 4. Sections 5 and 6 address the important issues of standard errors and
bandwidth selection. Sections 7 and 8 present results for both real and simulated
data sets and we make some closing conclusions in Section 9.

2. Framework and Notation

In an IDS design, two independent samples are drawn from a population.
Appearance in these samples is governed by two possibly different detection func-
tions gj(x), being the probability that an individual with covariate x appears in
sample j. We use lower case subscripts j = 1, 2 to denote the two samples and
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we equate 3 with 1 and 0 with 2 so that if gj is one detection function then gj+1

is the other.
The IDS design makes the detection functions gj(x) identifiable. An estimate

of g1(x) can be constructed by considering those individuals who appear in the
second sample as a fixed known population, and then observing those who appear
in the first sample. Conversely, g2 is estimated by restricting attention to those
who appeared in the first sample and then counting redetections in the second
sample.

Each individual sampling unit realizes one of four detection histories. We
use an indicator notation for full detection histories, for instance ‘01’ denotes
detection in sample 2 only. We also use a single index ‘1’ and ‘2’ to denote
detection in sample 1 and 2 respectively. Each history J has five associated
quantities: the index set SJ of those individuals with history J ; the number
nJ of individuals with history J ; the probability gJ(x) = pr(i ∈ SJ |xi = x) of
history J given x; the unconditional probability pJ = pr(i ∈ SJ) of history J ;
the density fJ(x) of covariate x given history J . The last three quantities are
connected according to

fJ(x) = gJ(x)f(x)/pJ , pJ =
∫

gJ(x)f(x)dx.

The estimator we propose requires several assumptions. First, let A = {x ∈
Rd|f(x) > 0}. We assume throughout the paper that
A1: all detections are conditionally independent;
A2: redetections are identified without error;
A3: population size N is constant over the experiment;
A4: ∃c0 > 0 such that gj(x) ≥ c0 ∀x ∈ A;
A5: gj have continuous second derivatives in A;
A6: f is bounded in A and f ′(x) is continuous.

Conditions A5, A6 are technical conditions required for deriving asymp-
totics of our estimator. Condition A4 means that no individual is essentially
undetectable. Conditions A1-A3 together imply that nJ has binomial distri-
bution with parameters N and pJ . Condition A1 also implies that g10(x) =
g1(x){1 − g2(x)}, etc. We will use no subscript at all to denote the union of the
histories 10, 11, 01, in other words being detected at all. Thus n = n1+n2−n11 is
the number of distinct individuals detected, p is the probability of being detected
at all and the conditional probability of being detected at all is

g(x) = g1(x) + g2(x) − g1(x)g2(x). (2)

We now describe a natural family of estimators of the unknown population
size N . If the detection functions gj can be estimated, say by ĝj , then an esti-
mator of g is ĝ(x) = ĝ1(x)+ ĝ2(x)− ĝ1(x)ĝ2(x), and an HT type estimator for N
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is given by

N̂ =
N∑

j=1

Ij∈S1∪S2

ĝ(xj)
. (3)

In the MRE context, Huggins (1989) and Alho (1990) proposed parametric logis-
tic models for gj, estimated these from the likelihood conditional on detection at
all and then suggested (3) as the estimator of N . A more flexible non-parametric
and unconditional approach to the estimation of gj is the focus of this paper.

An alternative approach to the present problem has been considered by Chen
and Lloyd (2000a). In the present notation, they define an index of heterogeneity

α = (p1p2)−1
∫

f(x)g1(x)g2(x)dx.

They show that the well known Petersen estimator n1n2/n11 is consistent for N/α

and go on to estimate α using kernel density estimation of the densities f1, f2

and f11. Chao and Tsay (1998) have given a similar expression for α, interpreted
it in terms of the coefficient of covariation of the detection functions g1 and g2,
and pursued estimation using the idea of sample coverage. The approach here is
to estimate the detection functions directly and α is simply used as a measure
of the amount of heterogeneity present. Neither the density estimation approach
nor the detection estimation approach will be superior in general. Our attitude
is that good statistical practice involves modeling those process features that
are simply and accurately estimated. When the underlying distribution f(x) is
highly irregular, as it could be in biological applications, we may still hope that
the detection function g(x) would vary regularly with x. In these circumstances
the approach we present here would be preferrable.

