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Abstract: We show that certain Foster-type drift conditions related to the existence

of a stationary measure for a Markov chain remain valid without any continuity

or irreducibility assumptions, provided a uniform countable additivity condition is

satisfied. This condition holds, for example, if the transition densities are suitably

bounded. Examples show that this condition covers classes of chains not previously

addressed. We apply the methods to various non-linear time series models.
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1. Introduction

We consider a Markov chain X = {Xn : n ∈ ZZ+ := {0, 1, . . .}}, evolving on
a locally compact complete separable metric space X with Borel σ-field B, and
governed by an overall probability law P. The n-step transition probabilities are
denoted, for each x ∈ X and A ∈ B, by Pn(x,A) = P(Xn ∈ A | X0 = x). Our
notation in general follows that of Meyn and Tweedie (1993), hereafter MT.

We are interested here in conditions that imply that there is a stationary (or
invariant) probability measure π for X: that is, a probability measure satisfying
π(A) =

∫
X π(dx)P (x,A) for all A ∈ B. These conditions involve an extended

valued non-negative measurable function g : X → [0,∞] which is norm-like in the
sense that for some sequence of compact sets Kn ↑ X

inf
x/∈Kn

g(x) → ∞. (1)

The results that we prove all use the “uniform countable additivity” condition:

lim
An↓∅

sup
x∈K

P (x,An) = 0 (2)

for every compact set K ∈ B. When this condition holds, then Liu and Susko
(1992) showed that a necessary and sufficient condition for the existence of a
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stationary probability measure is the existence of a norm-like function g such
that for some x ∈ X we have

sup
n

∫
X

Pn(x, dy)g(y) < ∞. (3)

This condition allows the application of linear continuous mapping theory, as
first shown by Beneš (1967), who called functions satisfying (1) “moments”.

Liu and Susko noted that (3) requires control of all the n-step probabilities.
We show that this can be reduced to control of the one-step ahead probabilities.

The main results of this paper, in Section 2, show that (3) holds under var-
ious Foster-Lyapunov drift conditions, which have previously been shown (MT
(1933)) to imply the existence of a stationary probability measure under various
irreducibility or continuity conditions. The uniform countable additivity con-
dition (2) appears to be quite different from these. This is seen in Section 3,
where we discuss further conditions implying (2) and their relations to previ-
ously considered continuity and irreducibility conditions. In Section 4 we apply
the results to several non-linear time series models which do not necessarily meet
other criteria for the existence of a stationary regime.

2. Main Results

We prove two theorems that show that various drift conditions imply (3).

Theorem 1. Suppose that X satisfies (2), and that there exist extended valued
non-negative norm-like measurable functions g and V, with g( · ) ≥ 1 and V (z) <

∞ for at least one z, which satisfy the “drift condition” that for some finite b,∫
P (x, dy)V (y) ≤ V (x) − g(x) + b. (4)

Suppose also that if S = {y : V (y) < ∞}, then for any compact set K we have
V bounded on S ∩ K (as will happen if, for example, V is continuous).

Then the chain X has a stationary probability measure π such that∫
π(dy)g(y) < ∞. (5)

Proof. The existence of a stationary measure will follow from Theorem 1.1 of
Liu and Susko (1992) provided we can show that the drift condition implies (3)
for the initial point z for which V (z) is finite.

We first note that from (4), as in MT, Lemma 11.3.6, the set S is absorbing:
that is, P (x, S) = 1, x ∈ S. Since g ≥ 1 and g tends to infinity off compact sets,
when (4) holds we can find some compact K with z ∈ K such that for all x,∫

P (x, dy)V (y) ≤ V (x) − 1 + b1lK(x). (6)
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Now choose K compact with K ∩ S �= ∅, and so that (6) holds. Writing τK for
the hitting time of the chain on K, from the Comparison Theorem (MT, p.337)
using (6), we first have Ex[τK ] ≤ V (x)+b. Again using the Comparison Theorem
but with (4), we then have

