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Abstract: In an extension of the work of Liu and Singh (1992), we consider resam-

pling estimates for the variance of the least squares estimator in linear regression

models. Second order terms in asymptotic expansions of these estimates are de-

rived. By comparing the second order terms, certain generalised bootstrap schemes

are seen to be theoretically better than other resampling techniques under very gen-

eral conditions. The performance of the different resampling schemes are studied

through a few simulations.
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1. Introduction

Consider the linear regression model given by

y(n×1) = X(n×p)β(p×1) + e(n×1).

Suppose β̂ is the least squares estimate of β calculated from the data. The aim is
to estimate Vn = E(β̂−β)(β̂−β)T , the dispersion of the least squares estimator.
An estimator V̂n will be said to be consistent if n(Vn − V̂n) → 0.

Let Vnj denote the estimator of Vn obtained using the jth resampling scheme.
In an interesting paper, Liu and Singh (1992) showed that

Tnj = n3/2(Vnj − Vn) = Anj + OP (n−1/2) (1.1)

where Anj is one of two random variables, say Yn and Zn (whose expressions will
be given later), with EY 2

n < EZ2
n. Resampling techniques that have Zn as a lead

term are consistent against heteroscedasticity of errors, but those with Yn as the
lead term are not. On the other hand, under homoscedasticity, techniques with
lead term Yn are relatively more efficient. Thus resampling techniques are in
two groups: those robust against heteroscedasticity (R-class), and those efficient
under homoscedasiticity (E-class). Among standard resampling techniques, the
classical residual bootstrap of Efron (1979) and a weighted jackknife due to Liu
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and Singh (1992) belong to the E-class, while the paired bootstrap, delete-1
jackknife and external bootstrap belong to the R-class.

The comparison of resampling techniques based on (1.1) is asymptotic in
nature. A natural question is whether techniques belonging to the same class
have similar small sample performances, i.e., whether results vary greatly from
one technique to another in the same class.

As an example, we consider the oxygen uptake data from Rawlings, Pantula
and Dickey (1998). This is data on five variables that measure physical fitness
and there are thirty-one cases. The authors regress oxygen uptake on these
five and have a hypothesis that two of the variables do not influence oxygen
uptake. Consider contrasting the the two means. The variance of the estimated
contrast is estimated by resampling techniques. We applied three resampling
techniques, all of which are consistent under unequal error variances: the delete-1
jackknife, paired bootstrap and Wu’s external bootstrap. The variance estimates
are, respectively, 30.29, 30.85, 19.80. The differences here are large and call for
a closer comparison of different resampling techniques.

In order to broaden the choice of resampling techniques we also include a
wide class of weighted bootstraps not considered by Liu and Singh (1992). The
weighted bootstrap, or generalized bootstrap, has been an object of study for
some time, see Barbe and Bertail (1995) for a review. To illustrate, consider the
sample mean n−1∑ ei from data e1, . . . , en. Notice that Efron’s classical boot-
strap technique of using simple random sampling yields the bootstrap statistic
n−1∑wniei, where wn = (wn1, . . . , wnn) ∼ Multinomial(n; 1/n, . . . , 1/n). Gen-
eralised bootstrap operates by considering general random vectors wn, so that
the properties of Efron’s bootstrap are recovered as a special case. Many other
resampling techniques like the Bayesian bootstrap, the m out of n bootstrap, the
delete-d jackknives are also special cases, and so the framework of generalised
bootstrap serves as a convenient platform for comparison of different resampling
schemes. Also, many new techniques may be considered under generalised boot-
strap, and it is conceivable that certain nice or desirable properties may be found
in some generalised bootstrap schemes that do not have a classical analog.

In the context of regression, generalised bootstrap may be performed either
on residuals or on data pairs. The weighted bootstrap (Liu (1988)), the exter-
nal or wild bootstrap (Wu (1986), Mammen (1993)) are examples of generalised
residual bootstrap (GBS). We consider a broader class of residual-based resam-
pling techniques that will yield the above two, as well as the classical residual
bootstrap of Efron (1979), as special cases. This is done in Section 2. The “un-
correlated weights bootstrap” (UBS) of Chatterjee and Bose (2000) is a class of
generalised paired bootstrap techniques. We recapitulate essential properties of
this in the second half of Section 2.
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Using general weights, one has a number of “free parameters” at one’s dis-
posal which may be tuned to obtain ‘optimal’ resampling results. Classical tech-
niques usually correspond to particular choices of such parameters. Bootstrap
weights are generally chosen to be exchangeable (but this is not necessary for
variance estimation), so that they have the same marginal distribution. One
important parameter is the common variance of the weights, σ2

n. Comparison
and ‘optimality’ results in this paper are based on the fact that in GBS and
UBS, one may choose σ2

n so that |ETnj | is minimal. Naturally other moments
of the weights, including various mixed moments appear, but these can be taken
care of by a judicious choice of weights, and often i.i.d. weights suffice. How-
ever, note that most classical techniques cannot be realized as resampling with
i.i.d. weights, with the exception of the Bayesian bootstrap in some cases.

We extend (1.1) to a second order term:

Tnj = n3/2(Vnj − Vn) = Anj + n−1/2Bnj + OP (n−1), (1.2)

where Anj, and Bnj are OP (1) variables, and Anj has zero mean. We find that
EBnj = bnj +o(1), where bnj is a non-zero term, and in most cases EBnj − bnj =
O(n−1/2).

This implies that ETnj generally has a bias term of the order of O(n−1/2),
and this bias varies according to the resampling technique. This is not a new
discovery; for example it is fairly well known that the jackknife variance estimator
is biased, although the bias term does not appear in the first order asymptotics.
It may be conjectured that the small sample difference in performances is a
reflection of the bias terms bnj. Our aim in this paper is threefold.
(a) We report the second order asymptotic expansions (1.2) for all commonly

known resampling techniques including various generalized bootstrap tech-
niques.

(b) We present results for GBS which encompasses the classical residual boot-
strap of Efron (1979), the external bootstrap of Wu (1986) and the weighted
bootstrap of Liu (1988) as special cases. This new class of bootstraps con-
siderably broadens the E-class.