3. Kernel Estimation of the Detection Functions

In this section, we give details of our proposed non-parametric estimators of
gj(x). We take x to be d-dimensional and gj(x) to be smooth over all dimensions.
Our data comprise a list of n observed covariate values and n associated histories.
To define our estimators explicitly, it is convenient to index the observed covariate
values by two subscripts, the history J and a simple counting index. Thus x11,7 is
the covariate value for the 7th individual with history J = 11, and xJ1, . . . , xJnJ

is the entire sample of observed covariates with history J . These are a random
sample from fJ(x).

Restrict attention to individuals appearing in Sj and label them 1, . . . , nj.
Define the nj binary variables yjk = Ik∈S11 and denote their collection by Y T

j =
(yj1, . . . , yjnj). By assumption A1, pr(yjk = 1|k ∈ Sj, xk = x) = gj+1(x). There-
fore, gj+1(x) is the mean function of the binary variables yjk conditional on xk
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and Sj and can be estimated by standard parametric or nonparametric binary
regression methods. We investigate the non-parametric approach.

Let K be a d-dimensional bounded probability density function, with com-
pact support on the d-dimensional cube [−1, 1]d, that satisfies moment conditions:
A7:

∫
uK(u)du = 0,

∫
uuT K(u)du = σ2

KId,
Id being the d× d identity matrix and σ2

K a positive constant. Let h1, h2 be two
smoothing bandwidths, implying that the same amount of smoothing is used
in all directions (when the scales of the covariates are different, they can be
standardized by their standard deviations). Let Kh(u) = h−dK(h−1u). Define
the matrix of smoothing weights, Wj = diag{Khj+1

(xji − x)} for i = 1, . . . , nj

and the nj × (d + 1) linear design matrices

Xj =




1xj1 − x
...

1xjnj − x


 .

We consider two types of nonparametric regression estimators for gj : the
Nadaraya-Watson (NW) estimator

ĝNW,j+1(x) =

nj∑
k=1

yjkKhj+1
(xjk − x)

nj∑
k=1

Khj+1
(xjk − x)

, (4)

and the local linear (LL) estimator (Ruppert and Wand (1994))

ĝLL,j+1(x) = eT
1 (XT

j WjXj)−1XT
j WjYj, (5)

where eT
1 = (1, 0, . . . , 0) ∈ Rd+1. A simpler expression is available when d = 1, see

Wand and Jones ((1995),p119). Substituting these estimated detection functions
into (3) defines our estimators N̂NW and N̂LL of the population size.

Both NW and LL estimators are members of a class of non-parametric es-
timators, called local polynomial estimators, which have been well-studied in
the literature; see Härdle (1990) and Fan and Gijbels (1996) for comprehensive
reviews.

4. Bias and Variance of the Estimators

The results given in this section rely on standard asymptotic techniques.
Further details are available in Chen and Lloyd (2000b). The boundary bias
problems depend largely on the boundary region of A which is defined as B =
{x ∈ A : at least one xi is within h distance from the boundary}. Without com-
plicating the main scheme of the paper, we assume that



ESTIMATION OF POPULATION SIZE FROM BIASED SAMPLES 511

A8: Pr(x ∈ B) = O(hm), m ≥ 2;
A9: hj → 0 and Nhd

j → ∞ as N → ∞.
When m = ∞, all covariates are unbounded and B is the empty set. The case

m ≥ 2 happens when the marginal density of each component of the covariate
decays to zero at the boundary. Condition A8 essentially means that all the x can
be regarded as interior points without affecting the first two orders of magnitude
for bias and variance in the expressions below. These asymptotic expressions
hold under the classical assumption about bandwidth decay rates given in A9.

In describing error terms we let hd denote order d products of h1 and h2. For
instance terms like h2

1, h2
2 or h1h2 are all O(h2). Define R(t) =

∫
K(u)K(tu)du,

BNWj(x) = 1
2σ2

Ktr{2 	 gj(x) 	T fj+1(x) + 	2gj(x)fj+1(x)}f−1
j+1(x),

and BLLj(x) = 1
2σ2

Ktr{	2gj(x)}. In the above expression, 	 denotes the vector
of first derivatives, 	2 the (Hessian) matrix of second derivatives of a function,
and tr(·) the trace of a matrix.

