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Abstract: Consider first the set of all possible n-way multinomial tables defined by

certain mean cell proportions with a given number of total counts. Consider next

the subset of these n-way tables that, in addition, satisfies certain one-way marginal

totals obtained by summing the cell counts over all but one subscript. The subset

of tables that satisfies these marginal constraints is said to have the multivariate

extended hypergeometric (MXH) distribution. In this paper we develop a general

algorithm for calculating the asymptotic variance of n-way MXH tables and present

some explicit covariance formulas under independence and in other special cases.

We also note that permutation tests defined by certain mean cell proportions and

one-way marginal constraints essentially enumerate the entire set of MXH tables

with those proportions and constraints. Thus, one can use the asymptotic MXH

distribution to approximate the finite sample variances of statistics calculated un-

der permutation tests for various null and alternative hypotheses. One can then

use these results to construct confidence intervals for parameters of interest and

to approximate the percentiles of test statistics under permutation tests, which

is a significant advantage when these tests are computationally prohibitive. We

illustrate the use of methods based on the asymptotic MXH distribution as com-

plements and alternatives to permutation tests in the analysis of epidemiological

studies of gene-environment interactions.
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1. Introduction

In categorical data analysis, one encounters the extended hypergeometric
(XH) distribution in permutation tests for 2 × 2 contingency tables, such as
Fisher’s exact test (e.g., Agresti (1990), Plackett (1981)). One can consider the
set of 2 × 2 XH tables to be a subset of all possible 2 × 2 multinomial (MULT)
tables defined by certain mean cell proportions {πij} with a given number of total
counts t, with the additional requirement that these XH tables must satisfy cer-
tain prespecified marginal totals ({πi+t}, {π+jt}). As a result of these marginal
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constraints, XH tables have only one free cell, unlike their MULT counterparts,
which have three free cells. The term ‘extended’ (or ‘noncentral’) refers to the
fact that the mean cell proportions need not be the products of the marginal
proportions (i.e., πij �= πi+π+j). Harkness (1965) first described the moments
and asymptotic distribution of XH tables.

More generally, one can consider the set of n-way multivariate extended
hypergeometric (MXH) tables to be a subset of all possible n-way MULT tables
defined by certain mean cell proportions with a given number of total counts,
again with the additional requirement that these MXH tables must satisfy certain
one-way marginal totals obtained by summing the cell counts over all but one
subscript. Thus, the probability of generating a particular MXH table is directly
proportional to the probability of generating the corresponding MULT table,
with the set of all MXH probabilities rescaled so that they sum to one. The
subset of MXH tables becomes increasingly sparse relative to the set of MULT
tables both as the number of free cells and the marginal totals increase. Hence,
the calculation of the finite distribution of MXH tables can quickly become quite
computationally intensive. (Also, it is generally not practical to simulate MXH
tables directly, except under independence, for which Patefield (1981) gives an
efficient algorithm.) We will show, however, that one can calculate the asymptotic
means and variances of these tables more easily, and for moderate numbers of
total counts these asymptotic approximations work reasonably well.

It is crucial to recognize that the one-way marginal constraints of the MXH
distribution may differ significantly from the constraints assumed by other com-
mon tests. For example, Zelen’s and Breslow and Day’s tests for homogeneity of
odds ratios in 2×2×K tables both condition on the marginal totals within each
of the K 2× 2 subtables, as well as on the sum of the counts in the first cell over
all K tables (Agresti (1990, p. 238)). These constraints reduce the degrees of
freedom to K − 1 and thus make these tests computationally less intensive than
tests based on the MXH distribution. It is important to remember that there are
many possible marginal constraints that one could consider, and therefore one
must decide which are reasonable and which are inappropriately restrictive for
the problem at hand.

One major motivation for developing algorithms for calculating the asymp-
totic MXH distribution is their potential use as complements and alternatives to
permutation tests. Permutation tests essentially enumerate the entire set of MXH
tables generated by given mean cell proportions and marginal counts. Thus, these
tests can rapidly become computationally prohibitive as the number of MXH ta-
bles to be enumerated increases. One may therefore employ the asymptotic MXH
distribution to approximate the finite sample variances of statistics calculated un-
der permutation tests for various null and alternative hypotheses. In turn, these
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results can be used in order to construct confidence intervals for parameters of
interest and to approximate percentiles and p-values for test statistics under per-
mutation tests. One may also employ asymptotic MXH methods to determine
the power of permutation tests under various alternative hypotheses quickly and
to study the asymptotic covariance structure of tables under permutation tests,
which can be particularly useful for testing multiple hypotheses.