(c) A resampling technique may be preferred to others if its bias bnj is 0, or if has
a smaller bias term than other techniques. In the E-class, such a ‘preferable’
or ‘optimal’ technique belongs to the new GBS class of (b) above; whereas in
the R-class such a technique is often a weighted jackknife due to Wu (1986)
or a UBS technique. We use the term second order optimal for a resampling
technique for which bnj = 0.
As suggested by the referees, we attempted comparisons for p = 1 via

ET 2
nj = EA2

nj + 2n−1/2EAnj(Bnj − bnj) + n−1b2
nj + n−1E(Bnj − bnj)2 + o(n−1).
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From tedious computations it turns out that, very generally, EAnj(Bnj − bnj) =
o(n−1/2) and E(Bnj − bnj)2 = o(1). This happens, for example, if the ei’s are
symmetric. Thus comparison based on ETnj and ET 2

nj across j tend to agree.
For p > 1, the variances (and hence Tnj’s) are matrices. For E-class esti-

mators, the second order terms for different schemes differ by scalar multiples of
the matrix (XTX)−1, so that comparison is over scalars. However, for R-class
estimators different matrices have to be compared and there is no unique way of
doing this. We use the criterion that a random matrix A is closer to 0 than the
random matrix B, if

|E trace(A)| < |E trace(B)|. (1.3)

One advantage with this criterion is that both trace and expectation are linear,
and hence interchangeable.

For homoscedastic errors where both E-class and R-class techniques are con-
sistent, the best second order performance is obtained for a GBS technique. This
does not seem to have appeared in the literature.

Under the additional model condition

2
n∑

i=1

x2
i

n∑
i=1

x4
i τi

2 >
n∑

i=1

x4
i

n∑
i=1

x2
i τi

2, (1.4)

some UBS resampling techniques outperform other R-class techniques. This
condition is satisfied if (a) τi

2 = kxα
i with α > 0; (b) K1 ≤ τi

2 ≤ K2 and
K2 < 2K1; (c) K1 ≤ x2

i ≤ K2 and K3
2 < 2K3

1 . It also holds under several other
conditions. A weighted jackknife due to Wu (1986) is also observed to perform
well in practice.

In the multiple linear regression set-up, optimality for any UBS technique
cannot be established without using model assumptions that are difficult to check.
On the other hand, Wu’s jackknife is difficult to compute for complex problems.
However, in Section 5 we see that UBS techniques based on i.i.d. weights, whose
variance is not necessarily computed using optimality considerations, perform
quite well in practice.

We now give a brief summary of the contents of the other sections. The dif-
ferent weighted jackknives and generalized bootstraps in regression are described
in Section 2. We state our results for simple linear regression in Section 3. Sec-
tion 4 contains E-class and R-class results for multiple regression. Although
the delete-1 jackknife is a special case of the UBS, we state the results for it
separately.

In Section 5 we take up some examples where the variance of a linear contrast
of parameters from linear models is to be estimated, and noise is heteroscedas-
tic. The aim is to study the performance of the different R-class resampling
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techniques in small and medium sized samples. We took sample sizes 15 and
31 for our study. Although we have results on optimality of UBS in the R-
class based on choice of σ2

n, such choices would require complex calculations
using the design matrix and noise variances. Instead, we use two ‘rule of thumb’
choice of weights. It is seen that these UBS schemes and Wu’s weighted jack-
knife (Wu(1986)) perform well. The paired bootstrap is extremely unstable when
sample size is small, presumably due to the variations in the design matrix across
resamples. The delete-1 jackknife and the external bootstrap have bias that is
noticeable in small and medium sample sizes, and thus are not recommended for
variance estimation.

We omit the proofs of theorems stated in this paper, they are lengthy and
complicated. Details are in Bose and Chatterjee (1997, 1998).

2. The Different Resampling Techniques in Regression

The model is given by y = Xβ +e, where y is the (n× 1) observed vector of
responses and X is the (n × p) size design matrix whose ith row xT

i is given by
the ith observation of the (p×1) vector of explanatory variables. The parameter
β is a (p× 1) vector of unknown constants and eT = (e1 e2 . . . en) is the noise
vector. Suppose β̂ is the least squares estimate of β as calculated from the data.
If Ee2

i = τi
2 then

VR = (XT X)−1XTTX(XT X)−1, (2.1)

where T = diag(τi
2, 1 ≤ i ≤ n). Under homoscedasticity, i.e., when τi

2 =
τ2, i = 1, . . . , n, the expression for the variance of β̂ simplifies to

VE = τ2(XTX)−1. (2.2)

Generally for multiple regression problems two common and natural assump-
tions on the design matrix are

di/n ∈ (m,M) for some 0 < m ≤ M < ∞, (2.3)

xT
i xi < K < ∞, i = 1, 2, . . . , n, (2.4)

where di, 1 ≤ i ≤ p are the eigenvalues of XT X. Assumption (2.4) appears in
Liu and Singh (1992) and essentially eliminates the possibility that an influential
design point that can alter the asymptotics. However, in order to make the
resampling schemes like the paired bootstrap and the different jackknives feasible
on the model, we need slightly stronger assumptions than (2.3). We assume

1
m

XT∗X∗ > kI (2.5)



580 ARUP BOSE AND SNIGDHANSU CHATTERJEE

for some k > 0 and m ≥ n/3, and all choices of (m×p) submatrix X∗ that can be
formed by choosing any m rows of X. By A > B we mean that A−B is positive
definite. As remarked by Wu ((1986), page 1344), (2.5) seems necessary for most
schemes that use data-pairs for resampling. But let us emphasize that (2.5) and
(2.4) are only sufficient conditions under which all known resampling schemes
work. Individual resampling schemes may work under weaker conditions. It
turns out that the best resampling plans do work under (2.3). We assume that the
noise terms ei’s are independent with uniformly bounded eighth moment. Actual
requirements for most resampling schemes may be weaker. Throughout this
paper we take p as fixed. For the performance of different resampling techniques
as p → ∞ with n → ∞ in the context of estimating the entire distribution of
β̂n as well as for variance estimation, see Bickel and Freedman (1983), Mammen
(1993), Chatterjee and Bose (2000, 2000a).