Under Assumptions A1-A9 we have the following expansions for the asymp-
totic mean and variance of the estimators N̂NW and N̂LL. To clarify the formulas,
the dummy variables of all integrals are suppressed.

Bias(N̂NW ) = −N
2∑

j=1

h2
j

∫
BNWj

{1 − gj+1}f
g

+R(1)
2∑

j=1

h−d
j

∫
gj{1 − gj}{1 − gj+1}2

g2gj+1

+h−d
2 R(h1/h2)

∫
2(1 − g−1)2 + (1 − g)g + o(h−d + Nh2), (6)

Bias(N̂LL) = −N
2∑

j=1

h2
j

∫
BLLj

{1 − gj+1}f
g

+R(1)
2∑

j=1

h−d
j

∫
gj{1 − gj}{1 − gj+1}2

g2gj+1

+h−d
2 R(h1/h2)

∫
2(1 − g−1)2 + (1 − g)g + o(h−d + Nh2) (7)

Var(N̂LL) = Var(N̂NW )+O(h−d+Nh2)=N

∫ {1 − g}f
g1g2

+ O(h−d + Nh2). (8)

Both estimators have very similar bias in the first order. It is also not
surprising to see that both estimators have the same leading variance term. This
is because the underlying estimators for gj have different first order variance
terms only in B, and the “size” of B is assumed small under A8. The variance
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expression in (8) is identical to the expression given by Chen & Lloyd (2000a)
for an estimator based on kernel density estimation. Furthermore, when the
gj are constant functions, so that there is no heterogeneity of sampling, the
variance reduces to N(1 − p1)(1 − p2)/(p1p2), the asymptotic variance of the
Petersen estimator. This means that using the new estimators comes at no cost
in asymptotic variance when sampling is random. When sampling is biased, the
Petersen estimator is biased while the new estimators are consistent.

When m = 1 in A8, the bias of ĝNWj(x) is of order O(hj) if x ∈ B which is a
larger order than the bias in the interior. However, the order of the bias of N̂NW

is unaffected by this boundary bias and still maintains the order of Nh2 + h−d.
Continuing with the case m = 1, the remainder terms of the variance for both
N̂NW and N̂LL are no longer O(h−d + Nh2), but rather O(h−d + Nh), while the
leading term is maintained. This means that when the boundary is not negligible,
both estimators are affected in their asymptotic variance.

5. Computing Standard Errors

The asymptotic variance (8) depends on the unknown functions g1, g2 and
f . There are many ways in which the integral could be estimated but we prefer
a completely non-parametric estimator which we derive by observing that∫ (1 − g)f

g1g2
= p1E1

{
(1 − g(X))
g2
1(X)g2(X)

}
, (9)

where E1 denotes expectation with respect to f1(x). There is a complementary
expression involving E2 instead of E1. An estimate of (9) is

n11

n2

1
n1

∑
k∈S1

(1 − ĝ(xk))
ĝ2
1(xk)ĝ2(xk)

.

The leading factor n11/(n1n2) is the reciprocal of N̂P . We use the geometric
mean of the complementary estimates as our final estimate of standard error.

6. Choosing the Smoothing Bandwidths

In this section we address the issue of bandwidth selection for the estimator
N̂NW and N̂LL. For the purpose of establishing asymptotic rates of convergence,
we assume that h1 and h2 decrease as N increases at the same asymptotic rate.
Explicitly we assume that h2 = γh1 = h for a positive constant γ. Denote
either of the estimators N̂NW or N̂LL by N̂ . Both (6) and (7) are of the form
β1Nh2 + β2h

−d where β1, β2 are bias coefficients but also involve γ = h2/h1.
Combining with the respective variance expression (8), the mean squared error
of N̂ is

MSE(N̂ ) = N

∫ {1 − g}f
g1g2

dx + (β1Nh2 + β2h
−d)2 + O(Nh2 + h−d).
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Differentiating the above we find that the O(Nh2 + h−d) may be ignored, and
solving the resulting quadratic for N gives the optimal bandwidth

h� =
(

(2 + d)|β1β2| − (2 − d)β1β2

4Nβ2
1

)1/(d+2)

. (10)

For kernel estimation of regression or density functions optimal bandwidths
are of order N−1/(d+4). The optimal bandwidth here is of the smaller order
N−1/(d+2), essentially because N is an integrated quantity. It is particularly
noteworthy that the optimal bandwidth depends only on the bias coefficients
β1, β2 and not on the leading, or on the next O(Nh2) term of the variance. Sub-
stituting the optimal bandwidth we have bias(N̂ ) = O(Nd/(d+2)) and Var(N̂) =
O(N) + O(Nd/(d+2)). So

MSE(N̂) = O(N) + O(N2d/(d+2)). (11)

The second O(N2d/(d+2)) term is larger than O(N) if d > 2.
There are difficulties in using (10) to choose the bandwidths h1 and h2.

