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Abstract: This article considers semiparametric estimation in logistic regression

with missing covariates. In a validation subsample, we assume covariates are mea-

sured without error. Some covariates are missing in the non-validation set, while

surrogate variables may be available for all study subjects. We consider the case

when a covariate variable is missing at random such that the selection probability

of the validation set depends only on observed data. Breslow and Cain (1988) pro-

posed a conditional likelihood approach based on the validation set. We combine

the conditional likelihoods of the validation set and the non-validation set. The

proposed estimator is easy to implement and is semiparametric since no additional

model assumption is imposed. Large sample theory is developed. For the esti-

mation of the parameter for the missing covariate, simulations show that, under

various situations, the proposed estimator is significantly more efficient than the

validation likelihood estimator of Breslow and Cain and the inverse selection prob-

ability weighted estimator. Under moderate sample sizes and moderate values of

relative risk parameters, our estimator remains competitive when compared with

the nonparametric maximum likelihood estimator of Scott and Wild (1997). The

proposed method is illustrated by a real data example.

Key words and phrases: Conditional likelihood, errors in variable, logistic regres-

sion, two-phase design.

1. Introduction

We consider logistic regression to investigate factors related to disease in-
cidence. The missing covariate problem arises when certain components of the
covariate vector are too difficult to measure on all study subjects. As an exam-
ple, in a clinical study, the missing covariate problem may arise because some
medical procedures required to ascertain certain covariates are too invasive to be
performed on all individuals. This problem may also be from the study design.
For example, in case-cohort studies, while general covariate information such as
demographics are available for all study subjects, certain covariate data such as
blood samples are only assembled on a subset of the study cohort. In general, let
Y be the binary response, Z be a covariate which is always observed and X be
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another covariate that may be missing. Assume that W is a surrogate variable
for X, such that W is independent of Y given (X,Z). Let n be the sample size.
For i = 1, . . . , n, consider the logistic regression model

pr(Yi = 1|Xi, Zi,Wi) = H(β0 + βt
1Xi + βt

2Zi), (1)

where H(u) = {1+e−u}−1 is the logistic distribution function and β=(β0, β
t
1, β

t
2)

t

is a vector of parameters. Let δi indicate whether Xi is observed (δi = 1) or
not (δi = 0). The validation data set (δi = 1) consists of (Yi,Xi, Zi,Wi), and
the nonvalidation data set (δi = 0) consists of (Yi, Zi,Wi). In this paper we
consider the case where Xi is assumed to be missing at random (MAR, Rubin
(1976)) such that the probability of Xi being observed (selection probability),
pr(δi = 1|Yi,Xi, Zi,Wi) = π(Yi, Zi,Wi), depends on (Yi, Zi,Wi) but not on Xi. In
some cases, the data are obtained in two stages. At the first stage, (Yi, Zi,Wi), i =
1, . . . , n are observed from all subjects, and at the second stage Xi’s are measured
in the validation data set. This is sometimes called a two-phase design.

When Z and W are discrete, Breslow and Cain (1988) proposed a conditional
likelihood method for a two-stage case-control study such that at the second stage
some X’s are observed on each stratum classified by (Y,Z,W ). This approach is
based on a validation likelihood. When X is also discrete, Schill, Jöckel, Drescher
and Timm (1993) considered a refined estimator, and a constrained maximum
likelihood estimator was later developed by Breslow and Holubkov (1997). As in
Breslow and Chatterjee (1999), this is the same as a nonparametric maximum
likelihood estimator of Scott and Wild (1997). A mean-score estimator was pro-
posed by Reilly and Pepe (1995) for discrete (Z,W ). In this case with discrete
(Z,W ), the mean-score estimator is the same as the Horvitz and Thompson
(1952) inverse selection probability estimator when the weights are estimated
nonparametrically. Robins, Rotnitzky and Zhao (1994) proposed efficient esti-
mation by computing an optimal score function in semiparametric models. See
Carroll, Ruppert and Stefanski (1995) for a general review. When the missing-
ness mechanism does not depend on Y , Chen and Chen (2000) proposed a general
approach to the problem.

