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CENTRAL LIMIT THEOREMS FOR FUNCTIONAL

Z-ESTIMATORS
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Abstract: We establish central limit theorems for function-valued estimators defined

as a zero point of a function-valued random criterion function. Our approach is

based on a differential identity that applies when the random criterion function is

linear in terms of the empirical measure. We do not require linearity of the statisti-

cal model in the unknown parameter, even though the result is most applicable for

models with convex linearity that can be boundedly extended to the linear span of

the parameter space. Three examples are given to illustrate the application of these

theorems: a simplified frailty model which is nonlinear in the unknown parameter;

the multiplicative censoring and double censoring models which are bounded convex

linear in the unknown parameter.
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1. Introduction

The methods for proving central limit theorems for maximum likelihood esti-
mators defined as zero points of the likelihood equations (and thus Z-estimators)
can be traced back to the classic theory due to Fisher (1922) and Cramér (1946).
A recent development has introduced empirical process methodology and ex-
tended the classic results to general estimating equations that may not be likeli-
hood equations, see Daniels (1961), Huber (1964, 1967), Pakes and Pollard (1989)
and Pollard (1985, 1989). Another recent advance is the extension of the theory to
models involving functional parameters, see Gill (1989) and Van der Vaart (1994,
1995). A delta method using compact differentiability is also given in Heester-
man and Gill (1992). See also Appendix A.10 in Bickel, Klaassen, Ritov and
Wellner (1993) and Section 3.3 in Van der Vaart and Wellner (1996).

The context for a central limit theorem for Z-estimators includes an empirical
measure Pn for n i.i.d. observations and a score operator B(θ) depending on a
parameter θ of interest. We are interested in proving a central limit theorem for
Z-estimators {θ̂n} defined as the zero points of the estimating equations

ψ(θ̂n,Pn) ≡ PnB(θ̂n) = oP ∗(n−1/2). (1.1)
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Traditional Argument. Let P be the true probability. To prove a central limit
theorem, the traditional argument assumes that the operator ψ(θ, P ) is Fréchet
differentiable in θ with respect to a norm ‖ · ‖. One expands ψ(θ, P ) at the true
θ0 and evaluates the linear approximation at θ̂n:

ψ(θ̂n, P ) − ψ(θ0, P ) = ψ̇(θ0)(θ̂n − θ0) + oP ∗(‖θ̂n − θ0‖). (1.2)

Suppose ψ(θ0, P ) = PB(θ0) = 0 and that the theory of empirical process can
be used to show GnB(θ̂n) = GnB(θ0)+oP ∗(1), where Gn is the empirical process.
By (1.1) and algebra, the difference

√
n(ψ(θ̂n, P )−ψ(θ0, P )) = −GnB(θ0)+oP ∗(1)

(see Lemma 2.3 for details), so that the linearization in (1.2) implies

ψ̇(θ0)
(√

n(θ̂n − θ0)
)

= −GnB(θ0) + oP ∗(
√
n‖θ̂n − θ0‖) + oP ∗(1). (1.3)

This relates
√
n(θ̂n − θ0) directly to a weakly convergent process Gn =

√
n(Pn −

P ) with GnB(θ0) ⇒ Z0, where Z0 is a Brownian bridge process defined on an
appropriate space.

By assuming the bounded invertibility of the operator ψ̇(θ0) with respect to
the same norm ‖ · ‖, one can improve on the consistency of θ̂n and prove that
θ̂n actually converges with a rate of n−1/2, i.e.,

√
n‖θ̂n − θ0‖ = OP ∗(1) (Lemma

2.4). With this boundedness, the dominant error term oP ∗(
√
n‖θ̂n − θ0‖) in

(1.3) vanishes as n goes to infinity. Hence, by the continuous mapping theorem,√
n(θ̂n − θ0) ⇒ −ψ̇−1(θ0)(Z0) is asymptotically normal.

Difficulty with the Traditional Argument. There are non-trivial examples in-
volving both Euclidean parameters and functional parameters for which central
limit theorems have been established using the traditional argument. However,
there are other interesting examples for which only somewhat restrictive results
can be obtained by a similar argument. One example is the double censoring
model (Chang and Yang (1987), Chang (1990), and Gu and Zhang (1993)). An-
other example is the multiplicative censoring model (Vardi (1989), Vardi and
Zhang (1992), and Van der Vaart (1994)).

The main difficulty with the traditional argument is that the derivative op-
erator ψ̇(θ0) may not be boundedly invertible with respect to the norm ‖ · ‖ used
in linearization (1.2). For example, the operator ψ̇(θ0) in the double censoring
model is only invertible with respect to a weaker norm ‖ · ‖K rather than the
stronger uniform norm ‖·‖. To improve the convergence rate from consistency to
n−1/2 and thereby validate the linearization and prove a central limit theorem by
this argument, however, both the invertibility of ψ̇(θ0) and the differentiability
of ψ(θ, P ) have to be established with respect to the same norm ‖ · ‖. At this
point one may wonder if the weaker norm ‖ · ‖K should be used in linearization
given that the derivative operator is invertible with respect to it. The answer is
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no; in the double censoring model ψ(θ, P ) is not differentiable with respect to
the ‖ · ‖K norm.

Argument Through a Differential Identity. In an interesting class of models,
there is an identity that connects

√
n(θ̂n − θ0) to the weakly convergent quantity

GnB(θ0): ψ̇(θ̂n)(
√
n(θ̂n − θ0)) = −Ṗθ̂n

(
√
n(θ̂n − θ0))B(θ̂n) (With ϑ = θ̂n and

a =
√
n(θ̂n−θ0) in Lemma 2.1). This identity was derived, in an ad hoc manner,

in the multiplicative censoring model (equation (2.5) in Vardi and Zhang (1992)),
in the double censoring model (equation (2.11) in Gu and Zhang (1993)), and
in the interval truncation model (equation (21) in Tsai and Zhang (1995)). Van
der Laan (1992) also derived an identity to investigate the efficiency of the MLE.
However, previous work does not provide general model conditions for the validity
of the identity.

A common feature in these problems is that the probability measures Pθ are
convex linearly indexed by θ (as in the double censoring model and the multi-
plicative censoring model), or nearly so up to a normalizing constant (as in the
interval truncation model). For a general class of models in which convex linear-
ity can be boundedly extended to the linear span of the parameter space, this
linearity identity can be established via Fréchet differentiability of the likelihood
equations ψ(θ, Pθ) = 0. See Section 2.1 for more details, also see Zhan (1996).

This identity allows a linearization applied to Pθ instead of ψ(θ, P ) through
its derivative operator Ṗϑ(·). For models Pθ with bounded convex linearity, the
differential Ṗθ̂n

(
√
n(θ̂n − θ0))B(θ̂n) exactly equals the difference

√
n(ψ(θ̂n, Pθ̂n

)−
ψ(θ̂n, Pθ0)) (Lemma 2.5). Consequently, we have

ψ̇(θ̂n)
(√

n(θ̂n − θ0)
)

= −GnB(θ0) + oP ∗(1). (1.4)

Unlike (1.3), where θ̂n must converge with an n−1/2 rate with respect to ‖ · ‖
to validate the linearization, there is no need to require this condition in (1.4)
because the linearization is perfect. The Z-estimators {θ̂n} still have to converge
at the n−1/2 rate, but they may converge in any norm as long as the derivative
operator is invertible with respect to it. This circumvents the problem with the
traditional argument by obtaining a weak convergence as well as the rate control
in one step. Theorem 2.2 is a rigorous statement of this argument.

For a model Pθ that is not linearly parameterized, the linearity identity leads
to

ψ̇(θ̂n)
(√

n(θ̂n − θ0)
)

= −GnB(θ0) + oP ∗(
√
n‖θ̂n − θ0‖) + oP ∗(1).

The term oP ∗(
√
n‖θ̂n − θ0‖) comes from approximating Ṗθ̂n

(
√
n(θ̂n − θ0))B(θ̂n)

by the difference
√
n(ψ(θ̂n, Pθ̂n

) − ψ(θ̂n, Pθ0)). In this case, the uniform bound-
edness of ψ̇(θ) with respect to the norm ‖ · ‖ is required to improve the rate of
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convergence for θ̂n to make the linearization valid, and a central limit theorem
follows. Theorem 2.1 formulates this argument precisely.

Other Motivations. One of the motivations for a functional central limit theorem
lies in the fact that the NPMLE (nonparametric maximum likelihood estima-
tor) is a Z-estimator in most cases. The NPMLE is a popular estimator for a
functional parameter such as a distribution function or a hazard function. It
is the estimate that is actually computed in most applications because it is a
discrete function and is the solution of a well-defined optimization problem. For
some models, such as the double censoring model, there are effective algorithms
for computing the NPMLE as an alternative to solving the likelihood equations
(Wellner and Zhan (1997)). More importantly, efficient algorithms also make it
possible to estimate the covariance structure of the limiting processes by boot-
strap means (Wellner and Zhan (1996)). Because of the implicit and complicated
expression for the limiting process, the bootstrap is an important method to con-
struct a confidence set in a functional central limit theorem.

Our paper is organized as follows. Section 2.1 presents a differential identity
based on which the linearity identity is derived. The linearity identity is obtained
by combining Lemma 2.1 in Section 2.1 and Lemma 2.5 in Section 2.4. Section 2.2
presents the uniform boundedness condition needed in the proof of the central
limit theorem. The actual proofs of the central limit theorems are given in
Section 2.3 and Section 2.4. Three examples are given in Section 3 to illustrate
the applications of the theorems.

2. Central Limit Theorems

Let Xi, i = 1, 2, . . . be a sequence of independent observations from a dis-
tribution P ∈ P on a probability space (X ,A), where P denotes the set of all
probability measures on (X ,A). Suppose that the collection P is parametrized
by θ ∈ Θ, where Θ is assumed to be a smooth surface in a Banach space (B, ‖ ·‖)
with a norm ‖ ·‖. We are interested in estimating a functional parameter θ0 ∈ Θ,
the true parameter.