Ex[
τK−1∑

0

g(Xn)]≤V (x) + bEx[τK ]≤(1 + b)V (x) + b2≤B<∞, x ∈ K ∩ S, (7)

since V is bounded on K ∩ S by assumption.
Write τ0 = 0, τ1, τ2, . . . for the successive return times to K; since g ≥ 1 then,

for all r, the times between returns τr − τr−1 are a.s. finite and indeed for all
initial x ∈ K ∩ S we have Ex

[∑τr−1
n=τr−1

g(Xn)
]
≤ B. Now fix X0 = z ∈ K ∩ S,

and note that since S is absorbing, if we start in z then we have Xτr ∈ K ∩S for
each τr.

By considering the cycles of returns to K and using the Markov property,

Ez[g(Xn)] =
∞∑

r=1

Ez[g(Xn)|τr−1 ≤ n < τr]Pz[τr−1 ≤ n < τr]

≤
∞∑

r=1

Ez

[ τr−1∑
m=τr−1

g(Xm)
]

Pz[τr−1 ≤ n < τr]

≤ B
∞∑

r=1

Pz[τr−1 ≤ n < τr] = B.

But this is precisely the condition (3) for the initial condition X0 = z, and so a
stationary probability measure π exists.

We next show that (5) holds. Note that by construction π can be taken to
be concentrated on S. As shown in Theorem 4 of Tweedie (2001), essentially as
in MT, Theorem 10.4.7, it can be shown that π has the structure

π(A) =
∫

K∩S
π(dy)

∑
n≥1

Py[Xn ∈ A; τK ≥ n]. (8)

Thus from (7) we have

∫
Kc

π(dy)g(y) =
∫

K∩S
π(dy)Ey[

τK−1∑
1

g(Xn)] ≤ B;

since also g(x) ≤ V (x) + b on K ∩ S the result follows. This approach was
originally given in Tweedie (1983) for ϕ-irreducible chains, but depends only on
the structural form (8).
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Finding functions V and g may be simplified to the problem of finding g in
many cases of interest. By writing λg(x) = g(x) − (1 − λ)g(x), (4) will follow if
we have ∫

P (x, dy)g(y) ≤ λg(x) + b (9)

for some λ < 1 and b < ∞. Thus if we have (2) and (9) for some g with g(z) < ∞
for at least one z, and with g bounded on Sg ∩K for all compact K, then X has
a stationary probability measure satisfying (5), from Theorem 1.

The condition (9) is known to imply a geometric rate of convergence to a
stationary measure π when the chain is ϕ-irreducible: see MT, Chapters 15 and
16, for details. However, we can do a little better than this by removing the
assumption that g must be essentially bounded on compact sets, using a direct
proof that avoids the Comparison Theorem and which shows the links between
our results and the results in Liu and Susko (1992).

Theorem 2. Suppose (2) holds and let g be an extended valued non-negative
norm-like measurable function with g(z) < ∞ for at least one z, satisfying (9)
for some λ < 1 and b < ∞. Then X has a stationary probability measure
satisfying (5).

Proof. By (9), we have

E{ g(Xn) |X0 = x } = E{E{· · · E{ g(Xn) |Xn−1 } · · ·} |X0 = x }
≤ E{· · · E{λg(Xn−1) + b |Xn−2 } · · · |X0 = x }
≤ E{· · · E{λ(λg(Xn−2) + b) + b |Xn−3 } · · · |X0 = x }
...

≤ E{λn−1g(X1) + λn−2b + · · · + λb + b |X0 = x }

≤ λn g(x) + b
n−1∑
i=0

λi

= λn g(x) + b
1 − λn

1 − λ
. (10)

Hence from (10),

sup
n≥1

E{ g(Xn) |X0 = z} ≤ sup
n≥1

{
λn g(z) + b

1 − λn

1 − λ

}

≤ g(z) + b
1

1 − λ
< +∞ ,

and (3) is satisfied; therefore there exists a stationary probability measure for
the Markov chain {Xn} . The proof of Theorem 1 cannot be used to show∫

π(dy)g(y) < ∞, since g( · ) is not necessarily bounded on a compact set K.
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However, in Tweedie (2001) it is shown that π =
∑N

j=1 πj where πj are invariant
for the chain restricted to distinct Harris sets, and so

∫
π(dy)g(y) < ∞ from MT,

Theorem 14.3.7.