A second motivation for developing these algorithms comes from the study
of n-way contingency tables created by partitioning n-dimensional continuous
data into categories defined by selected empirical quantiles (e.g., medians or
quintiles) of the marginal data. These tables have the empirical multivari-
ate quantile-partitioned (EMQP) distribution (Borkowf, Gail, Carroll and Gill
(1997), Borkowf (2000)). Note that multivariate ranks and quantile-categories
have the EMQP distribution, and hence statistics like Spearman’s rank correla-
tion and the multivariate intraclass correlation have distributions derived from
the EMQP distribution. EMQP tables have fixed one-way marginal totals like
MXH tables but a substantially more complicated asymptotic distribution. Nev-
ertheless, one can show that EMQP tables have a similar asymptotic covariance
structure to MXH tables and that the asymptotic variances of many common
statistics calculated from MXH tables serve as lower bounds for those calculated
from EMQP tables. Also, under independence, the EMQP and MXH distri-
butions are identical by definition. The above-mentioned papers compare the
asymptotic variances of certain statistics calculated from two- and three-way
MULT, MXH, and EMQP tables.

Plackett ((1981), Section 6.1) describes a somewhat complicated method for
calculating the non-null asymptotic variance of two-way MXH tables. We present
some notation and assumptions, and then develop a simplified algorithm that
extends this method for n-way MXH tables (Sections 2.1-2.2). We also present
an explicit covariance formula under independence (Section 2.3). Finally, we
illustrate the use of asymptotic MXH methods as complements and alternatives
to computationally intensive permutation tests in the analysis of epidemiological
studies of gene-environment interactions (Section 3).

2. Algorithms and Formulas for the Asymptotic MXH Distribution

2.1. Preliminary notation and assumptions

For an n-way contingency table, let di denote the number of categories in the
ith dimension of this table (i = 1, . . . , n). Let a = (a1, . . . , an)′ = {ai}n

i=1 denote
a column vector of indices (1 ≤ ai ≤ di), and let A0 denote the set of all index
vectors. Note that A0 has N0 =

∏n
i=1 di elements. Next, let A1 ⊂ A0 denote the

nonsingular subset of index vectors such that at least two of the indices are less
than their maxima, i.e.,

∑n
i=1 I{ai < di} ≥ 2, where I{·} denotes the indicator
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function. In turn, let Ac = A0\A1, and note that Ac has Nc =
∑n

i=1 di − (n− 1)
elements, the number of unique one-way marginal constraints. Hence, A1 has
N1 = N0−Nc elements, the number of free cells in an n-way MXH table without
structural zeros.

Now, let π(a)denote the mean cell proportion for the a th cell of a given table,
a ∈ A0. In turn, let πi(j) denote the prespecified one-way marginal proportion
for the jth category of the ith dimension (i = 1, . . . , n; j = 1, . . . , di). That is,
πi(j) =

∑
b∈Bij

π(b) , where Bij denotes the set of all index vectors b = {bk}n
k=1

such that bi = j. Furthermore, let t denote the total counts in the MXH table.
Obviously, πi(j)tmust be an integer in order for the one-way marginal constraints
to be satisfied in MXH tables with finite total counts.

Next, let Xki denote the category in which the ith measurement of the kth
subject occurs (k = 1, . . . , t). Then, the observed proportion of counts in the ath
cell can be written as

p(a) = t−1
t∑

k=1

[ n∏
i=1

I{Xki = ai}
]
. (2.1)

Also, let m(a) = p(a)t denote the observed counts in the ath cell. In turn, let
pi(j) and mi(j) denote the observed one-way marginal proportion and counts,
respectively, for the jth category of the ith dimension (i = 1, . . . , n; j = 1, . . . , di).
The Nc unique one-way marginal constraints yield mi(j)/t ≡ pi(j) ≡ πi(j).