Let l∞(H) denote the set of bounded functions from H to the real line R,
for some set H, and let ‖ · ‖H denote the uniform norm on l∞(H). Let B(θ)
be a θ-indexed operator (the score operator for θ) from H to some subset F(θ)
of L2(Pθ) for each θ ∈ Θ. Define the set F(Θ) =

⋃
θ∈Θ F(θ). For simplicity of

notation, we omit Θ in F(Θ) and simply write F . (See Van der Vaart (1995) for
a similar formulation).

The empirical measure for the first n observations is denoted by Pn =
(1/n)

∑n
i=1 δXi and the empirical process by Gn =

√
n(Pn − P ). As usual we

use linear functional notation, and write Pf =
∫
fdP for f ∈ F , and we consider

Gn as indexed by the collection of functions F ⊂ L2(P ), P ∈ P.
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For each fixed θ ∈ Θ and P ∈ P, define the operator ψ(θ, P ) = PB(θ)
from H to the real line R. Suppose that B(θ) is bounded in the sense that
‖ψ(θ, P )‖H = ‖PB(θ)‖H < ∞ for all P ∈ P. Then ψ(θ, P ) ∈ l∞(H) for each
fixed θ ∈ Θ. The empirical process GnB(θ) acting on B(θ) is also a function in
l∞(H) for fixed θ ∈ Θ.

A functional Z-estimator for θ0 is a sequence of estimates {θ̂n} ∈ Θ which
makes the “scores” PnB(θ)(h), h ∈ H, approximately zero: ‖ψ(θ̂n,Pn)‖H =
oP ∗(n−1/2), where P ∗ denotes the outer probability of P∞ (See Van der Vaart
and Wellner (1996) for more details on outer probability measures).

2.1. A differential identity

The function ψ(θ, P ), as a map from Θ to l∞(H), is Fréchet differentiable
with respect to the norm ‖ · ‖ at a point ϑ ∈ Θ if there is a bounded linear
operator ψ̇(ϑ, Pϑ)(·) mapping from (lin(Θ), ‖ · ‖) to (l∞(H), ‖ · ‖H) such that
‖ψ(θ, Pϑ) − ψ(ϑ, Pϑ) − ψ̇(ϑ, Pϑ)(θ − ϑ)‖H = o(‖θ − ϑ‖). Denote the operator
ψ̇(θ, Pθ) by ψ̇(θ): ψ̇(θ) ≡ ψ̇(θ, Pθ).

Recall that for a fixed ϑ ∈ Θ, the operator B(ϑ) is bounded in the sense that
‖PB(ϑ)‖H < ∞ for all P ∈ P. Thus for a fixed ϑ ∈ Θ, the probability measure
Pθ induces a mapping θ �→ PθB(ϑ) from Θ to l∞(H). The map PθB(ϑ), as a
function of θ, is Fréchet differentiable with respect to the norm ‖ · ‖ at a point
ϑ ∈ Θ if there is a linear operator Ṗϑ(·) such that Ṗϑ(·)B(ϑ) is bounded and
‖PθB(ϑ) − PϑB(ϑ) − Ṗϑ(θ − ϑ)B(ϑ)‖H = o(‖θ − ϑ‖).
Lemma 2.1. Assume that ψ(θ, Pθ) ≡ 0 for all θ ∈ Θ. For any ϑ ∈ Θ, sup-
pose that ψ(θ, P ) is Fréchet differentiable with respect to the norm ‖ · ‖ in a
neighborhood of ϑ, and the operator ψ̇(θ) is continuous as a function of θ at ϑ:

∥∥∥ψ̇(θ) − ψ̇(ϑ)
∥∥∥ ≡ sup

‖a‖≤1

∥∥∥ψ̇(θ)(a) − ψ̇(ϑ)(a)
∥∥∥H −→ 0 (2.1)

as ‖θ− ϑ‖ → 0. If PθB(ϑ) is Fréchet differentiable with respect to the norm ‖ · ‖
at ϑ ∈ Θ, then the operator ψ(θ, Pθ) as a function of θ is Fréchet differentiable
with respect to the norm ‖ · ‖ at ϑ ∈ Θ and the following identity holds for all
a ∈ lin(Θ):

ψ̇(ϑ)(a) + Ṗϑ(a)B(ϑ) = 0 (2.2)

in l∞(H).

Proof. For any ϑ ∈ Θ, write the difference

ψ(θ, Pθ) − ψ(ϑ, Pϑ) = PθB(θ) − PϑB(ϑ)

= Pϑ(B(θ) −B(ϑ)) + (Pθ − Pϑ)B(ϑ) + (Pθ − Pϑ)(B(θ) −B(ϑ)). (2.3)
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Since ψ(θ, P ) is Fréchet differentiable at ϑ, the first term on the right-hand side
of (2.3) can be written as Pϑ(B(θ)−B(ϑ)) = ψ(θ, Pϑ)−ψ(ϑ, Pϑ) = ψ̇(ϑ, Pϑ)(θ−
ϑ)+o(‖θ−ϑ‖). The map PθB(ϑ) as a function of θ is Fréchet differentiable with
respect to the norm ‖·‖D at ϑ, the second term in (2.3) is actually (Pθ−Pϑ)B(ϑ) =
Ṗϑ(θ−ϑ)B(ϑ)+ o(‖θ−ϑ‖). Because Pθ acts on B(ϑ) linearly, the third term on
the right-hand side of (2.3) can be written as

(Pθ − Pϑ)(B(θ) −B(ϑ)) = Pθ(B(θ) −B(ϑ)) − Pϑ(B(θ) −B(ϑ))

= −ψ̇(θ)(ϑ− θ)− o(‖ϑ − θ‖) − ψ̇(ϑ)(θ − ϑ) − o(‖θ − ϑ‖).

The first two terms in the last equality are obtained by applying the Fréchet
differentiability of ψ(ϑ, Pθ) = PθB(ϑ) at θ.

Thus, by the triangle inequality and the continuity of ψ̇(θ), we have ‖(Pθ −
Pϑ)(B(θ) − B(ϑ))‖H = o(‖θ − ϑ‖). Therefore ψ(θ, Pθ) as a function of θ is
Fréchet differentiable with respect to ‖ · ‖ at ϑ and its Fréchet derivative is given
by ψ̇(ϑ, Pϑ)(a) + Ṗϑ(a)B(ϑ). But ψ(θ, Pθ) ≡ 0 and we have the identity in (2.2)
by the uniqueness of the Fréchet derivative.

2.2. A condition of uniform boundedness

The uniform boundedness of the operators ψ̇(θ) is needed to establish the
rate of convergence for a sequence of Z-estimators {θ̂n}. This property is also
needed to asymptotically replace ψ̇−1(θ̂n)(GnB(θ0)) by ψ̇−1(θ0)(GnB(θ0)) for a
consistent θ̂n, and thus allows us to apply the Continuous Mapping Theorem on
ψ̇−1(θ0)(GnB(θ0)) to obtain a central limit theorem.

Given that Θ is a subset in a Banach space (B, ‖ · ‖), the closure lin(Θ) is
a Banach space with the same norm ‖ · ‖ (Lemma II.1.3 on page 50, Dunford
and Schwartz (1988), Part I). Because (l∞(H), ‖ ·‖H) is also a Banach space, the
bounded operators ψ̇−1(θ) and ψ̇(θ) can be uniquely extended to the closures of
their domains by continuity (see, e.g., Lemma I.6.16 on page 23 of Dunford and
Schwartz (1988), Part I).

The unique continuous extensions of ψ̇−1(θ) and ψ̇(θ) on the closures of their
domains are also denoted by ψ̇−1(θ) and ψ̇(θ). The extension ψ̇−1(θ) on R(ψ̇) is
also the inverse of the extension ψ̇(θ) on lin(Θ). For the examples we deal with
in Section 3, and for other examples, it is true that R(ψ̇) does not depend on θ.
We use R(ψ̇) instead of R(ψ̇(θ)) to denote the common subspace on which every
ψ̇−1(θ) resides.

Lemma 2.2. Suppose that, for every fixed θ ∈ Θ, the operator ψ̇(θ) mapping
from (lin(Θ), ‖ · ‖K) to (l∞(H), ‖ · ‖H) has a bounded inverse ψ̇−1(θ) on a fixed
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subspace space R(ψ̇) ⊂ l∞(H). Further assume that ψ̇−1(θ) converges on R(ψ̇)
to ψ̇−1(θ0) with respect to a norm ‖ · ‖K : for any f ∈ R(ψ̇)

∥∥∥ψ̇−1(θ)(f) − ψ̇−1(θ0)(f)
∥∥∥

K
−→ 0 (2.4)

as ‖θ−θ0‖ → 0. Assume that ‖θ̂n−θ0‖ →P ∗ 0 and that GnB(θ0) ⇒ Z0 in l∞(H)
as n→ ∞. Then ‖(ψ̇−1(θ̂n) − ψ̇−1(θ0))(GnB(θ0))‖K = oP ∗(1).

Proof. For any compact set C ⊂ R(ψ̇) ⊂ l∞(H), let C(δ) be the δ-enlargement
of C defined by C(δ) = {f ∈ R(ψ̇) : ‖f −f ′‖H ≤ δ for some f

′ ∈ C}. We show
that

sup
{ ∥∥∥(ψ̇−1(θ) − ψ̇−1(θ0))(f)

∥∥∥
K

: f ∈ C(δ)
}
−→ 0 (2.5)

as ‖θ − θ0‖ → 0 and then δ → 0+.
In fact, by (2.4) and the Banach-Steinhaus Theorem, the operator norm

of ψ̇−1(θ) is uniformly bounded: sup‖θ−θ0‖≤β ‖ψ̇−1(θ)‖K ≤ M < ∞ for some
positive numbers β > 0 and M > 0. The uniform boundedness of the operators
ψ̇−1(θ) is equivalent to their uniform continuity as mappings in Banach spaces, so
that the pointwise convergence in (2.4) directly implies the uniform convergence
in the norm ‖ · ‖K .