For given γ, the plug-in method may be used to derive h2 according to (10) by
estimating f ′′

i , f and gi by either fully nonparametric methods or referencing to
certain parametric families. This can be quite involved in computation. We may
choose γ to be the ratio of the standard deviations of the two design samples, or
the ratio of two bandwidths obtained by conventional bandwidth selectors such
as the those described below.

Because N̂ is an integrated quantity, we expect that results will be quite
insensitive to bandwidth choice. This is confirmed in the earlier variance expres-
sions whose leading terms do not depend on h. A simple way of prescribing the
smoothing bandwidths is to use bandwidths hj optimized for estimation of gj(x).
We are particularly attracted to the cross validation or the penalized function
approaches (Härdle (1990)) in nonparametric regression as their computation is
quite standard and software is readily available. There will be some loss of effi-
ciency as the goal is estimation of N , but the loss should be moderate as accurate
estimation of N and g are so intimately bound, see (3).

7. First Nations members in Canada

There is interest in the number of First Nations (i.e. aboriginal) people in
a region of Canada. We are limited in the details we can provide because of
confidentiality issues. In the previous census the population was estimated at
around 10,000 but some local government bodies believe the population could
be as high as 30,000. Two surveys were taken. The first, known as the “normal
questionnaire”, was administered over the period December 1998 to January 1999
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by distributing surveys and conducting interviews at First Nations gatherings.
The second, known as the “special housing questionnaire”, was administered
during February 1999 and comprised records of those applying for or currently
residing in public housing. From the survey protocols, there is good reason to
believe that the surveys are statistically independent.

For each individual surveyed, the birth date was recorded, allowing calcula-
tion of the person’s age on March 1, 1999, our covariate x. The two surveys had
similar penetration - n1 = 1358, n2 = 1285 - though there was no reason before-
hand to expect that this would be the case. Enough information was recorded
to match the n11 = 93 individuals appearing in both surveys. From these figures
we calculate the Petersen estimate N̂P = 18, 764. However, it is more usual to
use the estimator of Chapman (1951):N̂ =(n1+1)(n2+1)/(n11+1) −1 = 18591
with standard error 1810.
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Figure 1. Estimated detection functions for aboriginal data. Dotted
and dashed lines are respectively the estimated detection functions for the
“normal questionaire” g1 and the “special housing questionaire” g2. The
solid line is for overall detection. The left plot gives estimates based on
local averaging (Nadaraya-Watson) and the right plot based on local linear
regression. Chosen bandwidths are described in the text.

Figure 1 displays estimates of the detection functions g1(x) and g2(x) using
both NW and LL smoothers. Further details are given below. The estimate of
g(x) is plotted as a solid curve in each case. The estimates of g1(x) and g2(x)
are highly correlated since they both depend largely on the intersection sample
of x-values. Their similar shape does not therefore indicate that g1(x) and g2(x)
are close. To test the equality of g1 and g2 one can test the equivalent hypothesis
that f10 = f01 using a non-parametric test such as the Kolmogorov-Schmirnov
two-sample test. For these data, there is indeed strong evidence that the two
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detection functions differ (P=0.000). The ‘dips’ in the detection function near
18 and 65 had already been observed in previous studies, and at least the first of
these was anticipated from the sociology of that age-group. Individuals in these
age ranges are under-represented in the surveys and the purpose of our methods
is to correct for such bias.