2.1. The jackknife variance estimators

The delete-1 jackknife uses the n different β̂(−i)’s, where β̂(−i) is the least
squares estimates based on the observations {(yj ,xj), j = 1, 2, . . . , i − 1, i +
1, . . . , n}. The different jackknife estimators use different weighted sums of
(β̂(−i) − β̂)(β̂(−i) − β̂)T , with weights possibly depending on the design. Let
δi = xT

i (XTX)−1xi. Expressions for the four different jackknife variance estima-
tors are
(i) (Hinkley (1977)) VJH = n

n−p

∑n
i=1(1 − δi)2(β̂(−i) − β̂)(β̂(−i) − β̂)T ;

(ii) (Wu (1986)) VJW =
∑n

i=1(1 − δi)(β̂(−i) − β̂)(β̂(−i) − β̂)T ;

(iii) (Liu and Singh (1992)) VJLS =
(n−1)

∑n

i=1
x2

i

n2

∑n
i=1

(β̂(−i)−β̂)2

x2
i

;

(iv) (Quenouille (1949)) VJ = n−1
n

∑n
i=1(β̂(−i) − β̂)(β̂(−i) − β̂)T .

The last one is the classical delete-1 jackknife. The weighted jackknife due
to Liu and Singh (1992) is a scheme for simple regression set-up only, and does
not have an extension to higher dimensional models.

The weighted jackknives of Hinkley (1977) and Wu (1986) had been framed
with a view to correcting for any unbalanced nature of the design matrix. Our
simulations show the merits of these corrections, with Wu’s jackknife generally
performing very well. However, see the discussion to Wu (1986) for some criticism
of his jackknife. In Section 5 we comment in detail on the relative merits of Wu’s
jackknife and the class of resampling techniques that we suggest.

General delete-d jackknives are also used for resampling, where the pseu-
dovalues are obtained by deleting sets of d observations at a time. For any d, the
delete-d jackknife schemes are special cases of UBS, see Chatterjee (1998). The
weighted jackknife due to Wu has a delete-d variation which we do not consider.
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2.2. The generalised residual bootstrap

This section describes the generalized residual bootstrap (GBS) technique.
We use the following notations for the rest of the paper: I is an identity matrix of
appropriate order; J = n−111T ; β̂ = (XTX)−1XTy = β + (XTX)−1XTe; Px =
X(XTX)−1XT , the projection on the column space of X; ŷ = Xβ̂ = Xβ + Pxe;
R = y − ŷ = (I − Px)e; R0 = (I − J)(I − Px)e; G = XTX.

Let W be an n×n random matrix, whose ith row is denoted by wT
i . Suppose

w1,w2, . . . ,wn are i.i.d. samples from Multinomial(1, 1/n, 1/n, . . . , 1/n). If we
define y∗ = Xβ̂ + WR0, we get the usual residual bootstrap. A generalization
of this is possible by taking any random W to be the weight matrix, subject to
certain conditions that we discuss later. Also R or other residuals may be used
instead of R0, but we restrict attention to R and R0 in this paper. Using other
forms of residuals may lead to a bootstrap that is more robust in the sense that
model assumptions can be more relaxed.

If the resampled data set is formed by y∗ = Xβ̂+WR∗ where W is a random
matrix and R∗ is either R or R0, we call it a Generalised Residual Bootstrap
(GBS). We have β̂B = (XT X)−1XTy∗ and hence β̂B − β̂ = (XT X)−1XT WR∗.
If R∗ = R and W is diagonal with entries that are i.i.d. observations from a
random variable with zero mean and unit variance, we have the external or wild
bootstrap. If R∗ = R and W = (I−J)W1, where W1 is diagonal with entries that
are i.i.d. observations from a random variable with zero mean and unit variance,
we obtain the weighted bootstrap of Liu (1988). In general, the behaviour of
the GBS technique depends on the nature of the matrix W. However, the
choice of the residual vector contributes in an interesting way. If EBW = cJ,
define W0 = (W − cJ)(I − J). Using the idempotence of J, we have WR0 =
(W− cJ)R0 + cJR0 = (W− cJ)(I− J)R = W0R. Thus the choice of R∗ to be
R or R0 may be offset by the choice of the random weighting matrix.

The definition of the GBS estimator depends heavily on the nature of the
weights used. We present three different versions to incorporate some of the
existing and related estimators in our study. Let σ2

n be the variance of the
bootstrap weights,

VGB1 =
1

nσ2
n

EB(β̂B − β̂)(β̂B − β̂)T , (2.6)

VGB2 = EB(β̂B − β̂)(β̂B − β̂)T , (2.7)

VGB3 =
1
σ2

n

EB(β̂B − β̂)(β̂B − β̂)T . (2.8)

These are all scaled versions of EB(β̂B − β̂)(β̂B − β̂)T , the scaling depending
on σ2

n and can be viewed as natural extension of the variance estimates used in
Barbe and Bertail (1995) for generalised bootstrapping of the sample mean.
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VGB2 and VGB3 are, respectively, of the same form as the variance estimate
under residual bootstrap and external bootstrap. The consistency of VGB2 re-
quires nσ2

n → 1 and, under this condition, it is essentially the same as VGB3.
However, it deserves separate attention for two reasons: this is the variance ex-
pression for the classical residual bootstrap, for which σ2

n = (n−1)/n2; we obtain
a result below showing that the ‘best under homoscedasticity’ resampling scheme
has a variance expression of this form.

Under certain conditions VGB1 and VGB2 belong to the E-class. Under some
other conditions, VGB3 belongs to the R-class. These results are discussed in
details later. The behaviour of GBS is largely governed by whether W is a
diagonal matrix or not. Generally speaking, if off-diagonal entries are non-zero,
the scheme is consistent only under homoscedasticity.

2.3. The uncorrelated weights bootstrap UBS

This generalized bootstrap scheme was introduced in Chatterjee and Bose
(2000). Let {wi:n; 1 ≤ i ≤ n, n ≥ 1} be a triangular array of nonnegative random
weights. We will drop the suffix n from the notation. The resampling scheme is
carried out by weighting each data point (yi,xi) with the random weight

√
wi,

then computing the statistic of interest and taking expectation of the random
weight vector.