Using this notation, one can define the MULT and MXH probabilities of
contingency tables. Let s = {m(a)|a ∈ A0} denote an observed table of counts,
let S0 denote the set of all possible tables with t total counts, and let S1 ⊂ S0

denote the subset of those tables that satisfy the one-way marginal constraints
{pi(j)} = {πi(j)}. Then, the probability of obtaining a particular table s ∈ S0

under the MULT distribution generated by the mean cell proportions {π(a)} and
total counts t is

PMULT (s) = PMULT ({m(a)|a ∈ A0}) = t!
∏

a∈A0

[π(a)m(a)/m(a)!]. (2.2)

In turn, the probability of obtaining a particular table s∗ ∈ S1 under the
MXH distribution with the same {π(a)} and t and with the marginal constraints
{πi(j)} is

PMXH(s∗) = PMULT (s∗)/
∑
s∈S1

PMULT (s). (2.3)

Finally, for random variables X and Y that converge in probability to their
asymptotic means as functions of t, let σ2(X) = limt→∞ V ar(t1/2X), σ(X,Y ) =
limt→∞ V ar(t1/2X, t1/2Y ), and γ(X,Y ) = limt→∞Corr(X,Y ). Also, let δxy =
δ(x, y) = 1 if x = y and 0 otherwise.
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2.2. An algorithm for computing the asymptotic variance of n-way
MXH tables.

Using the above notation, note first that the MULT distribution has the
simple finite sample covariance formula Var MULT (p(a), p(b)) = [π(a)δ(a, b) −
π(a)π(b)]/t.

By contrast, the MXH distribution has a much more complex covariance
matrix. We simplify and generalize Plackett’s results for two-way tables to obtain
an expression for the non-null asymptotic variance of n-way MXH tables.

Following Plackett, treat the counts {m(a)} = {p(a)t} in an n-way MXH
table as independent Poisson counts with means and variances {π(a)t}. Let
t → ∞ and m(a) → ∞ such that m(a)/t = p(a) → π(a) for all a ∈ A0. Then
the asymptotic density of {m(a)} = {p(a)t} is proportional to the singular mul-
tivariate normal density

q({π(a)t}) exp
[
− 1

2
t

∑
a∈A0

(p(a) − π(a))2/π(a)
]
. (2.4)

In turn, let V0 = limt→∞ Var ({t1/2p(a) | a∈A0}) and V1 = limt→∞ Var ({t1/2

p(a) | a∈A1}). Note that it is easier to calculate U1 = V −1
1 than V1 directly. The

elements of U1 can be used to rewrite the quadratic term in (2.4), which involves
all N0 proportions indexed by A0 , as a quadratic term that involves just the N1

proportions indexed by A1. That is,∑
a∈A0

(p(a) − π(a))2/π(a) =
∑

a∈A1

∑
b∈A1

[p(a) − π(a)]u1(a, b)[p(b) − π(b)], (2.5)

where u1(a, b) is the cell of U1 corresponding to the pair (p(a), p(b)). For n = 2
(without structural zeros), the cell of U1 corresponding to the pair (pij , pkl) =
(p(a), p(b)), where a = (i, j) and b = (k, l), is

u1(a, b) = π−1
ij δikδjl + π−1

id2
δik + π−1

d1jδjl + π−1
d1d2

. (2.6)

Furthermore, for n ≥ 2 (without structural zeros), one can generalize the formula
for the cell of U1 corresponding to the pair (p(a), p(b)) as

u1(a, b) = [π(a)]−1δ(a, b) +
n∑

i=1

[π(ci(ai))]−1δ(ai, bi)I{ai < di}

+[π(d)]−1
[ n∑

i=1

I{ai < di} − 1
][ n∑

i=1

I{bi < di} − 1
]
, (2.7)

where d = {di}n
i=1 and ci(k) = {cij}n

j=1 with cii = k and cij = dj(i, j =
1, . . . , n; i �= j). One can then invert U1 to obtain V1.
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Now, note that d and ci are elements of Ac. One can write the Nc proportions
indexed by Ac in terms of the N1 proportions indexed by A1 using the one-way
marginal constraints {πi(j)}, namely

π(d) = (1 − n) +
n∑

i=1

πi(di) +
∑

a∈A1

[
n∑

i=1

I{ai < di} − 1

]
π(a), (2.8)

π(ci(k)) = πi(k) −
∑

a∈A1

π(a)I{ai = k}. (2.9)

In turn, one can use equations (2.8) and (2.9) to expand V1 to the singular
covariance matrix V0.