In this paper we consider discrete (Z,W ). The proposed estimator is semi-
parametric because additional model assumptions for nuisance components, such
as the selection probabilities of the validation data set or the probability den-
sity of X|(Y,Z,W ), are not necessary. In Section 2, we review the conditional
likelihood estimator based on validation data. We note that the conditional like-
lihood estimator utilizes the likelihood of Y given (X,Z,W, δ = 1) only, but
it does not include the contribution of the likelihood of Y given (Z,W, δ = 0).
The proposed estimator is described in Section 3. The asymptotic distribution
theory is given in Section 4. Covariance estimation of the proposed estimator
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is provided. In Section 5, we consider a joint unconditional likelihood estima-
tor and discuss the advantage of our proposed estimator over the unconditional
one. The inverse selection weighted estimator and the nonparametric maximum
likelihood (NPML) estimator of Scott and Wild (1997) are also reviewed here.
In Section 6, we examine the finite sample performance of the proposed esti-
mator. In comparison with the validation likelihood estimator and a weighted
estimator, the proposed estimator is shown to be generally more efficient in es-
timating the effect of the missing covariate, while it remains competitive for the
other parameters. Compared to the NPML estimator, the proposed estimator is
rather competitive under the situation when the sample sizes and relative risk
parameters are moderate. Note that the computation of the proposed estimator
is similar to that of Breslow and Cain (1988) except for adding a similar term
based on the non-validation likelihood, and hence it remains easy to compute.
An example is presented in Section 7. Some concluding remarks are given in
Section 8 and technical details for the asymptotic normal theory are provided in
the Appendix.

2. Review of the Validation Likelihood Estimator

For notational simplicity, let X = (1,Xt, Zt)t, V = (Zt,W t)t, pr(δ = 1|Y, V )
= π(Y, V ). Recall that the likelihood function (1) is correct when all covariates
are observed. When X is MAR, it can be easily shown that pr(Y = 1|V,X, δ =
1) = H[βtX + ln{π(1, V )/π(0, V )}]. Breslow and Cain (1988) proposed a condi-
tional likelihood estimator of β, which solves the estimating equation

U1n = n−1/2
n∑

i=1

δiXi

[
Yi − H{βtXi + ln

π(1, Vi)
π(0, Vi)

}
]

= 0. (2)

The conditional likelihood estimator is a validation likelihood estimator. When
π(1, V ) and π(0, V ) are known, the estimating equation (2) is unbiased since
it is likelihood-based from the validation sample, as can be shown from direct
calculations. Let H+(Xi, Vi) = H[βtXi + ln{π(1, Vi)/π(0, Vi)]. Then

E [δiXi{Yi − H+(Xi, Vi)}] = pr(δi = 1)E [δiXi{Yi − H+(Xi, Vi)}|δi = 1]
+ pr(δi = 0)E [δiXi{Yi − H+(Xi, Vi)}|δi = 0]

= pr(δi = 1)E (E [δiXi{Yi − H+(Xi, Vi)}|Xi, Vi, δi = 1]|δi = 1) + 0 = 0. (3)

If the selection probabilities are not known, then π(y, v) may be estimated
by π̂(y, v) = (

∑n
i=1 δiI[Yi = y, Vi = v])/(

∑n
i=1 I[Yi = y, Vi = v]). Define

Ĥ+(Xi, Vi) = H[βtXi + ln{π̂(1, Vi)/π̂(0, Vi)}]. The resulting estimating score
of the conditional likelihood estimator is

Û1n(β) = n−1/2
n∑

i=1

δiXi{Yi − Ĥ+(Xi, Vi)}. (4)
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It is clear that (4) is the estimating score from the likelihood of Y given (X,V, δ =
1), but not Y given (V, δ = 0). The proposed estimator, as will be described next,
is to combine both conditional likelihood functions so that higher efficiency can
be achieved.