This is a direct generalization of the paired bootstrap, where the random
weights {wi; 1 ≤ i ≤ n} are Multinomial(n; 1/n, . . . 1/n). The different delete-d
jackknives variance estimators can also be viewed as special cases of this, see
Chatterjee (1998) for details. Other examples of UBS techniques include the
Bayesian bootstrap, the weighted likelihood bootstrap, the m out of n bootstrap,
and several variations of these, some of which are available in Praestgaard and
Wellner (1993). Weights which form an i.i.d. sample from a suitable distribution
may also be used as UBS weights.

The weights w1, . . . , wn used for UBS resampling satisfy certain conditions
that we now state. Let V (wi) = σ2

n. Assume that the quantities E((wa − 1)/σn)i

((wb − 1)/σn)j((wc − 1)/σn)k . . . for distinct a, b, c . . . are functions of the pow-
ers i, j, k . . . only, and not of the indices a, b, c . . .. Thus we can write cijk... =
E((wa − 1)/σn)i((wb − 1)/σn)j((wc − 1)/σn)k . . .. Note that if the weights are
assumed to be exchangeable, then the above condition follows. Also let W be
the set on which at least m0 of the weights are greater than some fixed constant
k2 > 0. The value of m0 is ≥ n/3. Throughout the notations k,K are generic
for constants. The weights are required to satisfy

E(wi) = 1, (2.9)
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PB[Kn ≥
n∑

i=1

wi ≥ kn, K > k > 0] = 1, (2.10)

PB[W] = 1 − O(n−1), (2.11)
K > σ2

n > 0, (2.12)

c11 = O(n−1), (2.13)

∀ i1, i2, . . . , ik satisfying
k∑

j=1

ij = 3, ci1i2...ik = O(n−k+1σn
−1), (2.14)

∀ i1, i2, . . . , ik satisfying
k∑

j=1

ij = 4, ci1i2...ik = O(n−k+2), (2.15)

∀ i1, i2, . . . , ik satisfying
k∑

j=1

ij = 6, ci1i2...ik = O(n−k+3), (2.16)

∀ i1, i2, . . . , ik satisfying
k∑

j=1

ij = 8, ci1i2...ik = O(n−k+4). (2.17)

3. Second Order Results for p = 1

Throughout this section we assume p = 1 and one dimensional versions of
(2.3)-(2.5). This is equivalent to assuming that for all i, 0 < k < |xi| < K < ∞.
We also assume that the errors are independent with uniformly bounded eighth
moments. This section is for an easier understanding of the results to come for
general p, and also to relate to the first order results of Liu and Singh (1992).
Hence we do not consider the GBS scheme here but in the next section, and we
separately compute the results for the delete-1 jackknife, which is a special case
of UBS.

We use the notation Ln =
∑n

i=1 x2
i . If Ee2

i = τi
2, then VR = L−2

n

∑n
i=1 x2

i τi
2.

Under homoscedasticity of the noise terms, i.e., when τi
2 = τ2, i = 1, . . . , n, the

expression for variance of β̂ simplifies to VE = L−1
n τ2. We assume the existence

of the following limits.

α = lim
n→∞(

n

Ln
)1/2; α0 = lim

n→∞n−1
n∑

i=1

x2
i τi

2; α1 = lim
n→∞n−1

n∑
i=1

x4
i τi

2;

α2 = lim
n→∞n−1

n∑
i=1

x6
i τi

2; γ1 = lim
n→∞

∑
xi

n
; γ2 = lim

n→∞

∑
x4

i

n
; γ3 = lim

n→∞

∑
x6

i

n

Let Yn = n1/2 1
Ln

∑n
i=1(e2

i − τ2), Zn = n3/2 1
L2

n

∑n
i=1 x2

i (e
2
i − τi

2), and let Cnj

denote a quantity which satisfies ECnj = 0 and supn EC2
nj < ∞.
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Theorem 3.1. Suppose the error terms have the same variance.
(i) The residual bootstrap variance estimate satisfies

n3/2(VGB2 − VE) = Yn − 1
n1/2

[
α2(

∑
ei

n1/2
)2 − 2α3γ1(

∑
ei

n1/2
)(

∑
xiei

(
∑

x2
i )1/2

)

+ (α2 + α4γ2
1)(

∑
xiei

(
∑

x2
i )1/2

)2
]

+ n−1Cn1.

(ii) Liu and Singh’s weighted jackknife variance estimate satisfies

n3/2(VJLS − VE) = Yn − n−1/2

[
α2(

∑n
i=1 xiei

(
∑n

i=1 x2
i )1/2

)2 − α2τ2

]
+ n−1Cn2.

A simple computation shows that the second term in the expansion for the
weighted jackknife of Liu and Singh (1992) has zero expectation. However, it is
only available for p = 1.

We introduce some notation to present the results for the R-class. Let η1 =∑
xiei/(

∑
x2

i )
1/2, η2 =

∑
x3

i ei/(
∑

x6
i )

1/2 and η = (η1 η2)T , with

H =

(
α6γ2 −α5γ

1/2
3

−α5γ
1/2
3 0

)
, Q = ηTHη.

Theorem 3.2.
(i) The delete-1 jackknife variance estimate satisfies

n3/2(VJ − VR) = Zn + n−1/2
[
Q − α4α0 + 2α6α1

]
+ n−1Cn3.

(ii) The external bootstrap and weighted bootstrap variance estimate satisfies

n3/2(VGB3 − VR) = n3/2(VWB − Vn) = Zn + n−1/2Q + n−1Cn4.

(iii)Hinkley’s weighted jackknife variance estimate satisfies

n3/2(VJH − VR) = Zn + n−1/2
[
Q + α4α0

]
+ n−1Cn5.

(iv)Wu’s weighted jackknife variance estimate satisfies

n3/2(VJW − VR) = Zn + n−1/2
[
Q + α6α1

]
+ n−1Cn6.