Now since GnB(θ0) ∈ R(ψ̇) converges weakly to Z0 in (R(ψ̇), ‖ · ‖H), it
is asymptotically tight: for every ε > 0 there exists a compact set C ⊂ R(ψ̇)
such that lim infn→∞ P∗ {GnB(θ0) ∈ C(δ) } ≥ 1 − ε for every δ > 0; see Van
der Vaart and Wellner (1996), Section 1.3. Thus by (2.5), we have ‖(ψ̇−1(θ̂n) −
ψ̇−1(θ0))(GnB(θ0))‖K = oP ∗(1) as n→ ∞ and then δ → 0+.

2.3. A central limit theorem

We need the following assumptions for a central limit theorem.

L.1 For all θ ∈ Θ, ψ(θ, Pθ) = PθB(θ) ≡ 0 in l∞(H).

L.2 As n→ ∞, for any decreasing δn ↓ 0, the stochastic equicontinuity condition
sup {‖Gn(B(θ) −B(θ0))‖H : ‖θ − θ0‖ ≤ δn} = oP ∗(1) holds at the point θ0.

L.3 At the point θ0, GnB(θ0) ⇒ Z0 in l∞(H), where ⇒ indicates weak conver-
gence in l∞(H) to a tight Borel measurable random element Z0.

L.4 For a fixed ϑ ∈ Θ, the operator PθB(ϑ) as a function of θ is Fréchet dif-
ferentiable with respect to the norm ‖ · ‖ at ϑ. Furthermore, the function
θ �→ ψ(θ, P ) from Θ to l∞(H) is Fréchet differentiable with respect to the
norm ‖ · ‖. The operator ψ̇(θ) is continuous as a function of θ in the sense
of (2.1).
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L.5 For every fixed θ ∈ Θ, the operator ψ̇(θ) from (lin(Θ), ‖ · ‖) to
(l∞(H), ‖ · ‖H) has a bounded inverse ψ̇−1(θ) on a fixed subspace R(ψ̇) ⊂
l∞(H). Furthermore ψ̇−1(θ) as an operator sequence converges to ψ̇−1(θ0)
as ‖θ − θ0‖ → 0:

∥∥∥ψ̇−1(θ)(f) − ψ̇−1(θ0)(f)
∥∥∥ −→ 0 (2.6)

for all f ∈ R(ψ̇).

Theorem 2.1. Let ‖θ̂n − θ0‖ →P ∗ 0 be a sequence of consistent Z-estimators.
Assume L.1 through L.5. Then

√
n(θ̂n − θ0) ⇒ −ψ̇−1(θ0)(Z0) in (lin(Θ), ‖ · ‖).

We begin to prove Theorem 2.1 with the following lemma. It asserts that
the standardized estimating equations behave asymptotically as GnB(θ0) under
our assumptions.

Lemma 2.3. Let L.1 and L.2 hold. Then
√
nψ(θ̂n, P ) = −GnB(θ0) + oP ∗(1).

Proof. Since ψ(θ, Pθ) ≡ 0 for all θ ∈ Θ, we have by the definitions of ψ(θ, P )
and the Z-estimator ‖√nPnB(θ̂n)‖H = oP ∗(1):

GnB(θ0) +
√
n(ψ(θ̂n, P ) − ψ(θ0, P )) = −Gn(B(θ̂n) −B(θ0)) + oP ∗(1).

By L.2, the consistency of θ̂n, and

P ∗{‖Gn(B(θ)−B(θ0))‖H≥ε}≤P ∗{ sup
‖θ−θ0‖≤δ

‖Gn(B(θ)−B(θ0))‖H≥ε}

+P ∗{‖θ̂n−θ0‖>δ},
it follows that ‖Gn(B(θ̂n)−B(θ0))‖H = oP ∗(1). Hence ‖GnB(θ0)+

√
n(ψ(θ̂n, P )−

ψ(θ0, P ))‖H ≤ ‖−Gn(B(θ̂n)−B(θ0))‖H+oP ∗(1) = ∆n(θ̂n)+oP ∗(1) = oP ∗(1). The
conclusion of the lemma follows from this inequality and the fact that ψ(θ0, P )=
0.

Remark 2.1. In order to obtain the conclusion of Lemma 2.3, it suffices to verify
∆n(θ̂n) = oP ∗(1) for consistent θ̂n, although this weaker condition is usually
verified through the stronger L.2.

The next lemma shows that
√
n(θ̂n − θ0) is actually OP ∗(1) under the as-

sumptions.

Lemma 2.4. Assume L.1 through L.5 and that θ̂n is consistent: ‖θ̂n−θ0‖ →P ∗ 0.
Then

√
n‖θ̂n − θ0‖ = OP ∗(1).

Proof. Mapping from the Banach space R(ψ̇) to the Banach space lin(Θ), the
sequence of continuous linear operators ψ̇−1(θ) converges on R(ψ̇) to ψ̇−1(θ0) as
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‖θ − θ0‖ → 0 by L.5. Hence, by the Banach-Steinhaus Theorem (for example,
Theorem II.3.6 on page 60 of Dunford and Schwartz (1988), or Theorem 2 on
page 203 of Kantorovich and Akilov (1982)), the norm of the operators ψ̇−1(θ) is
uniformly bounded: sup‖θ−θ0‖≤β ‖ψ̇−1(θ)‖ ≤ 1/α <∞ for some positive numbers
0 < α <∞ and β > 0.

Thus for any a ∈ lin(Θ), we have ‖a‖ = ‖ψ̇−1(θ)(ψ̇(θ)(a))‖ ≤ ‖ψ̇−1(θ)‖
×‖ψ̇(θ)(a)‖H ≤ (1/α)‖ψ̇(θ)(a)‖H. We have not made a distinction between the
operator norm and the norm on B. The meaning of ‖ · ‖ should be clear from
the context. Hence

α‖a‖ ≤
∥∥∥ψ̇(θ)(a)

∥∥∥H (2.7)

for all θ such that ‖θ − θ0‖ ≤ β.
Take a =

√
n(θ̂n − θ0) and ϑ = θ̂n in identity (2.2). By the linearity of

Ṗϑ(a)B(ϑ) in a and the definition of Fréchet differentiability of PθB(ϑ) as a
function of θ,

ψ̇(θ̂n)(
√
n(θ̂n − θ0)) = −Ṗθ̂n

(
√
n(θ̂n − θ0))B(θ̂n) =

√
nṖθ̂n

(θ0 − θ̂n)B(θ̂n)

=
√
n(Pθ0B(θ̂n) − Pθ̂n

B(θ̂n)) + oP ∗(
√
n‖θ̂n − θ0‖)

=
√
nψ(θ̂n, P ) + oP ∗(

√
n‖θ̂n − θ0‖).

We have used P to denote Pθ0 in the last equality. Therefore, by the boundedness
in (2.7) we obtain: α

√
n‖θ̂n − θ0‖ ≤ ‖ψ̇(θ̂n)(

√
n(θ̂n − θ0))‖ ≤ √

n‖ψ(θ̂n, P )‖H +
oP ∗(1) · √n‖θ̂n − θ0‖ in P ∗-probability when n is sufficiently large. The conclu-
sion of the lemma follows from Lemma 2.3 and L.3 which assert that the term√
n‖ψ(θ̂n, P )‖H is of an order of OP ∗(1) + oP ∗(1).

Proof of Theorem 2.1. By the Fréchet differentiability of PθB(ϑ) at ϑ we have
PθB(ϑ)−PϑB(ϑ)−Ṗϑ(θ−ϑ)B(ϑ) = o(‖θ−ϑ‖). Substituting θ̂n for ϑ and θ0 for θ,
and using P to denote Pθ0 , we obtain Ṗθ̂n

(θ̂n−θ0)B(θ̂n) = Pθ̂n
B(θ̂n)−Pθ0B(θ̂n)+

oP ∗(‖θ̂n − θ0‖) = −ψ(θ̂n, P )+ oP ∗(‖θ̂n − θ0‖). Note that ψ̇(θ̂n) ≡ ψ̇(θ̂n, Pθ̂n
), and

by the identity (2.2) we have

ψ̇(θ̂n)(
√
n(θ̂n−θ0)) =−√nṖθ̂n

(θ̂n−θ0)B(θ̂n)=
√
nψ(θ̂n, P )+oP ∗(

√
n‖θ̂n−θ0‖)

=
√
nψ(θ̂n, P ) + oP ∗(1).

The last equality follows from the consistency of θ̂n, L.1 through L.5 and Lemma
2.4.

Note that by L.5 the operator sequence ψ̇−1(θ) converges to ψ̇−1(θ0) on R(ψ̇)
as ‖θ−θ0‖ → 0. Hence the Banach-Steinhaus Theorem and the consistency of θ̂n

imply that the operator norm of ψ̇−1(θ̂n) is uniformly bounded in P ∗-probability
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when n is sufficiently large. It maps a term of oP ∗(1) in the ‖ · ‖H-norm into a
term of oP ∗(1) in ‖ · ‖-norm: ψ̇−1(θ̂n)(oP ∗(1)) = oP ∗(1). This means that
√
n(θ̂n − θ0) = ψ̇−1(θ̂n)(

√
nψ(θ̂n, P ) + oP ∗(1)) = ψ̇−1(θ̂n)(−GnB(θ0) + oP ∗(1))

= −ψ̇−1(θ̂n)(GnB(θ0)) + oP ∗(1).

The second equality follows from Lemma 2.3.
By the triangle inequality and Lemma 2.2 (applied with theK-norm replaced

by ‖ · ‖) we obtain ψ̇−1(θ̂n)(GnB(θ0)) = ψ̇−1(θ0)(GnB(θ0)) + oP ∗(1). Hence we
have

√
n(θ̂n−θ0) ⇒ −ψ̇−1(θ0)(Z0) in (lin(Θ), ‖ ·‖) as n→ ∞ by the Continuous

Mapping Theorem.