We now list some estimates using the methods recommended in this paper.
Using the biweight kernel with selected bandwidths h1 = 13.8 and h2 = 12.5
the estimate N̂NW = 18912 with a standard error of 1917.7 is obtained. The
corresponding estimates of g1(x), g2(x) and g(x) are plotted in the left panel
of Figure 1. Typically, increasing both bandwidths will shrink the estimator
towards the homogeneous Petersen estimator. For example when h1 = h2 = 15
the estimate decreases by less than 1%. Further evidence for the insensitivity
of the NW estimator to bandwidth is that doubling h1 and halving h2 gives the
estimator N̂NW = 19176. Using selected bandwidths h1 = 21.8, h2 = 13.6 and
the biweight kernel, the local linear estimator is N̂LL = 20135 with standard error
of 2338.2. The corresponding estimates of g1(x), g2(x) and g(x) are plotted in
the right panel of Figure 1. Doubling the first bandwidth and halving the second
causes a smallish change (N̂LL = 20294). As expected from the theory of local
linear smoothers, the main difference between the estimated detection functions
g(x) using NW and LL smoothers occurs at the boundary, in this context at very
young ages, and in regions of high curvature.

8. Simulation Results

We present some simulation results designed to compare empirical outcomes
with the theory developed in this paper.

The first study simulated univariate IOLTS with the sighting distance being
the only covariate that influences the detection. The real underlying density f for
the animal objects was the uniform distribution within [−w,w] where w = 7 was
the maximum detection distance. We chose g1(x) = 0.6Exp{−|bx|a}, g2(x) =
0.7Exp{−|bx|a}, which are modifications of the usual generalised exponential
power series detection functions used in a conventional LTS. We fixed b = 0.2
and chose the shape parameters a = 2.0, 2.5 and 3.0. Corresponding values of α

appear in Table 1.
For our simulation study, the HT estimator in (3) is modified as

N̂ =
∑

ĝ(xj)>0.01

Ij∈S1∪S2

ĝ(xj)

where 0.01 is a truncation value. The reason for truncating is to avoid the
volatility that occurs when estimating the reciprocal of a small probability g1(x).
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When such erratic estimates occur they are always flagged by an appropriately
large standard error, however in our simulations we need to control the small
number of volatile outcomes. Bandwidths for the simulations have been chosen
to optimize estimation of g1 and g2 using the penalizing function approach given
in Härdle (1990). This is a well-established and easily implemented technology.
In each simulation, we generated N = 500 or 1000 uniform distributed points,
which simulated the positions of a biological population, within a rectangular
area with length L and width 2w. The detection functions gi given early are
used to detect the points to generate the samples. For comparison purposes, the
Petersen estimator, N̂p, was also included.

Table 1. Average estimates for N , their standard errors (S.E.) and root
mean square error (RMSE): N̂p - the Petersen estimator, and N̂NW and
N̂LL, together with average sample size (ave. n) and the average number of
data points per simulation (πNW and πLL) where the estimated detection
values are less than 0.01.

N = 500 N = 1000
a 2.0 2.5 3.0 2.0 2.5 3.0

α 1.44 1.50 1.55 1.44 1.50 1.55

N̂p 350.1 334.1 321.1 700.0 667.3 642.4
S.E. 22.8 21.8 19.9 33.6 30.3 28.5

RMSE 151.6 167.3 180.0 301.8 334.1 358.7

N̂NW 535.2 488.0 443.2 1016.5 924.0 862.2
S.E. 133.2 118.1 104.3 184.9 144.6 134.9

RMSE 137.7 118.7 118.8 185.6 163.4 192.9

N̂LL 538.4 494.5 460.2 1050.4 950.6 893.2
S.E. 121.5 106.8 96.1 176.9 134.3 132.5

RMSE 127.4 106.9 104.0 183.9 143.1 170.2

ave. n 150 152 153 300 304 306
πNW 4.0 3.7 3.2 8.9 6.6 6.3
πLL 7.3 6.9 5.8 15.0 13.0 12.4

Table 1 summarizes 500 simulations under each set of conditions. Presented
are the simulated average, standard error and root mean square error (RMSE)
for each of the estimators considered. To indicate the amount of heterogeneity
in the simulation, the α values are listed as well as the average total number of
captures/detections. To gauge the effect of truncation on estimation, the average
number of data points per simulation where the estimated detection values are
below the truncation value of 0.01 is also reported.
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The Petersen estimator N̂p =: n1n2/n11 performs poorly, and more poorly
for larger α as anticipated by theory; the two nonparametric Horvitz-Thompson
estimators have quite similar performance, reflecting the similar theoretical be-
haviour revealed in Section 4; the local linear based estimates tend to be slighter
larger in mean and smaller in variability. When the population size N increases
from 500 to 1000, the RMSE of N̂p doubles in all the cases, whereas those of
N̂NW and N̂LL increase by only about 50%. This indicates the performance of
N̂NW and N̂LL improves as N increases.