In general, one must compute the asymptotic MXH covariance matrix nu-
merically, but in special cases, like independence (Section 2.3), one can obtain
explicit covariance formulas. For example, for 2×2 MXH tables, which have only
one free cell, the elements of the singular MXH covariance matrix V0 are given
by the formula

σ(pij , pkl) = (−1)δik+δjl(π−1
11 + π−1

12 + π−1
21 + π−1

22 )−1. (2.10)

In addition, McCullagh and Nelder (1989, p. 262) give explicit covariance formu-
las for 2 × d MXH tables, and Borkowf (2000) gives explicit covariance formulas
related to 2n MXH tables.

When structural zeros occur in an n-way MXH table (i.e., π(a) = 0), one
must set (p(a) − π(a))2/π(a) ≡ 0 in (2.4) and then derive an alternative expres-
sion for this quadratic in terms of the nonzero proportions indexed by A1. For
example, for 3 × 3 MXH tables with three structural zeros on the diagonal (i.e.,
πii = 0; i = 1, 2, 3), which also have just one free cell, the elements of the singular
MXH covariance matrix V0 are given by the formula (i �= j, k �= l)

σ(pij , pkl) = (−1)δik+δjl(π−1
12 + π−1

13 + π−1
21 + π−1

23 + π−1
31 + π−1

32 )−1. (2.11)

Furthermore, for any parameter vector λ = f({π(a)}), one can approximate
the asymptotic covariance of the statistic λ̂ = f({p(a)}) in terms of {π(a)}
and V0 = σ2({p(a)}) using the multivariate delta method (Bishop, Fienberg, and
Holland (1975, pp. 492-497)). In addition, one can approximate the finite sample
variance Var (t1/2{p(a)}) by the well-known approximation (e.g., McCullagh and
Nelder (1989, p. 259))

Var (t1/2{p(a)}) = t(t− 1)−1σ2({p(a)}) + o(t−1). (2.12)

In turn, one can approximate the finite sample variance Var (t1/2λ̂) by

Var (t1/2λ̂) = t(t− 1)−1σ2(λ̂) + o(t−1). (2.13)
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Key concept: The covariance of any two cells in an n-way MXH table does not
depend on the order of the categories within each dimension, so one can rearrange
(relabel) the categories within each dimension for convenience. Furthermore,
when no structural zeros occur, one can combine multiple categories within a
dimension without changing the asymptotic covariances of the unmodified cells.
Thus, the problem of computing a particular asymptotic covariance, σ(p(a), p(b)),
for an arbitrarily large n-way MXH table without structural zeros reduces to
that of computing the asymptotic covariance for an appropriately constructed 3n

MXH table (or smaller if di = 2 for some i).

2.3. Independence

Under n-way independence, π(a) =
∏n

i=1 πi(ai) ≡ ω(a). One can compute
the finite sample means and covariances of the cell proportions {p(a)} by writing
each proportion as the sum of n products of indicator variables, as in (2.1). Then

E[p(a)]= t−1
t∑

k=1

[ n∏
i=1

E[I{Xki =ai}]
]
=

n∏
i=1

E[I{X1i =ai}]=
n∏

i=1

πi(ai)≡ω(a), (2.14)

E[p(a)p(b)]

= t−1
n∏

i=1

E[I{X1i =ai}I{X1i =bi}]+t−1(t− 1)
n∏

i=1

E[I{X1i =ai}I{X2i =bi}]

= t−1ω(a)δ(a, b) + t−1(t− 1)ω(a)
n∏

i=1

{[πi(bi)t− δ(ai, bi)]/(t− 1)}

= t−1ω(a)δ(a, b) + t−1(t− 1)ω(a)ω(b)
[
1 + (n− 1)t−1

−t−1
n∑

i=1

[
πi(ai)−1δ(ai, bi)

]
+ o(t−2). (2.15)

From (2.14) and (2.15), one obtains the finite covariance formula

Cov[t1/2p(a), t1/2p(b)] = ω(a)δ(a, b)

+ω(a)ω(b)
[
(n− 1) −

n∑
i=1

[πi(ai)]−1δ(ai, bi)
]
+ o(t−1). (2.16)

Thus, as t→ ∞, one obtains the asymptotic variance

σ(p(a), p(b)) = π(a)δ(a, b) + π(a)π(b)
[
(n− 1) −

n∑
i=1

[πi(ai)]−1δ(ai, bi)
]
. (2.17)
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Finally, note that for two-way MXH tables, (2.16) reduces to the familiar covari-
ance formula (e.g., Plackett (1981, p. 65))

Cov(t1/2pij, t
1/2pkl) = t(t− 1)−1πi+π+j(δik − πk+)(δjl − π+l). (2.18)

3. Applications of Asymptotic MXH Methods to Gene-Environment
Interaction Studies

In gene-environment interaction studies, some marginal totals are fixed by
design, while others are fixed by hypothesis. One might wish to perform permu-
tation tests which condition on the one-way marginal totals to examine certain
hypotheses concerning a given data set, since these marginal totals convey no
information about the association between the variables of interest. We com-
pare the use of permutation tests and asymptotic MXH methods with respect
to numerical results and computational complexity. All computations for this
paper were performed by programs written by the author in the GAUSS 3.2
programming language (Aptech Systems, Inc. (1997)).