2.4. Bounded convex linearity

The parametrization θ �→ Pθ is said to be convex linear if θ = λ1θ1 + λ2θ2 ∈
lin(Θ) implies Pθ = λ1Pθ1 + λ2Pθ2 ∈ P for any θ1, θ2 ∈ Θ and any real numbers
λ1 and λ2 such that λ1 ≥ 0, λ2 ≥ 0 and λ1 +λ2 = 1. Convex linearity is referred
to as bounded with respect to a norm ‖ · ‖ on lin(Θ) if

L.6 For any θ1, . . . , θk in Θ, and any real numbers λ1, . . . , λk, k ≥ 1, there is a
constant C <∞ such that

∥∥∥
k∑

i=1

λiPθi
B(ϑ)

∥∥∥H ≤ C
∥∥∥

k∑
i=1

λiθi

∥∥∥ (2.8)

holds for every fixed ϑ ∈ Θ, where B(ϑ) is the score operator mapping from
H to F .

Lemma 2.5. If the parametrization θ �→ Pθ is boundedly convex linear, then
the mapping PθB(ϑ) is Fréchet differentiable with respect to the norm ‖ · ‖ at
all ϑ ∈ Θ and the derivative operator Ṗϑ(·)B(ϑ) is given by Ṗϑ(θ1 − θ2)B(ϑ) =
Pθ1B(ϑ) − Pθ2B(ϑ) for any θ1, θ2 and ϑ in Θ.

Proof. Let θ =
∑k

i=1 λiθi ∈ lin(Θ) be a linear combination of the θi’s. We want
to prove that

LθB(ϑ) =
k∑

i=1

λiPθi
B(ϑ) (2.9)

is a bounded linear extension of PθB(ϑ) to lin(Θ).
First by (2.8), if a linear combination of the elements θ1, . . . , θk is equal

to the zero element
∑k

i=1 λiθi = 0, then
∑k

i=1 λiPθi
B(ϑ) = 0 as well. From

this observation, the value of the mapping LθB(ϑ) is uniquely determined by
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θ ∈ lin(Θ). It is not hard to verify that LθB(ϑ) is a linear mapping from lin(Θ)
to l∞(H). The boundedness ‖LθB(ϑ)‖H ≤ C‖θ‖ of LθB(ϑ) follows from (2.8).
And it is easy to verify that LθB(ϑ) is an extension of PθB(ϑ) to lin(Θ) with
LθB(ϑ) ≡ PθB(ϑ) for all θ ∈ Θ by (2.9).

For any bounded linear mapping A : lin(Θ) �→ l∞(H), the Fréchet derivative
of A is simply A itself because A(θ

′
) − A(θ) = A(θ

′ − θ) is bounded and linear.
Now the mapping LθB(ϑ) : lin(Θ) �→ l∞(H) is bounded and linear, hence it
is Fréchet differentiable at θ ∈ lin(Θ), and its derivative operator is given by
LaB(ϑ) for a ∈ lin(Θ).

Since LθB(ϑ) = PθB(ϑ) for any θ ∈ Θ, we have Ṗθ(a)B(ϑ) = LaB(ϑ) by the
uniqueness of the Fréchet derivative. Therefore, for a = θ1 − θ2 with θ1 and θ2
belonging to Θ, we have Ṗθ(θ1−θ2)B(ϑ) = L(θ1−θ2)B(ϑ) = Lθ1B(ϑ)−Lθ2B(ϑ) =
Pθ1B(ϑ) − Pθ2B(ϑ), which completes the proof of the lemma.

In view of Lemma 2.5, the differential identity (2.2) for models with bounded
convex linearity can be improved to

ψ̇(ϑ)(θ1 − θ2) = −(Pθ1 − Pθ2)B(ϑ). (2.10)

for any θ1, θ2, andϑ ∈ Θ.
For these models, a strong enough norm ‖ · ‖ may be used to obtain the

differentiability of ψ(θ, Pθ) and condition L.6, and therefore the identity (2.10).
Then a weaker norm ‖ · ‖K can be used to establish the invertibility of ψ̇−1(θ)
and the pointwise convergence in (2.4). The difference on the right of (2.10) also
implies that no rate control, such as that in Lemma 2.4, is needed. Because of
this, we can actually obtain asymptotic normality with the weaker norm. This
usually improves the applicability of the Central Limit Theorem. See Section 3.2
and 3.3 for two examples. To be more specific, the assumptions replacing L.4
and L.5 are the followings.

L.4’ The function ψ(θ, P ) as a map from Θ to l∞(H) is Fréchet differentiable
with respect to the norm ‖·‖. The operator ψ̇(θ) is continuous as a function
of θ in the sense of (2.1).

L.5’ For every fixed θ ∈ Θ, the operator ψ̇(θ) from (lin(Θ), ‖ · ‖K) to (l∞(H),
‖ · ‖H) has a bounded inverse ψ̇−1(θ) on a fixed subspace R(ψ̇) ⊂ l∞(H).
Furthermore ψ̇−1(θ) as operator sequence converges to ψ̇−1(θ0) as ‖θ−θ0‖→
0:

∥∥∥ψ̇−1(θ)(f) − ψ̇−1(θ0)(f)
∥∥∥

K
−→ 0 (2.11)

for all f ∈ R(ψ̇).
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Theorem 2.2. For a model with bounded convex linearity specified in L.6,
assume L.1 through L.3, L.4’ and L.5’. Then a sequence of consistent Z-
estimators θ̂n such that ‖θ̂n − θ0‖ →P ∗ 0 is actually asymptotically normal:√
n(θ̂n − θ0) ⇒ −ψ̇−1(θ0)(Z0) in (lin(Θ), ‖ · ‖K).

Proof. By Lemma 2.5, take θ1 = θ̂n, θ2 = θ0 and ϑ = θ̂n in (2.10), and use P to
denote Pθ0 , we obtain ψ̇(θ̂n)(

√
n(θ̂n − θ0)) =

√
nψ(θ̂n, P ) = −GnB(θ0) + oP ∗(1).

The last equality follows from Lemma 2.3 and the term oP ∗(1) in the above
denotes a term whose ‖ · ‖H-norm is of order oP ∗(1).

Since ψ̇−1(θ) converges to ψ̇−1(θ0) on R(ψ̇), the Banach-Steinhaus Theorem
implies that the operator norm of ψ̇−1(θ̂n) is uniformly bounded in P ∗-probability
when n is sufficiently large. It then maps a term of oP ∗(1) in the ‖ · ‖H-norm
into a term of oP ∗(1) in K-norm: ψ̇−1(θ̂n)(oP ∗(1)) = oP ∗(1). This means that√
n(θ̂n − θ0) = ψ̇−1(θ̂n)(−GnB(θ0)+ oP ∗(1)) = −ψ̇−1(θ̂n)(GnB(θ0))+ oP ∗(1). By

Lemma 2.2, ψ̇−1(θ̂n)(GnB(θ0)) = ψ̇−1(θ0)(GnB(θ0)) + oP ∗(1). Hence
√
n(θ̂n −

θ0) ⇒ −ψ̇−1(θ0)(Z0) in (lin(Θ), ‖ · ‖K) as n → ∞ by the Continuous Mapping
Theorem.

Theorem 2.2 is mainly motivated by Vardi and Zhang (1992) on the mul-
tiplicative censoring model, and Gu and Zhang (1993) on the double censoring
model. The proof of Theorem 2.2 is an extension of their arguments of asymp-
totic normality from these two important examples to a general model. We give
a differential identity for models with convex linearity, and use that as the basis
of our argument (Lemma 2.1). The key assumptions are formulated in L.4’ and
L.5’ which are not explicit in these two papers. Other assumptions such as L.1,
L.2 and L.3 are mainly from the traditional arguments, see Huber (1964, 1967),
Pakes and Polard (1989), Polard (1985, 1989), and Van der Vaart (1994, 1995).
For models not necessarily convex linear, Theorem 2.1 generalizes the argument.
A non-trivial application of Theorem 2.1 is given in the next section.

3. Applications

In this section we give three examples to illustrate the application of Theo-
rem 2.1 and Theorem 2.2. The first example concerns a simplified frailty model
without convex linearly parameterization. Because of its nice analytical prop-
erties, the asymptotic normality of the MLE can be established by traditional
arguments. The same conclusion can also be obtained by Theorem 2.1. The sec-
ond example deals with the multiplicative censoring model which has a convex
linear parameterization. In this model the likelihood equations are only differen-
tiable with respect to a ‖ · ‖D norm that is stronger than the uniform norm. The
derivative operator, however, is only invertible with respect to the uniform norm.
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The third example concerns the double censoring model which has a convex lin-
ear parameterization. Here, the likelihood equations are only differentiable with
respect to the uniform norm, and the derivative operator is only invertible with
respect to a weaker ‖ · ‖K norm. Because of these difficulties, the traditional
argument does not apply in these examples. Central limit theorems are instead
established by invoking Theorem 2.2.

3.1. A simplified frailty model

Let Z ∼ Gamma(ν0, 1) be a known gamma frailty. Conditional on Z = z,
we observe independent random variables (X,Y ) with a common, absolutely
continuous hazard function zΛ0. Based on n i.i.d. observations (Xi, Yi) with
distribution P{X > x, Y > y} = 1/[1 + Λ0(x) + Λ0(y)]ν0 , we are interested in
estimating Λ0 on [0, τ ], where τ <∞ is a real number such that Λ0(τ) <∞.

Let Θ ⊂ l∞(Hp) be the parameter space, where Hp is a set of real functions h
defined on [0,∞) with bounded variation ‖h‖v < p on [0, τ ] and identical to zero
on (τ,∞). The set Hp is considered as a space equipped with the variation norm
‖·‖v defined by ‖h‖v ≡ |h(0)|+∨τ

0(h). A bounded linear functional Λ(h) ∈ l∞(Hp)
is given by Λ(h) =

∫
[0,∞) h(x)dΛ(x) with ‖Λ‖Hp = suph∈Hp

| ∫[0,∞) h(x)dΛ(x)| <
∞. The parameter space Θ can thus be identified with all absolutely continuous
integrated hazard functions Λ restricted to the interval [0, τ ], such that Λ(u) ≡
Λ0(u) for u > τ . We will not distinguish between a functional Λ ∈ Θ and a
hazard function Λ(u).