In summary: (i) the effect of α in the performance of the Petersen estimator
is confirmed by the simulation; (ii) the Petersen estimator cannot be used when
the amount of heterogeneity is severe (the proposed estimators should be used
instead); (iii) the new detection-based estimators seem to be relatively more
effective when heterogeneity is large.

9. Discussion

Our non-parametric detection function approach is a direct competitor with
the Petersen estimator. Theoretical analysis has shown that the new method
has MSE O(N + N2d/(d+2)) and is therefore consistent for N . The Petersen es-
timator, on the other hand, has asymptotic mean N/α and is inconsistent. For
sufficiently large sample size and heterogeneity α, the new estimator will domi-
nate the Petersen estimator in MSE. Our simulation study has shown superior
performance for α > 1.1 and N = 500, 1000.

Our method is also a direct competitor with Huggins (1989). Both methods
are consistent. The new method differs from Huggins’ in two respects. First, the
detection functions g1, g2 are modeled non-parametrically. Second, the detection
functions are estimated directly from binary regression of capture on one sam-
ple conditional on detection in the other sample, rather than by maximizing a
conditional likelihood.

For the aboriginal data that we analyzed, the gender covariate was also avail-
able. We have analyzed genders separately and aggregated the results, producing
virtually identical estimates to those reported here where we have ignored gender.
However, in general, all covariates that affect the detection functions should be
included. Logistic regression methods are attractive mainly because they avoid
the curse of dimensionality by making an additivity assumption. We have de-
scribed a fully non-parametric method which makes no additivity assumption.
Of course, for dimensions larger than 2 or 3 we may be forced to assume ad-
ditivity and replace the multivariate non-parametric estimators by an additive
non-parametric estimator. Alternatively pre-testing of the data, and background
knowledge, may allow us to reduce the number of covariates involved before ap-
plying the nonparametric estimators proposed in this paper. These are topics for
future research.



518 SONG Xi CHEN AND CHRIS J. LLOYD

References
Alho, J. M. (1990). Logistic regression in capture-recapture models. Biometrics 46, 623-635.
Buckland, S. T. and Turnock, B. J. (1992). A robust line transect method. Biometrics 48,

901-909.
Borchers, D. L., Buckland, S. T., Goedhart, P. W., Clark, E. D. and Hedley, S. L. (1998).

Horvitz-Thompson estimators for double-platform line transect surveys. Biometrics 54,
1207-1220.

Butterworth, D. S. and Borchers, D. L. (1988). Estimation of g(0) for Minke schools from
results of the independent observer experiments on the 1985/86 and 1986/87 IWC/IDCR
Antarctic assessment cruise, 1978/79. Report of the IWC.

Chao, A. (1989). Estimating population size from sparse data in capture-recapture experiments.
Biometrics 45, 427-438.

Chao, A. and Tsay, P. K. (1998). A sample coverage approach to multiple system estimation
with application to census undercount. J. Amer. Statist. Assoc. 93, 283-293.

Chen, S. X. (1999). Estimation in independent observer line transect surveys for clustered
populations. Biometrics 55, 754-759.

Chen, S. X. (2000). Animal abundance estimation for independent line transect surveys. Envi-
ronmental and Ecological Statistics 7, 285-299.

Chen, S. X. and Lloyd, C. J. (2000a). A non-parametric approach to the analysis of two stage
mark-recapture experiments. Biometrika 87, 633-649.

Chen, S. X. and Lloyd, C. J. (2000b). Estimation of population size from biased samples using
non-parametric binary regression. AGSM Working paper, downloadable from
www.agsm.unsw.edu.au/∼chrisl/papers.html.

Chapman, D. G. (1951). Some properties of the hypergeometric distribution with applications
to zoological censuses. University of California Publications in Statistics 1, 131-60.

Fan, J. and Gijbels, I. (1996). Local Polynomial Modeling and Its Applications. Chapman and
Hall, London.
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