3. The Joint Conditional Likelihood Estimator

We now describe how to make use of the likelihood of Y |V from the non-
validation set. By Satten and Kupper (1993),

pr(Y = 1|V ) = H{β0 + βt
2Z + R(V )}, (5)

where R(V ) = ln
[
E{eβt

1X |V, Y = 0}
]
. By direct calculation,

pr(Y = 1|V, δ = 0) =
pr(Y = 1|V )pr(δ = 0|Y = 1, V )∑y=1

y=0 pr(Y = y|V )pr(δ = 0|Y = y, V )

= H{β0 + βt
2Z + R(V ) + ln

π(1, V )
π(0, V )

},

where π(y, v) = 1− π(y, v) for y = 0, 1. Define H−(V ) = H{β0 + βt
2Z + R(V ) +

lnπ(1,V )
π(0,V )}, Ti = (1, ∂

∂βt
1
R(Vi), Zt

i )
t. Similar to the calculations in (3), we have

E [(1 − δi)Ti{Yi − H−(Vi)}] = 0. (6)

When the selection probabilities and the conditional probabilities of X given
(Y =0,V ) are known, an estimating equation combining the validation and non-
validation conditional likelihoods may be obtained by solving Un(β) = 0, where
Un(β) = n−1/2 ∑n

i=1 [δiXi{Yi − H+(Xi, Vi)} + (1 − δi)Ti{Yi − H−(Vi)}]. The un-
biasedness of the estimating score Un(β) can be seen directly from (3) and (6).
When the selection probabilities and the conditional probabilities of X given
(Y =0,V ) are not known, we propose a semiparametric estimator β̂ for β which
solves the following estimating equations,

Ûn(β) = n−1/2
n∑

i=1

[
δiXi{Yi − Ĥ+(Xi, Vi)} + (1 − δi)T̂i{Yi − Ĥ−(Vi)}

]
,

where Ĥ−(Vi) = H[β0 + βt
2Zi + R̂(Vi) + ln{π̂(1, Vi)/π̂(0, Vi)}], R̂(Vi) = ln{(∑n

j=1

δje
βt
1XjI[Vj = Vi, Yj = 0])/(

∑n
j=1 δjI[Vj = Vi, Yj = 0])}, T̂i = (1, R̂(1)(Vi), Zt

i )
t

and R̂(1)(Vi)=(
∑n

j=1δjXje
βt
1XjI[Vj =Vi, Yj =0])/(

∑n
j=1δje

βt
1XjI[Vj =Vi, Yj =0]).

Observe that the proposed estimator β̂ is based on the joint conditional
likelihoods (JCL) Lδ(Y |X,Z, δ = 1)L1−δ(Y |V, δ = 0), where L(·) denotes the
(conditional) likelihood function of a specified random variable.
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4. Asymptotic Distribution Theory

To obtain β̂ we write the estimating equation Ûn(β) = Û1n(β) + Û2n(β),
where Û1n(β) was defined in (4) and

Û2n(β) = n−1/2
n∑

i=1

(1 − δi)T̂i{Yi − Ĥ−(Vi)}. (7)

We assume the following:

(A1) For any y = 0, 1 and v ∈ supp(V ), the support of V , the selection probability
π(y, v) > 0.

(A2) For any v ∈ supp(V ), E{exp(βt
1X)|V = v, Y = 0} exists in a neighborhood

of the true β.

(A3) For any y = 0, 1 and v ∈ supp(V ), the selection probability π(y, v) < 1.

(A4) E{δXX tH
(1)
+ (X,V ) + (1 − δ)T T tH

(1)
− (V )} is positive definite in a neigh-

borhood of the true β, where H
(1)
+ (.) = H+(.){1 − H+(.)} and H

(1)
− (.) =

H−(.){1 − H−(.)}.

(A5) The second derivatives of Ûn(β) with respect to β exist in a neighborhood
of the true β almost surely. Further, in such a neighborhood, the second
derivatives are bounded above by a function of (Y,X, V ), whose expectation
exists.