The score operator B(Λ) is obtained by differentiating the log-likelihood
along a curve passing through Λ ∈ Θ. It is a function of Λ mapping from Hp to
a set F of L2(P ) functions defined on the sample space:

B(Λ)(h)(x, y)=h(x)+h(y)−(ν0 + 2)

∫
[0,x] h(u)dΛ(u)+

∫
[0,y] h(u)dΛ(u)

1 + Λ(x) + Λ(y)
. (3.1)

Murphy (1995) considers this model in the context of counting processes and
proves the asymptotic normality of the MLE following the traditional argument.
Van der Vaart (1995) uses this model as an example to motivate the Central
Limit Theorem for functional parameters, also following the traditional argu-
ment. In this section, we show that the same asymptotic results are obtainable
from Theorem 2.1.

Verification of L.1, L.2 and L.3. It is straightforward to verify that ψ(Λ, PΛ)(h)=∫
R+ B(Λ)(h)(x, y)dPΛ(x, y) = 0 for all Λ ∈ Θ and h ∈ Hp by interchanging the

order of the integrations involved.
To verify L.2, let CM be the function class defined on the sample space R2+

given by

CM =
{
B(Λ)(h)(x, y) : h ∈ Hp, ‖Λ‖Hp ≤M

}
, (3.2)
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with 0 < M < ∞ a fixed number. Now consider a small difference class Fδn =
{B(Λ)(h) − B(Λ0)(h) : h ∈ Hp, ‖Λ − Λ0‖Hp ≤ δn}. Set a = Λ − Λ0. As
n→ ∞, bounding the difference function in Fδn by ‖a‖HP

leads to |(B(Λ)(h) −
B(Λ0)(h))(x, y)| ≤ Kδn for n ≥ N0, where K = [2(ν0 + 2)(p + 1) + C] with a
constant C such that o(‖a‖Hp) ≤ C‖a‖Hp for n ≥ N0.

Since B(Λ)(h)(x, y) in (3.1) has a constant envelope 2p + (ν0 + 2)p, the set
Fδn itself has a constant envelope 2p(ν0 + 4). Its L2(P )-norm boils down to√

2p(ν0+4) times its L1(P )-norm: ‖B(Λ)(h)−B(Λ0)(h)‖L2(P )≤
√

2p(ν0+4)Kδn
≡ ηn. Thus if F ′

ηn
= {B(Λ)(h) − B(Λ0)(h) : ‖B(Λ)(h) − B(Λ0)(h)‖L2(P ) ≤ ηn,

h ∈ Hp}, then Fδn ⊂ F ′
ηn

for all n ≥ N0.
For a given sequence δn ↓ 0, take M = ‖Λ0‖Hp + δ1 < ∞. Then CM as

defined in (3.2) is a universal Donsker class of functions with a constant en-
velope p(ν0 + 4). Thus Gn must be asymptotically uniformly equicontinuous
in probability with respect to ρP (the centered L2(P )-norm) over CM . Since
‖P‖CM

= suph∈CM
| ∫ hdP | ≤ p(ν0 + 4) is finite, this is equivalent to Gn be-

ing asymptotically uniformly equicontinuous in probability with respect to the
L2(P )-norm. Hence ‖Gn‖F ′

ηn
→P ∗ 0. But Fδn ⊂ F ′

ηn
for all n ≥ N0 and it fol-

lows that sup‖Λ−Λ0‖Hp≤δn
‖Gn(B(Λ) − B(Λ0))‖Hp = ‖Gn‖Fδn

≤ ‖Gn‖F ′
ηn

→P ∗ 0
as n→ ∞, which verifies L.2.

To verify L.3, note that {B(Λ0)(h) : h ∈ Hp} is a subset of CM for a
sufficiently large M , it is a universal Donsker class of functions. Thus we also
have GnB(Λ0) =⇒ Z0 in l∞(Hp).

Verification of L.4 and L.5. SinceB(Λ) for any fixed Λ ∈ Θ is a bounded operator,
we only need to verify that PΛB is Fréchet differentiable for a bounded B : Hp �→
F . Let a = Λ1 − Λ for two points Λ1,Λ ∈ Θ. Straightforward calculation shows
that the difference PΛ1B(h) − PΛB(h) is a sum of a bounded linear operator of
a and a higher order term o(‖a‖Hp). Hence PΛB is Fréchet differentiable with
respect to Λ.

Since we can write the difference ψ(Λ1, PΛ)(h)−ψ(Λ, PΛ)(h) as an operator
ψ̇(Λ)(a)(h) linear in a and a remainder term R = R(Λ1,Λ, h) that is of order
o(‖a‖Hp), ψ(Λ1, PΛ)(h)− ψ(Λ, PΛ)(h) = ψ̇(Λ)(a)(h) +R(Λ1,Λ, h), we can verify
that ψ(Λ, P ) is Fréchet differentiable at Λ. The derivative operator ψ̇(Λ)(a)(h)
is then obtained as

ψ̇(Λ)(a)(h) = −2ν0

∫
[0,τ ]

σ(Λ, h)(u)da(u), (3.3)

and σ(Λ, h) is given by

σ(Λ, h)(u) =
( 1
1 + Λ(u)

)ν0+1 · h(u) − ν0 + 1
ν0 + 3

[ 1
[1 + Λ(u)]ν0+2

∫
[0,u]

h(v)dΛ(v)

+
∫
(u,τ ]

h(v)dΛ(v)
[1 + Λ(v)]ν0+2

+
∫
[0,τ ]

h(v)dΛ(v)
[1 + Λ(v) + Λ(u)]ν0+2

]
(3.4)
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which maps from (Hp, ‖ · ‖v) into itself. These conditions verify L.4.
To verify L.5, note that the operator σ is actually a continuously invertible

operator J minus a compact operator Q: σ = J −Q, with J(h)(u) given by the
first term in (3.4) and Q(h)(u) given by the second term in (3.4). This structure
of σ implies that it is a continuously invertible operator with range R(σ) = H∞
for every Λ ∈ Θ, as shown below.

Lemma 3.1. For every fixed Λ ∈ Θ the operator σ(Λ) is one-to-one and maps
onto (H∞, ‖ · ‖v), hence is continuously invertible with the range space H∞.

Proof. First we show that σ is one-to-one. Fix Λ ∈ Θ. Suppose that σ(Λ, h)(u)
≡ 0 for all u ∈ [0, τ ]. Since 1/[1 + Λ(u)]ν0+1 > 0 for all u ∈ [0, τ ], it follows that

h(u) −
∫
[0,τ ]

K(u, v)h(v)dΛ(v) ≡ 0 (3.5)

for all u ∈ [0, τ ], where the continuous kernel function K(u, v) is given by

K(u, v) =
ν0 + 1
ν0 + 3

[ 1[0,u](v)
1 + Λ(u)

+
[1 + Λ(u)]ν0+1

[1 + Λ(v)]ν0+2
1(u,τ ](v) +

[1 + Λ(u)]ν0+1

[1 + Λ(v) + Λ(u)]ν0+2

]
.

The operatorK defined by the the integralK(h)(u) =
∫
[0,τ ]K(u, v)h(v)dΛ(v)

maps from C[0, τ ] (equipped with the supremum norm) to itself. Its operator
norm can be bounded by a number strictly less than 1: ‖K‖=supu∈[0,τ ]

∫
[0,τ ] |K(u,

v)|dΛ(v) ≤ [(ν0 + 1)/(ν0 + 3)][Λ(τ)/(1 + Λ(τ))] + 2/(ν0 + 3) < 1. Thus (I −K) is
actually an invertible operator in C[0, τ ] and hence (I−K)(h) = 0 implies h = 0.

Next we show that Q(h) is a compact operator in (H∞, ‖ · ‖v) for every
Λ ∈ Θ. Let {hn} be a sequence in (H1, ‖ · ‖v) which is a typical bounded set
in (H∞, ‖ · ‖v). By Helly’s Selection Theorem and the Dominated Convergence
Theorem, we can show that {hn} actually contains a subsequence {hnk

} such that
{Q(hnk

)} is convergent. Hence, the operator Q is a compact operator defined on
H∞.

Now σ is one-to-one and is a sum of a continuously invertible operator J and
a compact operator Q. To show J−Q maps onto H∞, we only have to show that
I − J−1Q = I −T maps onto H∞ where T = J−1Q is again a compact operator.

Suppose that I − T does not map onto H∞. Let Mn denote the range space
of (I−T )n for n ≥ 1, then Mn is a closed subspace of H∞ (because T is compact).
Furthermore, Mn+1 ⊂ Mn and Mn+1 is a proper subspace of Mn. To see this,
suppose Mn+1 ≡Mn. Then since Mn is defined by Mn = {(I − T )nh : h ∈ H∞},
for every h ∈ H∞ there is a g ∈ H∞ such that (I − T )n+1g = (I − T )nh. Thus
(I − T )n(h − (I − T )g) = 0. But since (I − T ) is one-to-one, using this fact
repeatedly leads to h − (I − T )g = 0. This means that (I − T ) maps onto H∞,
because h ∈ H∞ is arbitrary.
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Once we have a sequence of closed subspacesMn+1 that are proper subspaces
of Mn, there is a gn ∈Mn such that ‖gn‖v ≤ 2, ‖gn − h‖v ≥ 1 for all h ∈Mn+1

(see Lemma 4.22 on page 106 of Rudin (1991)). Now define z = Tgm +(I−T )gn

for m > n > 2. Then, since (I − T )gn ∈ Mn+1 and Tgm ∈ Mn+1 (because
T (I −T ) = (I −T )T ), we have z ∈Mn+1. Thus ‖Tgm −Tgn‖v = ‖z− gn‖v ≥ 1.
The sequence {Tgn} has therefore no convergent subsequences, although {gn} is
bounded. This contradicts the compactness of T . The contradiction shows that
(I − T ) is onto and so is (J −Q).

Theorem 3.1. For every Λ ∈ Θ and every fixed 0 < p <∞, the Fréchet deriva-
tive ψ̇(Λ)(a) maps lin(Θ) onto R(ψ̇) ⊂ l∞(Hp) and is continuously invertible.