Example 1. A study of the effects of maternal smoking during pregnancy and
a genetic polymorphism on the risk of cleft palate birth defects.

For this study, Hwang, et al. (1995) selected 68 cases of cleft palate birth
defects and 281 controls (with non-cleft palate birth defects), and then classified
these individuals based on whether their mothers smoked during pregnancy and
on their transforming growth factor alpha (TGFα) TaqI genotype. The two levels
of maternal smoking are (1) non-smoker and (2) smoker, while the two levels of
the TGFα TaqI genotype are (1) wild-type and (2) variant. Table 1 shows that
these data form a 2 × 2 × 2 contingency table with 349 counts of environmental
exposure by genotype by disease status (i, j, k = 1, 2).

Comment. In gene-environment interaction studies, one often assumes that the
environmental exposure and genotype classifications are independent. Instead,
one focuses on the interaction between the effects of environmental exposure and
genotype on disease status. For example, in this study, mothers were assumed
to be equally likely to smoke or not smoke during pregnancy regardless of their
genotype, and interest mainly focuses on the joint effects of maternal smoking
and genotype on birth defect status. (The independence assumption would not
hold in a study of alcohol consumption and certain alcohol dehydrogenase poly-
morphisms on liver damage, because of the negative correlation between the
environmental exposure and genotype.) While the independence assumption is
essential for case-only studies (Khoury and Flanders (1996)), it also helps shape
the hypotheses of interest in case-control studies.
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Table 1. 2 × 2 × 2 table of counts for 349 individuals classified by maternal
smoking during pregnancy, TGFα TaqI genotype, and cleft palate birth
defects.∗

environmental genotype: cleft palate birth defect status:
exposure: (j = 1, 2) (k = 1, 2)
(i = 1, 2)
maternal smoking TGFα TaqI controls cases
during pregnancy polymorphism
non-smoker wild-type 167 36
non-smoker variant 34 7
smoker wild-type 69 12
smoker variant 11 13
total 281 68

∗Data are adapted from Hwang, et al. (1995), by permission. The two levels
of maternal smoking are (1) non-smoker and (2) smoker; the two levels of
the TGFα TaqI genotype are (1) wild-type (homozygous for the TaqI C1
alleles) and (2) variant (having one or two TaqI C2 alleles); and the two
levels of disease status are (1) control (non-cleft palate birth defect) and (2)
case (cleft palate birth defect). Thus, these data represent a 2 × 2× 2 table
of counts (environment × genotype × disease status) (i, j, k = 1, 2).

Khoury and Flanders (1996) analyzed these data to determine whether a
synergistic effect exists between the environmental exposure and the genotype
on disease status. Let θG = π111π122/π112π121 denote the odds ratio (OR)
for the genetic effect on disease status among non-smokers (i = 1), let θE =
π111π212/π112π211 denote the OR for the environmental exposure effect on dis-
ease status among individuals with the wild-type genotype (j = 1), and let
θB = π111π222/π112π221 denote the OR for the effect of both the environmental
exposure and the variant genotype on disease status compared to neither expo-
sure nor variant genotype. In turn, let θS = θB/(θG × θE) denote the synergistic
effect, which indicates how much greater multiplicatively the effect of having
both the environmental exposure and variant genotype is than the product of
having either risk factor singly. Finally, let ψX = ln(θX), where X denotes the
appropriate subscripts.