Remark. The “natural” drift condition for existence of a stationary measure is
(6) rather than (4). This is known to imply the existence of a unique stationary
measure provided the Markov chain is ϕ-irreducible (MT, Chapter 14), and even
without irreducibility (6) has been shown (Tweedie, 1988) to imply the existence
of a stationary measure in two cases: first, when the chain is a weak Feller chain
(that is,

∫
P (x, dy)g(y) is continuous whenever g is continuous and bounded);

and secondly, when the chain satisfies the T-chain continuity condition as in
MT, Chapter 6.

We have not been able to extend the methods given here to deduce (3) from
such a drift condition. Using deeper results, the existence of a stationary measure
under (2) when only (6) holds is shown in Tweedie (2001). That approach does
not however show the relationship of the drift conditions to that of Liu and Susko
(1992), which initially looks like a different approach.

3. Conditions for Uniform Countable Additivity

Evaluating the drift conditions in specific models has become a standard if
sometimes tedious task (see for example Bhattacharya and Lee (1995), Tanikawa
(1999) and Cline and Pu (1999a,b,c)). Here we provide some approaches indi-
cating how the key extra condition (2) may be evaluated, since this is not so well
known; and we also show that (2) is different in kind from other conditions under
which (6) has been shown to imply the existence of a stationary distribution.

Example 1. In this first example we consider boundedness conditions that lead
to (2). Suppose that there exists a norm-like function f : X → IR+ such that

sup
x∈K

Pf = MK < ∞, (11)

for any compact K. Furthermore, assume that the transition laws are given by
the densities P (x,A) =

∫
A p(x, y)ν(dy), x ∈ X, A ∈ B, where ν is any measure

finite on compact sets, and also that for any compact C

p(x, y) ≤ BC , x, y ∈ C. (12)

Under (12) and (11), we now show that (2) holds.
To see this, fix K compact and ε > 0, and choose a compact set K1 with

K ⊆ K1 such that f ≥ MK/ε on Kc
1. Then from (11),

sup
x∈K

P (x,Kc
1) ≤ ε. (13)
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Moreover, by (12),

sup
x∈K

P (x,A ∩ K1) ≤ BK1ν(A ∩ K1). (14)

Thus for any sequence of sets An ↓ ∅, by (13) and (14),

sup
x∈K

P (x,An) ≤ sup
x∈K

[∫
An∩K1

p(x, y)ν(dy) + P (x,Kc
1)

]

≤ BK1ν(An ∩ K1) + sup
x∈K

P (x,Kc
1) ≤ 2ε,

for n sufficiently large that ν(An ∩ K1) < ε/BK1 .

A suitable choice of f in this criterion might be provided by the function V

in (4), provided V is bounded on compact sets, since (4) implies that PV is then
bounded on compacts as well, and therefore (11) is satisfied with f ≡ V .

Next we consider whether the uniformity condition (2) overlaps with the T-
chain or weak Feller continuity conditions used in Tweedie (1988) and elsewhere.
Although in many cases they are jointly satisfied, there are simple cases where
the uniformity condition (2) is not related to any continuity condition, and we
now give examples in both directions to show this.

Example 2. This example satisfies (2) and (9) but is neither a T-chain nor weak
Feller.

Consider first the simple model on ZZ+ given by P1(0, j) = aj > 0, P1(j, j −
1) = 1, j > 0. This is irreducible, and geometrically ergodic provided aj ≤ cρj for
some ρ < 1 (MT, Section 15.1.4). In this case (9) clearly holds with g(j) = βj

for some β > 1 and K as any finite set. Next take this same chain on the shifted
integers ZZ+ + 1/2, with law P2(1/2, j + 1/2) = aj > 0, P2(j + 1/2, j − 1/2) = 1,
j > 0. This is similarly geometrically ergodic.