Proof. By Lemma 3.1, the operator σ(Λ, h) is one-to-one and maps (H∞, ‖ · ‖v)
onto itself. Hence the operator norm of σ−1 is bounded: ‖σ−1‖ <∞. Therefore,
for any fixed p > 0, σ−1(Hq) ⊂ Hp with q = p/‖σ−1‖ > 0. This leads to

∥∥∥ψ̇(Λ)(a)
∥∥∥Hp

≥ sup
h∈σ−1(Hq)

∣∣∣2ν0

∫
[0,τ ]

σ(Λ, h)(u)da(u)
∣∣∣

= 2ν0 sup
g∈Hq

∣∣∣
∫
[0,τ ]

gda
∣∣∣ = 2ν0‖a‖Hq .

Notice that g = (q/p)h ∈ Hq for an h ∈ Hp,

‖a‖Hp = sup
h∈Hp

∣∣∣
∫
[0,τ ]

hda
∣∣∣ =

p

q
sup

h∈Hp

∣∣∣
∫
[0,τ ]

q

p
hda

∣∣∣ ≤ p

q
sup
g∈Hq

∣∣∣
∫
[0,τ ]

gda
∣∣∣ =

p

q
‖a‖Hq .

This implies that ‖ψ̇(Λ)(a)‖Hp ≥ 2 ν0‖a‖Hq ≥ (2ν0q)/p ‖a‖Hp , i.e., ψ̇(Λ)(a) is
continuously invertible on its range R(ψ̇). The above inequality also implies that
ψ̇(Λ)(a) is a continuously invertible operator from lin(Θ) to R(ψ̇).

The last stage of verifying L.5 requires showing
∥∥∥ψ̇−1(Λ)(f) − ψ̇−1(Λ0)(f)

∥∥∥Hp

→ 0 (3.6)

for any f ∈ R(ψ̇) as ‖Λ − Λ0‖Hp → 0.
Let a0 = ψ̇−1(Λ0)(f). Because ‖ψ̇(Λ)‖ ≤ ε, we can rewrite ‖ψ̇−1(Λ)(f)−

ψ̇−1(Λ0)(f)‖Hp =‖ψ̇−1(Λ)(ψ̇(Λ0)(a0)−ψ̇(Λ)(a0))‖Hp ≤ε‖ψ̇(Λ0)(a0)−ψ̇(Λ)(a0)‖Hp .

Thus we only need to show that ‖ψ̇(Λ0)(a0) − ψ̇(Λ)(a0)‖Hp → 0 for any a0 as
‖Λ − Λ0‖Hp → 0. Because | ∫ f(u)da(u)| ≤ supu |f(u)| · ‖a‖v, this amounts to
show that suph∈Hp

supu∈[0,τ ] |σ(Λ, h)(u) − σ(Λ0, h)(u)| → 0 as ‖Λ − Λ0‖Hp → 0.
In fact, ‖Λ − Λ0‖Hp → 0 implies supu∈[0,τ ] |Λ(u) − Λ0(u)| → 0. Hence

supu∈[0,τ ] |J(Λ)h−J(Λ0)h| → 0 because ‖h‖v < p <∞. In a similar way, all three
terms in (Q(Λ)−Q(Λ0))(h) can be shown to approach zero as ‖Λ−Λ0‖Hp → 0.
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The overall conclusion thus follows from Theorem 2.1:
√
n(Λ̂n − Λ0) ⇒ Z0

in l∞(Hp) as n→ ∞.

3.2. The multiplicative censoring model

Let 0 < p ≤ 1 be a fixed number. The censoring distribution G is a mixture
of a unit mass δ1 at 1 and a uniform distribution U(0, 1): G = pδ1 + (1 −
p)U(0, 1). Corresponding to a non-negative random variable Z ∼ F0 and a
censoring variable W ∼ G, the observed random variables (X,∆) are given by
a “censored” observation X = ZW and an indicator of whether Z has been
censored or not: ∆ = 1[W=1]. We are interested in estimating the unknown
distribution function F0 on [0,∞) on n of i.i.d. observations (Xi,∆i) from

P
(0)
F (x) = PF {X ≤ x,∆ = 0} = q

( ∫
[0,x]

dF (u) +
∫
(x,∞)

xz−1dF (z)
)
, (3.7)

P
(1)
F (x) = PF {X ≤ x,∆ = 1} = pF (x). (3.8)

It is worth noting that dP (0)
F (x) = qfF (x)dx where fF (x) is a density with respect

to Lebesgue measure defined for x ≥ 0, and given by fF (x) =
∫
(x,∞) z

−1dF (z).
The value fF (0) is defined as the limit of fF (x) as x approaches to 0 from the
right.

Let Θ be the set of all distribution functions on the positive real line [0,∞),
equipped with the uniform norm ‖·‖. For a fixed F ∈ Θ, the score operator B(F )
is obtained by differentiating the log-likelihood along a curve passing through F :

B(F )(ht)(x, δ) = δ · 1[0,t](x) − F (t) + (1 − δ) ·
[
1 − fF (t)

fF (x)

]
· 1(0,t](x), (3.9)

where ht = 1[0,t] ∈ H, H being the set of all indicator functions ht for t ≥ 0.
Integrating with respect to PF0 leads to the ψ operator:

ψ(F,PF0)(ht) = P
(1)
F0

(t) − F (t) +
∫
(0,t]

[
1 − fF (t)

fF (x)

]
dP

(0)
F0

(x). (3.10)

The set of all solutions F̂n to ψ(F̂n,Pn)(ht) = 0 for all t are the MLE defined in
Vardi and Zhang (1992), page 1025. The set of all Z-estimators F̂n defined by
‖ψ(F̂n,Pn)‖H = oP ∗(n−1/2) certainly contains this set. The consistency of F̂n is
assumed to be available, see Vardi and Zhang (1992), or Zhan (1996) for a proof.

Verification of L.1, L.2 and L.3. Verifying L.1 is trivial, simply substitute PF0

with PF for any F ∈ Θ.
To verify L.2 note that, for any t and F , the class of functions defined on the

sample space {fF,t(x, δ) = (1− δ) · [1−fF (t)/fF (x)] ·1(0,t](x) : F ∈ Θ, t ∈ [0,∞)}
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only contains monotone functions in x for δ = 0, 1. They are uniformly bounded
by a constant 1. It is a universal Donsker class of functions. Hence the function
class

F =
{
B(F )(ht)(x, δ) : F ∈ Θ and t ∈ [0,∞)

}
(3.11)

is a universal Donsker class of functions with a constant envelope 1 (see Van der
Vaart and Wellner (1996), Section 2.10.2 for details).

Since the difference |(B(F ) − B(F0))(ht)(x, δ)| is uniformly bounded by 2,
the L2(P )-norm of it boils down to 2 times the square root of its L1(P )-norm.
Because fF (t)/fF (x) ≤ 1 for x ≤ t,
∫
(0,t]

∣∣∣ fF (t)
fF (x)

− fF0(t)
fF0(x)

∣∣∣dP (0)(x)≤q
∫
(0,∞)

|fF (x)−fF0(x)|dx + 2q‖F0−F‖−→0.

The fact that the first term above approaches zero as ‖F − F0‖ → 0 is verified
by integration by parts (Shorack and Wellner (1986), page 868) and Scheffé’s
Theorem.

Thus supt≥0 ‖(B(F ) − B(F0))(ht)‖L2(P ) → 0 as ‖F − F0‖ → 0. Hence
‖Gn(B(F̂n) − B(F0))‖H = oP ∗(1) for any consistent F̂n →P ∗ F0 in the uni-
form norm (see Van der Vaart (1994), Corollary 2.2). By Remark 2.1, we have
verified L.2.

Since the function class {B(F0)(ht) : t ∈ [0,∞)} is a subset of F , it is
universal Donsker. Hence GnB(F0) ⇒ Z0 in l∞(H), where Z0 is a tight Gaussian
random element in l∞(H). This verifies L.3.

Verification of L.4’ and L.5’. The operator ψ(F,P ) as a function of F is not
Fréchet differentiable with respect to the uniform norm ‖ · ‖ on Θ. However, it
is Fréchet differentiable with respect to a slightly stronger norm ‖ · ‖D defined in
the following.

Let D(x) be a positive-valued function defined on [0, δ) for an arbitrary but
fixed δ > 0. Assume that D(x) is right-continuous at the origin: D(0+) =
D(0) = 0. Define a set Θα ⊂ Θ for a positive constant α > 0:

Θα,δ =
{
F ∈ Θ :

|F (x) − F0(x)|
‖F − F0‖ ≤ αD(x), x ∈ [0, δ)

}
.

The set Θα,δ is mapped into a subset Aα,δ ⊂ lin(Θ) by a(x) = (F (x)−F0(x))/‖F
−F0‖ with Aα,δ defined by Aα,δ = {a : |a(x)| ≤ αD(x) for x ∈ [0, δ) and ‖a‖ ≤
1}.

The norm ‖·‖D is defined by ‖a‖D = supx∈[0,δ), D(x)�=0(|a(x)|/D(x) ‖a‖)+‖a‖
which is stronger than ‖ · ‖ and suffices to guarantee the Fréchet differentiability
of the function ψ(F,P ) at any F ∈ Θ.
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The Fréchet differentiability of ψ(F,P ) boils down to the continuity of the
operator SF (·) indexed by F ∈ Θ:

SF (a)(ht) =
∫

(0,t]

(
1 − fF (t)

fF (x)

)( ∫
(x,∞)

z−1da(z)
)
dx, (3.12)

which maps lin(Θ) to l∞(H). A transformation defined by

u(a)(x) = x

∫
(x,∞)

z−2a(z) dz (3.13)

helps with the proof of a number of properties of the operator SF (·). The function
u maps an a ∈ lin(Θ) to a u ∈ C0[0,∞), where C0[0,∞) denotes the set of all
continuous functions defined on [0,∞) that vanish at 0 and ∞: u(a)(0+) =
a(0+) = 0 and u(a)(∞) = limx→∞ a(x) = 0.