Table 2 shows the point estimates of the adjusted ORs θ̂∗X and the log-
ORs ψ̂∗

X , calculated from the adjusted sample proportions, p∗ijk = pijk + (2t)−1.
The adjustment of (2t)−1 avoids the problem of division by zero when pijk = 0
and reduces the bias and mean squared error of the estimators, especially for
tables with small counts (e.g., Agresti (1990, p. 54)). Table 2 also gives (1) the
means and standard deviations of selected statistics and (2) the percentiles of
the sample estimates ψ̂∗

X , calculated by asymptotic MXH methods (using {πijk})
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and by permutation methods (using {p∗ijk}) under two models for the mean cell
proportions {πijk}. These models are (a) πijk = pijk (the saturated model) and
(b) πijk = πi+kπ+jk/π++k (independence between exposure and genotype given
disease status.) Note that the permutation methods enumerated 1, 812, 434 MXH
tables (with N1 = 4 free cells) and took 2 hours on a Pentium III with a 600
MHz processor, while the asymptotic MXH methods took about a second.

One may wish to test the null hypothesis that the synergistic effect does not
exist, namely H0 : θS ≤ 1, versus the alternative hypothesis that it does exist,
HA : θS > 1. The null hypothesis corresponds to model (b)πijk = πi+kπ+jk/π++k,
under which θS = 1, ψS = 0, and σ(ψ̂S) = 12.316. The estimated synergistic
effect is θ̂∗S = 6.543 (ψ̂∗

S = 1.878).

Table 2. Selected point estimates and parameters using the asymptotic MXH
methods and permutation methods under two models for the data in Table 1.

observed asymptotic MXH methods permutation methods
parameter θ̂∗X ψ̂∗

X θX ψX σ(ψ̂X) %ile Ep(θ̂∗X) Ep(ψ̂∗
X) σp(ψ̂∗

X) %ile
Model(a):πijk = pijk.

θG 0.998 -0.002 0.955 -0.046 8.480 0.538 0.955 -0.046 8.607 0.513
θE 0.825 -0.192 0.807 -0.215 6.777 0.525 0.807 -0.215 6.824 0.509
θB 5.387 1.684 5.482 1.702 8.388 0.484 5.483 1.702 8.455 0.489
θS 6.543 1.878 7.115 1.962 12.831 0.451 7.122 1.963 12.986 0.462

Model(b):πijk = πi+kπ+jk/π++k.
θG 0.998 -0.002 2.185 0.782 7.211 0.021 2.185 0.782 7.239 0.026
θE 0.825 -0.192 1.461 0.379 6.208 0.043 1.461 0.379 6.218 0.046
θB 5.387 1.684 3.192 1.161 9.395 0.851 3.191 1.160 9.524 0.854
θS 6.543 1.878 1.000 0.000 12.316 0.998 1.000 0.000 12.437 0.997

∗The rows of this table show the ORs for genotype effect (θG), environmental exposure
effect (θE), joint effect (θB), and the synergistic effect (θS). The columns of this table
show the point estimates of the adjusted ORs θ̂∗X and log-ORs ψ̂∗

X calculated from the
adjusted sample proportions, p∗ijk = pijk + (2t)−1 ; the asymptotic MXH means θX and
ψX , standard deviations σ(ψ̂X) , and percentiles of ψ̂∗

X ; and the permutation means
Ep(θ̂∗X) and Ep(ψ̂∗

X) , standard deviations σp(ψ̂∗
X) , and percentiles of ψ̂∗

X The asymptotic
MXH methods and the permutation methods are performed under two models for the
mean cell proportions, namely (a) πijk = pijk (the saturated model) and (b) πijk =
πi+kπ+jk/π++k (independence of exposure and genotype given disease status).

To test the hypothesis of no synergistic effect using asymptotic MXH meth-
ods, one can use the test statistic T = (t − 1)1/2(ψ̂∗

S − 0)/σ(ψ̂∗
S) = 2.845, which

yields a p-value of 0.0022 (on the standard normal distribution scale), as com-
pared to the permutation p-value of 0.0026. We hence strongly reject the null
hypothesis and conclude that there exists a highly significant synergistic effect
between maternal smoking during pregnancy and the TGFα TaqI genotype on
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the risk of cleft palate birth defects. In turn, we can construct an asymptotic 95%
confidence interval for θS of the form exp(ψ̂∗

S±1.96σ(ψ̂S)(t−1)−1/2) = (1.7, 25.1),
using the standard deviation under the saturated model.

Example 2. A study of the effects of long-term smoking and a genetic polymor-
phism on the risk of lung cancer.