Now consider the chain on the rationals, with transition law P (q, ·) = P1(q, ·)
if q ∈ ZZ+, P (q, ·) = P2(q, ·) if q ∈ ZZ+ + 1/2, and for all other states q = k/m,
P (k/m, 0) = 1, m even; P (k/m, 1/2) = 1, m odd. Then P satisfies (2) using the
conditions in Example 1 with f = V , since

sup
j∈K

PV ≤ max
{
c

∞∑
j=0

(ρβ)j , βj∗−1
}

< ∞,

where j∗ = max{j ∈ K} and we choose β such that 1 < β < ρ−1; moreover,
inside any compact set K the transition law P has density bounded with respect
to counting measure on [ZZ+ ∪ (ZZ+ + 1/2)] ∩ K. But for any k/m with even
m there is a sequence kα/mα with mα odd such that kα/mα → k/m; hence P

cannot be a T-chain, since for all n we have that Pn(kα/mα, ·) is orthogonal to
Pn(k/m, ·). Similarly, but more trivially, P is not weak Feller.
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This example also illustrates that although (9) and (2) hold, the station-
ary measure need not be unique, since there are orthogonal invariant measures
concentrated on ZZ+ and ZZ+ + 1/2.

Example 3. Here we exhibit a Markov chain on {0, 1/n, n ∈ ZZ+} which is a
T-chain, and weak Feller, and has a stationary measure, but does not satisfy (2).
To do this take P (1/n, 1/(n + 1)) = 1/2, P (1/n, 0) = 1/2, n ≥ 1; P (0, 0) = 1.
This is a T-chain with T (x, 0) ≡ 1/2, since as xn → 0 clearly T (xn, A) → T (0, A).
It is weak Feller since if f is continuous then for such sequences f(xn) → f(0)
and so

∫
P (1/n, dy)f(y) = [f(0) + f(1/(n + 1)]/2 → f(0). But if we take Ar =

{1/r, 1/(r+1), 1/(r+2), . . .} then Ar ↓ ∅, yet for all r we have supx∈X P (x,Ar) =
1/2; and hence (2) fails since X is compact.

4. Some Time Series Models

The drift criteria (9) have been widely applied with considerable success in
evaluating models for time series processes. Some of these have a Markov chain
structure, and for others it is possible to find a suitable Markovian representation,
and then transfer the results obtained for the latter representation to the original
model.

We assess only first order models in this section. For general higher-order
models the situation is considerably more complicated, and further investigation
is needed in order to obtain a general class of sufficient conditions for (2), based
for example on the approach in Example 1 of Section 3.

Specifically, we consider a first-order model of the form

Xn = h(Xn−1) + σ(Xn−1)en (15)

where the en are an i.i.d. sequence of innovations.

Theorem 3. Suppose X satisfies (15) where
(a) h( · ), σ( · ) and 1/σ( · ) are locally bounded functions;
(b) {en}n∈IN is a sequence of i.i.d. random variables having probability density

function fe absolutely continuous with respect to Lebesgue measure.
Then the countable uniform additivity condition (2) holds.

Proof. Let K be a compact subset of IR and Ar ↓ ∅ be a sequence of sets in IR.

Then we have

sup
x∈K

P (x,Ar) ≤ sup
x∈K

P[X1 ∈ Ar|X0 = x]

= sup
x∈K

∫
fe(w)1l{w ∈ [Ar − h(x)]/σ(x)}dw. (16)
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Now the local boundedness conditions ensures that there is a compact set L in
IR which contains all the points h(x)/σ(x) for x ∈ K; and moreover that there
is a sequence Br ↓ ∅ in IR with (Ar/σ(x)) ⊆ Br for every x ∈ K. Thus we can
write the bound in (16) as

sup
x∈K

P (x,Ar) ≤ sup
y∈L

∫
fe(w)1l{w ∈ Br − y}dw.