Lemma 3.2. For any distribution function F ∈ Θ, let SF (·) be the operator
from lin(Θ) to l∞(H) defined in (3.12).
(i) SF can be written as a linear operator from (C0[0,∞), ‖ · ‖) to l∞(H):

SF (a)(ht) =
∫
(0,t]

u(a)(x)d
( fF (t)
fF (x)

)
≡ S̄F (u(a)),

with u(a)(x) given by (3.13) and ‖u(a)‖ ≤ ‖a‖. For any fixed u ∈ C0[0,∞),
or equivalently for corresponding a∈ lin(Θ), we have ‖S̄F (u(a))−S̄F0(u(a))‖H
= ‖SF (a) − SF0(a)‖H → 0 as ‖F − F0‖ → 0.

(ii) For any α > 0, the operator SF as a function of F is also continuous in the
sense that supa∈Aα

‖SF (a) − SF0(a)‖H → 0 as ‖F − F0‖ → 0.

Proof. The proof of (i) follows from Vardi and Zhang (1992) and is omitted
here.

For the proof of (ii), let u(Aα,δ) ⊂ C0[0,∞) denote the image of Aα,δ under
the mapping u for some fixed α > 0. First we show that the set u(Aα,δ) is rel-
atively compact in C0[0,∞). Since ‖u‖ ≤ ‖a‖ ≤ 1 for a ∈ Aα,δ, the set u(Aα,δ)
is uniformly bounded. By the Arzelá-Ascoli Theorem (see Kirillov and Gvishi-
ani (1982) on page 180 for a generalization that does not require the domain of
the functions to be compact), we only need to show that elements in u(Aα,δ) are
equicontinuous on [0,∞).

Notice that limx↓0 x
∫
(x,δ) z

−2D(z)dz = limx↓0D(x) = D(0+) = 0. For any
given ε > 0 we can find an η > 0, η ≤ (εδ)/2, such that αx

∫
(x,δ) z

−2D(z)dz ≤ ε/4
for any 0 ≤ x ≤ η. Hence we have |u(a)(x) − u(a)(y)| ≤ ε/2 + |x − y|/δ ≤
ε/2 + η/δ ≤ ε for x, y ∈ (0, η]. For x, y ∈ (η,∞) and x < y, we have |u(a)(x) −
u(a)(y)| ≤ (2|x − y|)/η by the fact that ‖a‖ ≤ 1. Thus when |x − y| ≤ (ηε)/2,
|u(a)(x) − u(a)(y)| ≤ ε. Therefore, u(Aα,δ) is relatively compact.
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The operators {S̄F : F ∈ Θ} are uniformly bounded and defined on a
relatively compact set u(Aα,δ). They are pointwise continuous by (i), and hence
they are uniformly continuous, i.e., we have supu∈Aα,δ

‖(S̄F − S̄F0)(u)‖H → 0 as
‖F − F0‖ → 0.

Now we are ready to verify the Fréchet differentiability of ψ(F,P ) in F with
respect to ‖ · ‖D. In fact, the difference (ψ(F1, P ) − ψ(F,P ))(ht) can be written
as the sum of a linear operator −ψ̇(F )(a)(ht) given by

pa(t) + q

∫
(0,t]

(
1 − fF (t)

fF (x)

)( ∫
(x,∞)

z−1da(z)
)
dx = (pI + qSF )(a)(ht) (3.14)

and a remainder term R(t)=q
∫
(0,t][fF1(t)/fF1(x)−fF (t)/fF (x)]

∫
(x,∞) z

−1d(F1(z)−
F (z))dx.

Let a(x) = (F1(x) − F (x))/‖F1 − F‖, then R(t) = q‖F − F0‖ · (SF (a) −
SF1(a))(ht). For an α > 0, when ‖F − F0‖D ≤ α, we certainly have a ∈
Aα,δ. Hence when ‖F − F0‖D is sufficiently small supt∈[0,∞) |R(t)| ≤ q‖F1 −
F‖ · supa∈Aα,δ

‖(SF1(a) − SF (a))‖H. Since ‖F1 − F‖ ≤ ‖F1 − F‖D, we have
supt∈[0,∞) |R(t)| = o(‖F1 − F‖D) by Lemma 3.2 (ii).

To verify the invertibility of ψ̇(F ) and the pointwise continuity of ψ̇−1(F ),
let D0[0,∞) be the Banach space of all real functions f(·) on [0,∞) that are
right-continuous with left limits, satisfying f(0) = 0 and f(∞) = 0, equipped
with the uniform norm ‖ · ‖. Since the operator ψ̇(F ) in (3.14) is the operator
R in equation (3.4) in Vardi and Zhang (1992), Lemma 3 in their paper im-
plies that the linear operator ψ̇(F ) is a one-to-one mapping from D0[0,∞) onto

D0[0,∞) for any F ∈ Θ. Furthermore, the operator norm ‖ψ̇−1(F )‖ ≤ 2/p2. Let
a0 = ψ̇−1(F0)(f), it is now straightforward to verify ‖ψ̇−1(F )(f)−ψ̇−1(F0)(f)‖ =
‖ψ̇−1(F )(ψ̇(F )(a0) − ψ̇(F0)(a0))‖ ≤ ‖ψ̇−1(F )‖ · ‖ψ̇(F )(a0) − ψ̇(F0)(a0)‖H ≤
qcp‖SF (a0) − SF0(a0)‖H → 0. Thus the assumption L.5’ has been verified (the
‖ · ‖K -norm in L.5’ is the weaker uniform norm ‖ · ‖ here).

Verification of L.6. Since PF can be identified as (P (0)
F (x), P (1)

F (x)) in (3.7) and
(3.8), PF is obviously convex linear in F for any F ∈ Θ. For a fixed F̄ , let
ft(x, δ) = B(F̄ )(ht)(x, δ) denote the image of ht = 1[0,t] under the score operator
B(F̄ ). Then both ft(x, 0) and ft(x, 1) are functions of bounded variation. In
addition, they are uniformly bounded by 1, see (3.9).

Now let λi be real numbers for i = 1, . . . , k. We can write dP
(0)
F (x) =

qfF (x)dx= q du(F )(x) with u(a)(x) defined in (3.13). Since u(F ) is linear in F

and ft(x, 0) is left-continuous, integration by parts shows that
∑k

i=1λi
∫
[0,∞)ft(x, 0)

dP
(0)
Fi

(x)=−q ∫
[0,∞)u

( ∑k
i=1 λiFi

)
(x+)dft(x, 0), because ft(∞, 0)=0 and u(

∑k
i=1

λiFi)(0+) = 0.
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Noting that ‖u(F )‖ ≤ ‖F‖ and ft(x, 0) is uniformly bounded by 1, we have
supt≥0|

∑k
i=1 λi

∫
[0,∞)ft(x, 0)dP

(0)
Fi

(x)| ≤ q‖∑k
i=1λiFi‖, and supt≥0 |

∑k
i=1 λi

∫
[0,∞)

ft(x, 1)dP
(1)
Fi

(x)| ≤ p‖∑k
i=1 λiFi‖. Therefore, by the triangle inequality, we have

supt≥0 |
∑k

i=1λi
∫
[0,∞) ft(x, δ) dPFi (x, δ)|≤2‖∑k

i=1λiFi‖≤2‖∑k
i=1λiFi‖D.

After verifying all the conditions, it follows from Theorem 2.2 that
√
n(F̂n −

F0) ⇒ −ψ̇−1(F0)(Z0) for any Z-estimator {F̂n}. It is worthwhile to note that
the linearity identity in this example reduces to ψ̇(F )(F −F0) = −ψ(F,P ). Now
let F̂n be a Z-estimator to see that ψ̇(F̂n)(

√
n(F̂n − F0)) = −√

nψ(F̂n, P ). This
is equation (2.5) in Vardi and Zhang (1992) (with m/(n +m) in their equation
the same as p in our equation).

3.3. The double censoring model

Let X ∼ F0 be a non-negative random variable. Let (Y,Z) be a pair of non-
negative random censoring times independent of the random variable X that
satisfy P{Y ≤ Z} = 1. We observe a pair of random variables (W,∆), where
(W,∆) ∼ P defined by

(W,∆) =




(X, 1) if Y < X ≤ Z,

(Z, 2) if X > Z,

(Y, 3) if X ≤ Y .

We are interested in estimating the distribution function F0 from i.i.d. pairs
(Wi,∆i) ∼ P , i = 1, . . . , n.

Likelihood equations. Let GY (t) = P{Y ≤ t} and GZ(t) = P{Z ≤ t} be the
marginal distribution functions of Y and Z, respectively. Let K(t) = GY (t) −
GZ(t). The distribution PF0 is now equivalent to the following three marginals
for ∆ = 1, 2, 3,

P
(1)
F (t) ≡ PF {W ≤ t,∆ = 1} =

∫
[0,t]

K(u−) dF (u), (3.15)

P
(2)
F (t) ≡ PF {W ≤ t,∆ = 2} =

∫
[0,t]

(1 − F (u))dGZ (u), (3.16)

P
(3)
F (t) ≡ PF {W ≤ t,∆ = 3} =

∫
[0,t]

F (u)dGY (u). (3.17)

Let HP (t) =
∑3

j=1 P
(j)
F0

(t) denote the marginal distribution of W under the true
F0.

Let Θ be the set of all distribution functions on [0,∞). The score operator
B(F ) can be obtained by the differentiating the log-likelihood function along a
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curve indexed by bounded measurable functions ht ∈ H = {ht = 1[0,t](·) : t ∈
[0,∞)}:

B(F )(ht)(w, δ)=
(
1[0,t](w)−F (t)

)
−1[δ=2,w≤t]

1−F (t)
1−F (w)

+1[δ=3,w>t]
F (t)
F (w)

.

(3.18)
The likelihood equations are given by the ψ operator

ψ(F,P )(ht)=HP (t)−F (t)−
∫

[0,t]

1−F (t)
1−F (u)

dP
(2)
F0

(u)+
∫
(t,∞)

F (t)
F (u)

dP
(3)
F0

(u) (3.19)

for t ∈ [0,∞). The set of all Z-estimators F̂n in this model contains the set of
all self-consistent estimators defined by ψ(F̂n,Pn)(ht) ≡ 0 for all t ≥ 0. It is
well known that F̂n is consistent in the uniform norm, see Gu and Zhang (1993),
Chang and Yang (1987), and Zhan (1996).