(v) The UBS variance estimate under (2.9)-(2.17) satisfies

n3/2(VUBS − VR) = Zn + n−1/2Tn + n−1Cn7,
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where the second order term Tn is given by

Tn = Q + 3σ2
nc22α

8α0γ2 − 2σnc3α
6α1 + n(3σ2

nc112 − 2σnc12 − c11)α4α0

The various mixed-moments determine the term Tn in Theorem 3.2 (v), and
hence the exact second order value depends on the sequence of random weights
used in UBS. For particular choice of weights, the above expression simplifies
considerably, and we present some important special cases as a corollary.

Corollary 3.1. (a) The paired bootstrap variance estimate satisfies

n3/2(VUBS − VR) = Zn + n−1/2
[
Q + 3α8α0γ2 − 2α6α1

]
+ n−1Cn8.

(b) The UBS variance estimate with i.i.d. weights satisfies

n3/2(VUBS − VR) = Zn + n−1/2
[
Q + 3σ2

nα8α0γ2 − 2σnc3α
6α1

]
+ n−1Cn9.

In particular, if the weights are symmetric about their mean, then c3 = 0
and the second order term is Q + 3σ2

nα8α0γ2.

Note that all the second order terms in Theorem 3.2 and Corollary 3.1 are of
the form Q+νj. The minimum bias is achieved when EQ+νj = 0. A resampling
scheme is second order optimal if this happens. If γ2 = α = 1, then the delete-1
jackknife is second order optimal. If α1 = α2α0γ2, then the paired bootstrap
is second order optimal. Note that the second order term for UBS depends on
σ2

n and c3. So the performance of any UBS scheme can be characterised by the
second and third moments of the weights. For a UBS resampling scheme with
i.i.d. weights to be optimal, the following relation must be satisfied.

α2α0γ2(1 + 3σ2
n) = 2α1(1 + σnc3). (3.1)

Suppose the additional model condition (1.4) holds. If we assume that the weights
come from a distribution that is not skewed, and with variance given by

σ2
n =

2α1 − α2α0γ2

3α2α0γ2
, (3.2)

then the resulting UBS is second order optimal. The additional model condition
(1.4) comes from requiring that 2α1 > α2α0γ2. Thus it is seen that under very
general conditions, a UBS resampling technique exists that is superior to other
techniques. Under other less general model conditions we have shown that the
paired bootstrap is also optimal. The delete-1 jackknife is also optimal under
certain other restrictions on the model.

Consider the problem of estimation of the common unknown mean if all
error variances are equal. Then all the xi’s are equal to 1 and Yn = Zn =
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n−1/2∑(e2
i − σ2

i ). In this particular model the distinction between E-class and
R-class does not remain and all the resampling schemes have the same first order
behaviour. The second order term for residual bootstrap, weighted bootstrap,
and external bootstrap is −n−1(

∑
ei)2. For the delete −1 jackknife, weighted

jackknife (Liu and Singh), weighted jackknife (Hinkley), weighted jackknife (Wu)
and paired bootstrap, the second order term is −n−1(

∑
ei)2 + n−1∑ e2

i .
All resampling schemes with second order term equal to −n−1(

∑
ei)2 +

n−1∑ e2
i are optimal. This, in particular proves the superiority of the delete

−1 jackknife over the residual bootstrap for the restricted model under consid-
eration.

In this special case (1.4) is satisfied, and the variance requirement in (3.2)
is σ2

n = 1/3. Consider the discrete distribution supported with equal probability
on 1 ±√2/3. A UBS with i.i.d. weights from this distribution is also optimal.

4. Second Order Results for p > 1

We give results for the E class and the R class separately.

4.1. Results for E-class bootstrap, p > 1

In this section we discuss the conditions under which a GBS belongs to the
E-class. Assume that the elements Wij of W0 satisfy

E Wij = 0, 1 ≤ i, j ≤ n, (4.1)

V ar Wij = σ2
n > 0, 1 ≤ i, j ≤ n, (4.2)

Corr (Wij,Wik) = c11 = O(n−1), j 	= k, 1 ≤ i ≤ n, (4.3)

Corr (Wij ,Wlk) = 0, 1 ≤ i 	= l ≤ n, ∀ j, k. (4.4)

For the residual bootstrap, observe that W0 = W− J. Also, rows of W are
independent. So the above conditions are satisfied with

EBW = J (4.5)

σ2
n =

n − 1
n2

1 ≤ i, j ≤ n, (4.6)

c11 = − 1
n − 1

, j 	= k, ∀ 1 ≤ i ≤ n. (4.7)

Theorem 4.1 shows the consistency of the GBS and establishes the second order
results under the above assumptions. Let us define d1 = τ2[p+c11

∑
i�=j((Px))ij ],

d2 = τ2[p + c11
∑

i�=j((Px))ij − (n2σ2
n − n)]. Let

g = c11eT [nJ − I]e + nc11eTPxJPxe − 2nc11eTJPxe − (1 − 2c11)eT Pxe,

r = (nσ2
B − 1)eT e + nσ2

Bg.
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Theorem 4.1. Assume conditions (2.3)-(2.5) and that the errors are independent
with uniformly bounded eighth moment. If the weights satisfy (4.1)-(4.4) and the
residual R is used, then for the two variance estimators given in (2.6) and (2.7),

n3/2(VGB1 − VE) =
{
n−1/2

∑
(e2

i − τ2) + n−1/2g
}
{nG−1},

n3/2(VGB2 − VE) =
{
n−1/2

∑
(e2

i − τ2) + n−1/2r
}
{nG−1}.

Thus VGB1 is consistent, and VGB2 is consistent if lim
n→∞nσ2

n = 1. Further,
Eg = d1 and Er = d2.

Theorem 4.1 shows the consistency of both variance estimators using the
GBS in homoscedastic linear regression models. Note that the variance estimator
VGB1 is very general and is valid for all choices of σ2

n. However VGB2 requires
nσ2

n → 1. We now state a corollary of Theorem 4.1 to take care of the important
special case of the residual bootstrap. This corollary uses the identification of
the usual residual bootstrap as a GBS with the variance estimator being VGB2.
Let d3 = τ2[p + 1 − n−1∑

i�=j((Px))ij ], d13 = τ2[2 − n−1(
∑

xi)2/
∑

x2
i ].