Asymptotic MXH methods become particularly useful as the dimensions of
the table increase, and when one wishes to test multiple hypotheses. In a study,
Nakachi, et al. (1991) selected 45 lung cancer cases and 135 healthy controls (all
but two of whom were smokers), and then classified these individuals based on
their lifetime cigarette consumption and on their P450IA1 MspI genotype. The
three levels of smoking are (1) light, (2) moderate, and (3) heavy, while the two
levels of the P450IA1 MspI genotype are (1) wild-type and (2) variant. Table
3 shows that these data form a 3 × 2 × 2 contingency table with 180 counts of
environmental exposure by genotype by disease status (i = 1, 2, 3; j, k = 1, 2).

Table 3. 3 × 2 × 2 table of counts for 180 individuals classified by smoking
status, P450IA1 genotype, and lung cancer.∗

environmental genotype: lung cancer:
exposure: (j = 1, 2) (k = 1, 2)
(i = 1, 2, 3)
smoking status P450IA1 controls cases

polymorphism
light wild-type 79 6
light variant 9 5
moderate wild-type 22 11
moderate variant 4 4
heavy wild-type 18 16
heavy variant 3 3
total 135 45

∗Data are adapted from Nakachi, et al. (1991), by permission. The three
levels of smoking are (1) light, (2) moderate, and (3) heavy (corresponding
to lifetime cigarette consumption doses of < 3, 3 − 4, and > 4 (×105),
respectively); the two levels of the P450IA1 MspI genotype are (1) wild-type
(homozygous or heterozygous for the more common alleles) and (2) variant
(homozygous for the rare form of the alleles); and the two levels of disease
status are (1) control (non-cancer) and (2) lung cancer. Thus, these data
represent a 3 × 2 × 2 table of counts (environment × genotype × disease
status) (i = 1, 2, 3; j, k = 1, 2).

Nakachi, et al. (1991) analyzed these data to determine whether the effects
of the variant genotype, which was thought to increase the risk of lung cancer,
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became “washed-out” at higher levels of cigarette consumption. Let θG|Ei =
πi11πi22/πi12πi21 denote the OR for the genetic effect on disease status at the ith
level of the environmental exposure (i = 1, 2, 3). In turn, let θRil = θG|Ei/θG|El

denote the ratio of the two ORs for exposure levels i and l. As before, let ψX =
ln(θX) , where X denotes the appropriate subscripts. Note that θR31 = θR21θR32

and hence ψR31 = ψR21 + ψR32.
Table 4 shows the point estimates of the adjusted ORs θ̂∗X and the log-ORs

ψ̂∗
X , calculated from the adjusted sample proportions, p∗ijk = pijk +(2t)−1. Table

4 also gives (1) the means and standard deviations of selected statistics and
(2) the percentiles of the sample estimates ψ̂∗

X , calculated by asymptotic MXH
methods (using {πijk} ) and permutation methods (using {p∗ijk} ) under two
models for the mean cell proportions {πijk}. These models are (a) πijk = pijk

(the saturated model) and (b) πijk = πi++π+jk (independence between exposure
and genotype × disease status). Note that the permutation methods enumerated
120,943,907 MXH tables (with N1 = 7 free cells) and took 5 days on a Pentium
III with a 600 MHz processor, while the asymptotic MXH methods again took
about a second.

Next, one may wish to test the hypothesis that the wash-out effect does not
exist, H0 : θG|E1 = θG|E2 = θG|E3 (homogeneity of ORs), against the alternative
hypothesis that the wash-out effect does exist, HA : θG|E1 ≥ θG|E2 ≥ θG|E3, with
at least one strict inequality. The null hypothesis corresponds to model (b)πijk =
πi++π+jk, under which θ∗G|Ei = 2.705 at each level of exposure and hence θRil = 1
(ψRil = 0). The sample estimates of the ORs are θ∗G|E1 = 7.081, θ∗G|E2 = 1.957,
and θ∗G|E2 = 1.121, and the estimated ratios are θ∗R21 = 0.276, θ∗R31 = 0.158, and
θ∗R32 = 0.573.

To test the hypothesis of no wash-out effect using asymptotic MXH methods,
one can construct test statistics of the form Til = (t−1)1/2(ψ̂∗

Ril−0)/σ(ψ̂Ril). We
obtain T21 = −1.198, T31 = −1.702 and T32 = −0.433, which yield percentiles of
0.115, 0.0444, and 0.332 (on the standard normal distribution scale), as compared
to the permutation percentiles of 0.115, 0.0497, and 0.330. Thus, while we can
reject θG|E1 = θG|E3 in favor of θG|E1 > θG|E3(ψR31 < 0) at the 5% significance
level, we cannot further partition this result to reject either θG|E1 = θG|E2 or
θG|E2 = θG|E3. We hence conclude that an overall wash-out effect appears to
exist, but the local wash-out effects are not statistically significant.