4.1. Limit distribution

We first express Û1n(β) as the sum of independent variables. For con-
venience, let Sc(Yi,Xi, Vi) = δiXi{Yi − H+(Xi, Vi)}, Ec(Yi, Vi) = (−1)Yi{δi −
pr(Yi, Vi)}{π(Yi, Vi)pr(Yi|Vi)}−1E{π(Y, V )XH

(1)
+ (X,V )|V = Vi}. Note that Sc

stands for the score from a complete case since it is the derivative of the logarithm
of the conditional likelihood of Yi given (Xi, Vi, δi = 1), i.e., (∂/∂β)[Yiln{H+(Xi,
Vi)} + (1 − Yi)ln{1 − H+(Xi, Vi)}]. Also, Ec stands for the approximation error
from the complete data score Sc due to the estimation of nuisance parameters
(selection probabilities).

Lemma 1. Under Conditions (A1)-(A2), Û1n(β) = n−1/2 ∑n
i=1{Sc(Yi,Xi, Vi) +

Ec(Yi, Vi)} + op(1).

The proof of Lemma 1 is given in the Appendix. We note that an alternative
but equivalent linearization of Û1n was given in Wang and Wang (1997, p.1107).
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We now linearize Û2n(β). Let r(Vi) = E{exp(βt
1Xi)|Yi = 0, Vi} and r̂(Vi) =

(
∑n

j=1 δje
βt
1XjI[Yj = 0, Vj = Vi])/(

∑n
j=1 δjI[Yj = 0, Vj = Vi]). Define Sm(Yi, Vi)

= (1 − δi)Ti{Yi − H−(Vi)},

Em(Yi,Xi, Vi)

= (−1)(1−Yi){δi − π(Yi, Vi)}{π(Yi, Vi)pr(Yi|Vi)}−1TiH
(1)
− (Vi)E[{π(Y, V )}|V =Vi]

−I[Yi = 0, δi = 1]{eβt
1Xi − r(Vi)}{r(Vi)}−1TiH

(1)
− (Vi)

pr(δi = 0, Vi)
pr(δi = 1, Yi = 0, Vi)

.

Here Sm stands for the score from a case with missing covariate, while Em stands
for the approximation error from the incomplete data score Sm due to the esti-
mation of nuisance parameters (selection probabilities and R(V )).

Lemma 2. Under Conditions (A2)-(A3), Û2n(β) = n−1/2 ∑n
i=1{Sm(Yi, Vi) +

Em(Yi,Xi, Vi)} + op(1).

The proof of Lemma 2 is given in the Appendix.
We now present the limiting distribution for the proposed JCL estimator.

For any vector a, define a⊗2 = aat.

Theorem 1. Let β̂ be the joint conditional likelihood estimator solving Ûn(β) =
0. Under Conditions (A1)-(A5), β̂ is consistent and unique in a neighborhood
of β with probability converging to 1 as n → ∞. Furthermore, n1/2(β̂ − β)
has an asymptotically normal distribution with mean 0 and covariance matrix
G−1(β)M(β){G−1(β)}t, where

G(β) = E{δXX tH
(1)
+ (X,V ) + (1 − δ)T T tH

(1)
− (V )};

M(β) = E
[
{Sc(Y,X, V ) + Ec(Y, V ) + Sm(Y, V ) + Em(Y,X, V )}⊗2

]
.

The proof of Theorem 1 is given in the Appendix. Note that the asymptotic
covariance matrix is a sandwich type because of the linearization involved in
Ûn(β), in which π(y, v), R(v) and R(1)(v) are estimated nonparametrically. If
these nuisance components were known, then, instead of Ûn(β), one should solve
Un(β) = 0 for the joint conditional likelihood estimator. In this case, Ec(Y, V )
and Em(Y,X, V ) would not be in M(β). Under this generally impractical case,
the asymptotic covariance can further be simplified to G−1(β).