Verification of L.1, L.2 and L.3. The first assumption ψ(F,PF )(ht) ≡ 0 follows
from (3.15), (3.16) (3.17) and integration by parts.

To verify L.2, let F denote the function class F = {B(F )(ht)(w, δ) : F ∈
Θ, t ∈ [0,∞)}. The function B(F )(ht)(w, δ) is a sum of three functions given in
(3.18). The first function is VC-class of functions uniformly bounded by 1, and
the second and the third functions are uniformly bounded monotone functions.
They are VC-hull classes of functions with a uniform bound 1 and hence they
are universal Donsker functions. Since the pointwise sum of a finite number of
Donsker classes of functions is Donsker by the permanence of the Donsker prop-
erty (see Van der Vaart and Wellner (1996), Section 2.10.2 and Example 2.10.7),
F is a universal Donsker class of functions.

Now consider the difference class Fδn = {(B(F ) − B(F0))(ht)(w, δ) : ‖F −
F0‖ ≤ δn and t ∈ [0,∞)} for a sequence of positive numbers δn approaching zero,
where ‖ · ‖ is the uniform norm defined by ‖a‖ = supt≥0 |a(t)|. To complete the
verification of L.2, it suffices to verify

sup
t≥0

P (B(F )(ht) −B(F0)(ht))2 → 0 as ‖F − F0‖ ≤ δn → 0. (3.20)

Since B(F )(ht)(w, δ) is bounded by 1 for any F and t, the absolute difference
|(B(F ) − B(F0))(ht)(w, δ)| is bounded by 2. The L2(P )-norm of the difference
function

‖(B(F ) −B(F0))(ht)‖L2(P ) ≤
[
2

∫
|(B(F ) −B(F0))(ht)(w, δ)|dP (w, δ)

]1/2

≤
[
2δn

( ∫
dHP (u) +

∫ 2
1 − F0(u)

dP
(2)
F0

(u) +
∫ 2
F0(u)

dP
(3)
F0

(u)
)]1/2

≤
√

10δn ≡ ηn → 0.
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This shows that (3.20) holds, and verifies L.2 by an application of Lemma 3.3.5,
Van der Vaart and Wellner (1996), page 311.

Now assumption L.3 holds easily from the preceding arguments, since the
class of functions {B(F0)(ht)(w, δ) : t ∈ [0,∞)} is also universal Donsker. Thus
GnB(F0) ⇒ Z0 in l∞(H), where Z0 is a tight Gaussian random element in l∞(H).

Verification of L.4’ and L.5’. In this model, the ψ operator is indeed Fréchet
differentiable with respect to the uniform norm ‖ · ‖ and its Fréchet derivative
operator is given by −ψ̇(F )(a)(ht) = (Ka)(ht) + A(F,GY , GZ)(a)(ht), where
(Ka)(ht) = K(t)a(t) and

A≡A(F,GY , GZ)(a)(ht)=
∫

[0,t]

1 − F (t)
1 − F (u)

a(u)dGZ(u)+
∫

(t,∞)

F (t)
F (u)

a(u)dGY (u).

The formal proof proceeds by bounding the remainder term R in the equation
(ψ(F1, PF ) − ψ(F,PF ))(ht) = ψ̇(F )(F1 − F )(ht) +R, and is omitted here.

The operator ψ̇(F ) = K + A is in general not invertible with respect to the
uniform norm ‖ · ‖ without assuming infτ0≤t≤τ1 K(t) > 0. To see this, note that
A is a compact operator (see the proof of Lemma 2 in Gu and Zhang (1993)).
Without the above condition, the range space of K is not closed, and therefore
not invertible with respect to the uniform norm ‖ · ‖. Thus ψ̇(F ) = K +A is not
invertible with respect to the uniform norm in general.

However, under certain conditions as shown in Gu and Zhang (1993), the
operator ψ̇(F ) = K+A is indeed invertible with respect to a weaker ‖ · ‖K -norm
defined by ‖a‖K = supt≥0 |K(t)a(t)|. The classic argument would still apply if
the likelihood equation ψ(F,P ) were differentiable with respect to the weaker
norm ‖ · ‖K . However, the following example shows that non-differentiability
with respect to the K-norm ‖ · ‖K can occur.

Example 3.1. (Non-Fréchet differentiability of ψ with respect to ‖ · ‖K). Sup-
pose that F is continuous. Let τ1 = inf{t : F (t) = 1} = 1 be the upper endpoint
of the support set of F . Then there exist choices of GY , GZ and Fn in a neigh-
borhood of F for which supt |R1(t)|/‖Fn − F‖K → C as ‖Fn − F‖K → 0, where
C > 0 is a constant depending on how Fn approaches F .

In fact, let Fn be a sequence of distribution functions defined by

Fn(t) =




F (t) if t ≤ τ1 − 1
n ,

F (τ1 − 1
n) if t ∈ (τ1 − 1/n, τ1),

1 if t = τ1.

Let GY (t) ≡ 1 be the degenerate distribution at Y ≡ 0 and GZ(u) = u be
the uniform (0, 1)-distribution. Take F to be the uniform (0, 1)-distribution as
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well and note that τ1 = 1, supt |Rn
1 (t)| =

∫
(1− 1

n
,1)(u − 1 + 1/n)du = 1/2n2. On

the other hand, the K-norm of an = Fn − F is given by ‖an‖K = 1/4n2. Hence
supt |Rn

1 (t)|/‖an‖K ≡ 2. The ψ operator is not Fréchet differentiable with respect
to the K-norm.

We are now back to verifying L.5’. Let τ0 = sup{t : F0(t) = 0} and τ1 =
inf{t : F0(t) = 1}. Let D0[τ0, τ1] be the Banach space of all real-valued functions
defined on [τ0, τ1] which are right-continuous and have left-limits:

D0[τ0, τ1]={a : F0(t)=0⇒a(t)=0, F0(t−)=1⇒a(t−)=0, F0(t)=1⇒a(t)=0}.

Let (DK [τ0, τ1], ‖·‖K) denote the completion of D0[τ0, τ1] under the K-norm
‖a‖K = ‖Ka‖. Further restrict Θ to be all distribution functions on [0,∞) such
that F ∈ Θ implies F − F0 ∈ D0[τ0, τ1].

The operator ψ̇(F )(·) can be regarded as a mapping from DK [τ0, τ1] into
D0[τ0, τ1]. To verify L.5’, we need to verify that ψ̇(F ) is invertible and ψ̇−1(F )(f)
converges to ψ̇−1(F0)(f) as ‖F −F0‖ → 0. But this follows from Lemma 2 in Gu
and Zhang’s (1993). Briefly, if GY , GZ and F0 satisfy the following conditions:

K(t−) > 0 on {t : F0(t) > 0 or F0(t−) < 1} (3.21)

and, for any 0 < η < 1,
∫
0<F0(u)<1−η

dGZ(u)
GY (u) −GZ(u)

+
∫

η<F0(u)<1

dGY (u)
GY (u) −GZ(u)

<∞, (3.22)

then for any F such that F − F0 ∈ D0[τ0, τ1], ψ̇(F ) has a bounded inverse on
D0[τ0, τ1]: ψ̇−1(F ) : D0[τ0, τ1] �→ DK [τ0, τ1]. Furthermore ψ̇−1(F ) is continuous
in F : ‖ψ̇−1(F )(f) − ψ̇−1(F0)(f)‖K → 0. for any f ∈ R(ψ̇) = D0[τ0, τ1] and F

such that ‖F − F0‖ → 0 and F − F0 ∈ D0[τ0, τ1].

Verification of L.6. Let ‖ · ‖ denote the uniform norm over the positive real line
[0,∞). Obviously PF is convex linear in F by (3.15), (3.16) and (3.17).

Let ft(w, δ) = B(F̄ )(ht)(w, δ) be the image of ht under the score operator
B(F̄ ) for an F̄ ∈ Θ. Let λi be real numbers for i = 1, . . . , k. To verify L.6, we
need to establish that

sup
t≥0

∣∣∣
k∑

i=1

λi

3∑
l=1

∫
[0,∞)

ft(w, l)dP
(l)
Fi

(w)
∣∣∣ ≤ C sup

t≥0

∣∣∣
k∑

i=1

λiFi(t)
∣∣∣. (3.23)

We only have to show by the triangle inequality for some positive numbers Cl, l =
1, 2, 3, that supt≥0

∣∣∣ ∑k
i=1 λi

∫
[0,∞) ft(w, l)dP

(l)
Fi

(w)
∣∣∣ ≤ Cl supt≥0

∣∣∣ ∑k
i=1 λiFi(t)

∣∣∣ =

Cl

∥∥∥ ∑k
i=1 λiFi

∥∥∥.



CENTRAL LIMIT THEOREMS FOR FUNCTIONAL Z-ESTIMATORS 633

For l = 1, let r(w−) = ft(w, 1)K(w−). Then r(w) is a function with
bounded variation because it is a product of the function K(w−) and the func-
tion ft(w, 1), both of which are of bounded variation by (3.18). Integration
by parts gives

∑k
i=1 λi

∫
[0,∞) ft(w, 1) dP

(1)
Fi

(w) = − ∫
[0,∞)

∑k
i=1 λiFi(w) dr(w), be-

cause
∑k

i=1 λiFi(0) = 0 and r(∞) = 0. Now since | ∫[0,∞) dr(w)| ≤ 1, we have

supt≥0 |
∑k

i=1 λi
∫
[0,∞) ft(w, 1) dP

(l)
Fi

(w)| ≤ ‖∑k
i=1 λiFi‖. The cases l = 2, 3 can be

verified in a similar way.
Hence the asymptotic normality of F̂n follows from Theorem 2.2 under con-

ditions in (3.21) and (3.22). It is worthwhile to note that, by Lemma 2.5, we
have ψ̇(F̂n)(

√
n(F̂n − F0)) =

√
nψ(F̂n, P ). This is the equation (2.11) in Gu

and Zhang (1993) with ψ̇(F ) = K − AS being RS in (2.9) of their paper with
S = 1 − F .
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