The subject of multiple comparisons in contingency tables is an active area
of research, and most methods are based on multivariate normal approximations
(Hochberg and Tamhani (1987, pp. 278-281)). One may wish to use the correla-
tions between statistics of interest to design tests that are less conservative than
those based on Bonferroni methods, especially when these statistics are positively
correlated. In this example, however, model (b) yields asymptotic MXH corre-
lations γ(ψ̂R21, ψ̂R31) = 0.290, γ(ψ̂R21, ψ̂R32) = −0.591, and γ(ψ̂R31, ψ̂R32) =
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0.600, as compared to the permutation correlations γp(ψ̂∗
R21, ψ̂

∗
R31) = 0.281,

γp(ψ̂∗
R21, ψ̂

∗
R31) = −0.595, and γp(ψ̂∗

R31, ψ̂
∗
R32) = 0.604. One can use the χ2+

2 test
(Follmann (1996)) to test for an overall wash-out effect. Let x = (ψ̂R21, ψ̂R32)′

and V = (t− 1)−1σ̂2(x). Then x′V −1 x = 3.439, which corresponds to the 0.179
percentile of the χ2

2 distribution. Since ψ̂R31 = ψ̂R21 + ψ̂R32 < 0, one obtains a
p-value of 0.090 using the χ2+

2 test. We hence fail to establish a wash-out effect
with this alternative test.

Table 4. Selected point estimates and parameters using the asymptotic MXH
methods and permutation methods under two models for the data in Table 3.

observed asymptotic MXH methods permutation methods
parameter θ̂∗X ψ̂∗

X θX ψX σ(ψ̂X) %ile Ep(θ̂∗X) Ep(ψ̂∗
X) σp(ψ̂∗

X) %ile
Model(a): πijk = pijk.
θG|E1 7.081 1.957 7.315 1.990 9.396 0.482 7.314 1.990 9.666 0.488
θG|E2 1.957 0.671 2.000 0.693 10.703 0.489 2.001 0.693 11.088 0.493
θG|E3 1.121 0.114 1.125 0.118 11.885 0.498 1.125 0.118 12.329 0.494
θR21 0.276 1.286 0.273 -1.297 14.242 0.504 0.274 -1.296 14.709 0.504
θR31 0.158 -1.843 0.154 -1.872 15.150 0.510 0.154 -1.872 15.666 0.510
θR32 0.573 -0.557 0.563 -0.575 15.994 0.506 0.563 -0.575 16.581 0.506
Model(b): πijk = πi++π+jk.
θG|E1 7.081 1.957 2.705 0.995 7.771 0.951 2.703 0.994 7.861 0.951
θG|E2 1.957 0.671 2.705 0.995 12.076 0.360 2.714 0.998 12.510 0.346
θG|E3 1.121 0.114 2.705 0.995 12.226 0.168 2.716 0.999 12.652 0.160
θR21 0.276 -1.286 1.000 -0.000 14.361 0.115 1.004 0.004 14.775 0.115
θR31 0.158 -1.843 1.000 0.000 14.487 0.044 1.005 0.005 14.895 0.050
θR32 0.573 -0.557 1.000 0.000 17.185 0.332 1.001 0.001 17.793 0.330

∗The rows of this table show the ORs for genotype effect at each level of environmental
exposure (ΘG|Ei

), and the ratio of these odds ratios (θRil = ΘG|Ei
/θG|El). The columns

of this table show the point estimates of the adjusted ORs θ̂∗X and log-ORs ψ̂∗
X calculated

from the adjusted sample proportions, p∗ijk = pijk + (2t)−1; the asymptotic MXH means
θX and ψX , standard deviations σ(ψ̂X), and percentiles of ψ̂∗

X ; and the permutation
means Ep(θ̂∗X) and Ep(ψ̂∗

X), standard deviations σp(ψ̂∗
X), and percentiles of ψ̂∗

X . The
asymptotic MXH methods and the permutation methods are performed under two mod-
els for the mean cell proportions, namely (a) πijk = pijk (the saturated model) and (b)
πijk = πi++π+jk (independence of exposure and genotype × disease status).
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