Corollary 4.1. For the classical residual bootstrap the following expansions hold
for the multiple and simple linear regression, respectively:

n3/2(VGB2 − VE) =
{
n−1/2

∑
(e2

i − τ2) − n−1/2(d3 + Cn10)
}
{nG−1},

n3/2(VGB2 − VE) =
{
n−1/2

∑
(e2

i − τ2) − n−1/2(d13 + Cn11)
} n∑

x2
i

.

The second part of Corollary 4.1 matches the corresponding calculations in
Section 3. We now discuss a special GBS scheme that is always second order
optimal, in the sense that the expectation of the second order term is identically
zero. Suppose {Wij , 1 ≤ i, j ≤ n} are i.i.d. random variables with mean zero
and variance σ2

n = (n + p)/n2. These random variables are easily seen to satisfy
(4.1)-(4.4).

Theorem 4.2. Under the conditions of Theorem 4.1, for a GBS scheme with
i.i.d. mean zero weights and σ2

n = n−2(n + p), the bootstrap variance estimator
VGB2 is second order optimal and satisfies

n3/2(VGB2 − VE) = {n−1/2
∑

(e2
i − τ2) + Cn12}{nG−1}.

Within the E-class, Theorem 4.2 shows that i.i.d. weights GBS is the better
choice. Apart from efficiency considerations, let us also emphasise the significant
computational advantage of using i.i.d. weights over other resampling methods.
Still, much depends on the behaviour of the random variable Cn12. A little
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algebra shows that this term generally contributes only more lower order terms,
and is thus unlikely to influence even small sample performance.

4.2. Results for R class bootstrap p > 1.

Liu and Singh (1992) showed that the paired bootstrap, the delete-1 jack-
knife, the external or wild bootstrap, and the weighted bootstrap of Liu (1988)
belong to the R-class. In Section 3 we showed that the weighted jackknives
proposed by Hinkley (1977) and Wu (1986) also belong to the R-class. From
Chatterjee and Bose (2000) it is known that all the different delete-d jackknives
belong to the R-class. We have remarked earlier that the paired bootstrap and
the delete-d jackknives are special cases of the UBS. Recall that the external
bootstrap is a GBS technique for which W is diagonal with entries that are
i.i.d. observations from a random variable with zero mean and finite variance. It
has been observed earlier (Liu and Singh (1992), and Section 3 here) that the
variance estimator for the weighted bootstrap of Liu (1988) is same as that of
the external bootstrap, so we mention the result for the external bootstrap only.

Let us introduce the following notation: T = diag(τ2
i , 1 ≤ i ≤ n); Tn =

diag(e2
i , 1 ≤ i ≤ n); D = diag(−2τ2

i ((Px))ii +
∑n

a=1 τ2
a ((Px))2ia, 1 ≤ i ≤ n)

CE = diag(−2ei
∑n

j=1((Px))ijej +
∑n

a,b=1((Px))ia((Px))ibeaeb, 1 ≤ i ≤ n); δi =
((Px))ii = xT

i (XTX)−1xi; DWu = diag(δiτi
2, 1 ≤ i ≤ n); F = XT (Tn − T)X;

S = XTDX; and An = {nG−1}{n−1/2F}{nG−1}.
Theorem 4.3. Assume (2.3)-(2.5) and that the errors are independent with
uniformly bounded eighth moment. Then the following expansions hold for the
variance estimates.
(i) External Bootstrap:

n3/2(VGB3 − VR) = An + n−1/2{nG−1}XTCEX{nG−1}.
Further, ECE = D.

(ii) Weighted Jackknife (Hinkley) :

n3/2(VJH − VR) = An + n−1/2{nG−1}XT [
p

n − p
Tn − 2D2 + D3]X{nG−1},

where D2 = diag(eixT
i (β̂ − β), 1 ≤ i ≤ n); D3 = diag([xT

i (β̂ − β)]2, 1 ≤
i ≤ n), and further E[(p/(n − p))Tn − 2D2 + D3] = (p/(n − p))T + D.

(iii)Weighted Jackknife (Wu) :

n3/2(VJW − VR) = An + n−1/2{nG−1}XT D4X{nG−1},
where D4 = diag([δiTni − 2D2i + D3i] + δ2

i (1 − δi)−1)Tni + [δi + δ2
i (1 −

δi)−1)][−2D2i + D3i], 1 ≤ i ≤ n). Further, ED4 = DWu + D.
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(iv)For UBS satisfying (2.9)-(2.17):

n3/2(VUBS − VR) = An + n−1/2{nG−1}XT MX{nG−1} + n−1Cn13,

where

Mii = σ2
n[3c4e

2
i ((Px))2ii + c22

∑
a�=i

e2
a((Px))2ia] + (

n∑
a=1

ea(Px)2ia − 2σnc3e
2
i (Px)2ii

−2ei

n∑
a=1

ea(Px)ia + 2σ2
nc31e

2
i

∑
a�=i

((Px))2ia,

Mij = σ2
n[2c31{e2

i ((Px))ii((Px))ij + e2
j ((Px))jj((Px))ij}

+c211

∑
a�=i,j

e2
a((Px))ia((Px))ja + c211(e2

i + e2
j)
∑

a�=i,j

((Px))ia((Px))ja

+c22{e2
j ((Px))ii((Px))ij + e2

i ((Px))jj((Px))ij}] + c11eiej

+c11(
n∑

a=1

∑
1≤b≤n

eaeb(Px)ia(Px)jb)−c11[ej

n∑
a=1

ea(Px)ia + ei

n∑
a=1

ea(Px)ja]

+σn[c21(e2
i + e2

j)(Px)ij + c21eiej(Px)ii + Px)jj)],

EMii = σ2
n[3c4τi

2((Px))2ii + c22

∑
a�=i

τa
2((Px))2ia] +

n∑
a=1

τa
2(Px)2ia−2σnc3τi

2(Px)2ii

−2τi
2(Px)ii + 2σ2

nc31τi
2
∑
a�=i

((Px))2ia,

EMij = σ2
n[2c31{τi

2((Px))ii((Px))ij + τi
2((Px))jj((Px))ij}

+c211

∑
a�=i,j

τa
2((Px))ia((Px))ja + c211(τi

2 + τj
2)
∑

a�=i,j

((Px))ia((Px))ja

+c22{τj
2((Px))ii((Px))ij + τi

2((Px))jj((Px))ij}]

+c11(
n∑

a=1

τa
2(Px)ia(Px)ja)−c11[τj

2+τi
2](Px)ij +σn[c21(τi

2+τj
2)(Px)ij ].