Now the function fe(w) is integrable, and the function 1l{w ∈ Br} is bounded,
and so the functions gr(y) =

∫
fe(w)1l{w ∈ Br − y}dw are uniformly bounded

(in r and y) and continuous, as convolutions of integrable and bounded functions
(MT, Theorem D.4.3). From Ascoli’s Theorem (MT, Theorem D.4.2), it follows
that the sequence {gr} is equicontinuous.

Choose ε small. Then on the the compact set L we can choose a fixed
finite sequence of points y1, . . . , ym independent of r such that, by equicontinuity,
supy∈L gr(y) ≤ max1,...,m gr(ym) + ε. But now for any fixed yj we have gr(yj) ↓ 0
and so the result follows.

The condition stated in (b) of Theorem 3 is weaker than the one stated in
Tweedie (2001) for the same type of models, since we do not require that the
density fe( · ) is bounded on compact sets. The definition (15) covers a fairly
wide class of models known in the literature. The boundedness conditions in (a)
are not necessary for (2) to hold, as shown in the following example. Therefore
models falling outside the scope of Theorem 3 may nonetheless satisfy (2), and
a necessary and sufficient condition for (2) is still not known.

To show how to weaken (a), we consider (15) with h( · ) and σ( · ) locally
bounded and σ( · ) bounded away from 0, except for a set X̂ ⊂ IR such that X̂∩IR
is countable, X̂∩K is finite for every compact set K, and for all x ∈ X̂ , σ(x) = 0;
and we assume also that the errors have a density f , absolutely continuous with
respect to Lebesgue measure. Given a fixed x̂ ∈ X̂ there exists N such that
h(x̂) /∈ An ∀n > N , if An ↓ ∅. Then lim

n→∞P (x̂, An) = 0. By the hypothesis on

X̂, we have that, for every compact set K, we can build a finite cover of intervals
each containing one and only one point of X̂, and therefore we can disregard such
points in verifying (2). Using the hypotheses on h( · ) and σ( · ), we can then apply
the same steps as in the proof of Theorem 3 for all the remaining points, and so
conclude that (2) is fulfilled. This example also shows the utility of the approach
described in the present paper, because we certainly cannot easily conclude that
the process is a T-chain as described at the end of this Section.

Typically drift criteria have been utilized only when weak continuity or the
T-continuity assumption holds, enabling application of results in Tweedie (1988).
However, these conditions can be both hard to check or require assumptions
stronger than the one above. For example, in Fonseca (2001), an approach similar
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to that developed here is used to show that a general threshold ARMA model
admits a stationary measure, provided a suitable condition on the coefficients of
the autoregressive parts of the different regimes is satisfied. Such models are not
weak Feller, so that approach cannot be used. Proving the T-continuity or even
irreducibility of the Markov chain related to such a model is quite non-trivial,
and a good description of the troubles involved can be found in Cline and Pu
(1999b).

For general models there are various recent stability results (see, for exam-
ple, Bhattacharya and Lee (1995), Tanikawa (1999) or Cline and Pu (1999a, b,
c). These have all been proven under assumptions sufficient to imply the chain
satisfies irreducibility and T-continuity conditions, in order to apply the drift
conditions for ergodicity. For example, Cline and Pu (1998) show for models
like (15) that it suffices that for every x ∈ IR, g(z) = h(x) + σ(x)z should be a
bijective continuous function with a differentiable inverse. Thus in particular if
h( · ), σ( · ) and 1/σ( · ) are locally bounded, the density of the errors is positive
on IR and h( · ) and σ( · ) are continuous (which can be weakened to ask that
the density of the errors be locally bounded away from 0) then (15) defines a
T-chain.

For these models (2) can be used in place of T-continuity, under the rather
simpler conditions in Theorem 3. Irreducibility and aperiodicity are then often
easy to check, so we obtain that the ergodicity of (15) follows from the existence
of a stationary finite measure with an additional small amount of extra work.
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