Exact expression for the delete-d jackknives and the paired bootstrap schemes
can be obtained by inserting the exact values of the different moments involved.

Comparison between the external bootstrap, Hinkley’s jackknife and Wu’s
jackknife is difficult without further assumptions. The second term in the expan-
sion for these three schemes involves a diagonal matrix, and with a little algebra
it can be seen that in invoking criterion (1.3) we may compare the expected trace
of these diagonal matrices. If τi

2 ≡ τ2, then the ith terms in the expectations are
respectively −τ2(Px)ii, −τ2[(Px)ii + p/(n− p)] and 0 for the external bootstrap,
Hinkley’s jackknife and Wu’s jackknife. Hence the respective traces work out to
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be −pτ2, p2τ2/(n − p) and 0. This shows that Wu’s jackknife may be expected
to perform better than Hinkley’s jackknife, which in turn may be expected to
perform better than the external bootstrap. Indeed, Wu’s jackknife shows good
performance in simulations.

If we use UBS with i.i.d., symmetric weights, whenever there is an odd
number in the index of cijk..., that term disappears. Then the expectation
of the second order term is n−1/2{nG−1}XT [D + σ2

nDUBS ]X{nG−1}, where
(DUBS)ii = 3c4τi

2((Px))2ii +
∑

a�=i τa
2((Px))2ia, (DUBS)ij = τj

2((Px))ii((Px))ij +
τi

2((Px))jj((Px))ij . Since this is not a diagonal matrix, comparison with
other resampling techniques is not easy. Observe that by choosing σ2

n such
that trace

[
XT [D + σ2

nDUBS ]X
]

= 0, a UBS technique can be second order op-
timal. This naturally requires additional model conditions, comparable to (1.4),
so as to ensure the compatibility with σ2

n > 0. Details of such conditions may
be found in Bose and Chatterjee (1998). We do not discuss the ‘optimality’ of
UBS in details here, since the choice of σ2

n is more likely to be based on prac-
tical convenience. Results in Section 5 show that such practical (and perhaps
sub-optimal) choices of σ2

n also lead to good resampling performance.

5. Results from Simulation Experiments

As an illustration we consider the design matrix from the oxygen uptake data
from Rawlings, Pantula, Dickey ((1998), page 124). Since the design matrix is
fixed in our results, we take the design matrix from this data as fixed. We fix a
set of five parameter values, between 1.79 and 2.31, and vary the noise process to
generate different sets of data, then estimate the parameters using least squares.
We study the distribution of the estimated variance of the contrast given by
(−0.25,−0.25,−0.25,−0.25, 1). Extensive simulations with other linear combi-
nations of parameters and different design matrices yield similar conclusions.

With noise variances fixed, the actual variance of the least squares estimate
(Vn) is known, and for every noise sequence and every resampling plan this is
estimated. Say for a particular resampling plan the variance estimator is called
Vnj. From our theorems, we know that n3/2(Vnj − Vn) = An + n−1/2Bnj +
Op(n−1) holds, and we want to check whether EBnj differs significantly across
j (resampling techniques). We present the density plots of n3/2(Vnj − Vn) for
three different kinds of independent noise random variables with sample size 15
and 31.

Figures 1, 2 and 3 use the first fifteen design points from the oxygen uptake
data. Figures 4, 5 and 6 consider the full design matrix based on 31 observations.

Noise is generated as follows. Let τi = 2 log(i + 2). For Figures 1 and 4, the
ith noise is Normal(0, τi

2). For Figures 2 and 5, the ith noise is Exponential

with mean τi, left shifted so that the mean becomes zero. For Figures 3 and
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6, the ith noise is Gamma with parameters 10 and τi, also left shifted so that
the mean becomes zero. Note that the given value of τi implies that the noise
variance ranges from moderate to quite high values.
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Figure 1. Density plots of n3/2(Vnj − Vn) for different bootstrap variance
estimators of the least squares estimator variance from yi = xT

i β + ei, where
ei ∼ N(0, 4[log(i + 2)]2), data size n = 15. In all figures, the bold line is
the simulated true distribution, the dotted line is the UBS estimator with
i.i.d. weights wni = 0.15(1.85) with probability 0.5(0.5). The dashed line
is Wu’s weighted jackknife estimator in A, Hinkley’s weighted jackknife in
B, and the UBS estimator with i.i.d. weights wni ∼ U(0, 2) in C and D.
Longer dashed lines are the usual unweighted jackknife, paired bootstrap
and external bootstrap estimators in B, C and D, respectively.
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Figure 2. Density plots of n3/2(Vnj − Vn) for different bootstrap variance
estimators of the least squares estimator variance from yi = xT

i β + ei, where
ei ∼ exponential(2 log(i + 2))− 2 log(i + 2), data size n = 15. In all figures,
the bold line is the simulated true distribution, the dotted line is the UBS
estimator with i.i.d. weights wni = 0.15(1.85) with probability 0.5(0.5). The
dashed line is Wu’s weighted jackknife estimator in A, Hinkley’s weighted
jackknife in B, and the UBS estimator with i.i.d. weights wni ∼ U(0, 2) in
C and D. Longer dashed lines are the usual unweighted jackknife, paired
bootstrap and external bootstrap estimators in B, C and D, respectively.

Although an optimal UBS depends on the choice of σ2
n (the variance of

the weights) based on design parameters, we ignore this fact and work with prac-
tical selections of i.i.d. weights, which are easy to generate. The two i.i.d. UBS



COMPARISON OF RESAMPLING SCHEMES 593

 

 

 

 

 

 

 

 

00

00

Figure 3A Figure 3B

Figure 3C Figure 3D

Simulated, Discrete, Wu Simulated, Discrete, Hinkley, Jackknife

Simulated, Discrete, Uniform, Paired Simulated, Discrete, Uniform, External

-5E+4-5E+4

-5E+4-5E+4

5E+45E+4

5E+45E+4

5
E
-6

5
E
-6

5
E
-6

5
E
-6

1
.5

E
-5

1
.5

E
-5

1
.5

E
-5

1
.5

E
-5

Figure 3. Density plots of n3/2(Vnj − Vn) for different bootstrap variance
estimators of the least squares estimator variance from yi = xT

i β + ei, where
ei ∼ gamma(10, 2 log(i + 2))− 20 log(i + 2), data size n = 15. In all figures,
the bold line is the simulated true distribution, the dotted line is the UBS
estimator with i.i.d. weights wni = 0.15(1.85) with probability 0.5(0.5). The
dashed line is Wu’s weighted jackknife estimator in A, Hinkley’s weighted
jackknife in B, and the UBS estimator with i.i.d. weights wni ∼ U(0, 2) in
C and D. Longer dashed lines are the usual unweighted jackknife, paired
bootstrap and external bootstrap estimators in B, C and D, respectively.

schemes chosen for simulation are as follows. The first is a two-point distribution,
putting equal masses on 0.15 and 1.85, called the discrete UBS. This is a slightly
modified version of the optimal UBS for the variance of the sample mean in the
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one-dimensional case. The other UBS scheme uses weights from a mean 1, vari-
ance 1/3 Uniform distribution, and is called the Uniform UBS. We also include
the paired bootstrap and delete-1 jackknife in our study, also UBS techniques.
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Figure 4. Density plots of n3/2(Vnj − Vn) for different bootstrap variance
estimators of the least squares estimator variance from yi = xT

i β + ei, where
ei ∼ N(0, 4[log(i + 2)]2), data size n = 31. In all figures, the bold line is
the simulated true distribution, the dotted line is the UBS estimator with
i.i.d. weights wni = 0.15(1.85) with probability 0.5(0.5). The dashed line
is Wu’s weighted jackknife estimator in A, Hinkley’s weighted jackknife in
B, and the UBS estimator with i.i.d. weights wni ∼ U(0, 2) in C and D.
Longer dashed lines are the usual unweighted jackknife, paired bootstrap
and external bootstrap estimators in B, C and D, respectively.



COMPARISON OF RESAMPLING SCHEMES 595

 

 

 

 

 

 

 

 

00

00

2000020000

2000020000

0
.0

0
.0

0
.0

0
.0

0
.0

0
0
0
4

0
.0

0
0
0
4

0
.0

0
0
0
4

0
.0

0
0
0
4

0
.0

0
0
1
0

0
.0

0
0
1
0

0
.0

0
0
1
0

0
.0

0
0
1
0

Figure 5A Figure 5B

Figure 5C Figure 5D

Simulated, Discrete, Wu Simulated, Discrete, Hinkley, Jackknife

Simulated, Discrete, Uniform, Paired Simulated, Discrete, Uniform, External

Figure 5. Density plots of n3/2(Vnj − Vn) for different bootstrap variance
estimators of the least squares estimator variance from yi = xT

i β + ei, where
ei ∼ exponential(2 log(i + 2))− 2 log(i + 2), data size n = 31. In all figures,
the bold line is the simulated true distribution, the dotted line is the UBS
estimator with i.i.d. weights wni = 0.15(1.85) with probability 0.5(0.5). The
dashed line is Wu’s weighted jackknife estimator in A, Hinkley’s weighted
jackknife in B, and the UBS estimator with i.i.d. weights wni ∼ U(0, 2) in
C and D. Longer dashed lines are the usual unweighted jackknife, paired
bootstrap and external bootstrap estimators in B, C and D, respectively.

The estimated densities are denoted as follows: (1) Wu’s jackknife: dashed
line (Figure A, 1-6); (2) Hinkley’s jackknife: dashed line (Figure B, 1-6); (3)
Standard delete-1 jackknife: longer dashed line (Figure B, 1-6); (4) Uniform
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UBS: dashed line (Figure C, D, 1-6); (5) Paired bootstrap: longer dashed line
(Figure C, 1-6); (6) External bootstrap: longer dashed line (Figure D, 1-6); (7)
Discrete UBS: dotted line (all figures); (8) Simulated data density: solid line (all
figures).
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Figure 6. Density plots of n3/2(Vnj − Vn) for different bootstrap variance
estimators of the least squares estimator variance from yi = xT

i β + ei, where
ei ∼ gamma(10, 2 log(i + 2))− 20 log(i + 2), data size n = 31. In all figures,
the bold line is the simulated true distribution, the dotted line is the UBS
estimator with i.i.d. weights wni = 0.15(1.85) with probability 0.5(0.5). The
dashed line is Wu’s weighted jackknife estimator in A, Hinkley’s weighted
jackknife in B, and the UBS estimator with i.i.d. weights wni ∼ U(0, 2) in
C and D. Longer dashed lines are the usual unweighted jackknife, paired
bootstrap and external bootstrap estimators in B, C and D, respectively.
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The figures show that certain resampling techniques work well even when
sample size is small and noise variance is high. We have tried other noise vari-
ances to get similar results. The Discrete UBS, Uniform UBS and Wu’s jackknife
estimate the densities remarkably well, even in small samples. Hinkley’s jackknife
also does reasonably well, although there is some underestimation of the right
tail. The paired bootstrap performs very badly with small samples, as expected,
but does reasonably well with moderate sized samples. The usual delete-1 jack-
knife and external bootstrap perform poorly. The external bootstrap substantially
underestimates the right tail, even for n = 31. We have checked with data sets
of size 80 and found that the bias in delete-1 jackknife and external bootstrap
persists.

It may be mentioned in the context of weighted jackknives, that the use of
the diagonal elements of Px is special to least squares estimation and linear re-
gression. The use of weighted jackknives may be difficult with other estimators or
other models. However the performance of the weighted jackknives may improve
further if instead of a delete-1 jackknife, a delete-d jackknife is used, but then
computational difficulties and data storage problems must be considered.

In conclusion, the weighted jackknife of Wu (1986) and some UBS schemes
seem to do well in simulations, and bear further study. The relative advantage
seems to lie with the UBS technique, which can be proven to be optimal under
certain conditions, and is perhaps less difficult to implement than any weighted
jackknife.
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