4.2. Covariance estimation

We now present consistent estimation of the standard error of β̂. To sim-
plify matters, write H+(X,V, β) for H+(X,V ) (and similarly for H−(·), T (·),
Sc(·), Ec(·), Sm(·) and Em(·)) to emphasize dependence on β. Let Ĝ(β) =
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n−1 ∑n
i=1[δiXiX t

i Ĥ
(1)
+ (Xi, Vi, β) + (1 − δi)T̂i(β)T̂ t

i (β)Ĥ(1)
− (Vi, β)]. Then it can be

shown that Ĝ(β̂) → G(β) in probability. Let

M̂(β)=n−1
n∑

i=1

{Sc(Yi,Xi, Vi, β)+Êc(Yi, Vi, β)+Sm(Yi, Vi, β)+Êm(Yi,Xi, Vi, β)}⊗2,

where Êc(Yi, Vi, β) = (−1)Yi{δi−π̂(Yi, Vi)}{
∑n

j=1 δjXjĤ
(1)
+ (Xj , Vj , β)I[Vj = Vi]}/

(
∑n

j=1 δjI[Yj = Yi, Vj = Vi]) and

Êm(Yi,Xi, Vi, β)

= (−1)(1−Yi)
δi − π̂(Yi, Vi)

π̂(Yi, Vi)
T̂i(β)Ĥ(1)

− (Vi, β){π̂(Yi, Vi)}−1

∑n
j=1(1 − δj)I[Vj = Vi]∑n
j=1 I[Yj = Yi, Vj = Vi]

− δiI[Yi =0]{eβt
1Xi−r(Vi, β)}{r(Vi)}−1T̂i(β)Ĥ(1)

− (Vi, β)
∑n

j=1(1−δj)I[Vj =Vi]∑n
j=1 δjI[Yj =0, Vj =Vi]

.

Then it can be shown that M̂(β̂) → M(β) in probability. As a result, the co-
variance estimates for n1/2(β̂−β) can be consistently estimated by Ĝ−1(β̂)M̂ (β̂)
{Ĝ−1(β̂)}t.

5. Some Other Semiparametric Estimators

Observe that L(observed data) = L1L2, where L1 = {L(Y |X,Z,W, δ =
1)}δ{L(Y |Z,W, δ = 0)}1−δ ; L2 = {L(X,Z,W, δ = 1)}δ{L(Z,W, δ = 0)}1−δ .
Hence, the proposed estimator is a semiparametric estimator using the partial
likelihood L1. We note that L2 may be related to β and hence this leads to the
requirement of providing the consistency result of the JCL estimator in the last
two sections. Next, we describe a slightly different estimator which is based on
joint unconditional likelihoods.

5.1. Joint unconditional likelihood estimator

Because the distribution of Y given V can be computed from (5), one intu-
itive approach is to consider estimation based on the partial likelihood {L(Y |X,
V )}δ{L(Y |V )}1−δ. The resulting estimating equation for this joint unconditional
likelihood estimator is

n∑
i=1

(
δiXi{Yi − H(βtXi)} + (1 − δi)T̂i[Yi − H{β0 + βt

2Zi + R̂(Vi)}]
)

= 0. (8)

This is different from our proposed estimator in that it is unconditional on the
selection indicator δ. To understand the estimator, we rewrite the full likelihood
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as

{L(δ = 1, Y, V,X)}δ{L(δ = 0, Y, V )}1−δ

= {L(δ = 1|Y, V,X)}δ{L(Y |V,X)}δ{L(V,X)}δ{L(δ = 0|Y, V )}1−δ{L(Y |V )}1−δ

{L(V )}1−δ .

Therefore, under MAR the joint unconditional likelihood estimator is consistent
if (i) L(δ|Y, V ) does not depend on β; and (ii) L(V,X) and L(V ) do not depend on
β. Generally, (i) seems to be a reasonable assumption under MAR. However, (ii)
may be violated. For example, as in Wang, Wang and Carroll (1997), if X|(V, Y =
0) is normal with variance σ2, then X|(V, Y = 1) is still normal with the same
variance but E(X|V, Y = 1) = E(X|V, Y = 0) + β2

1σ2. Furthermore, direct
calculation of the expectation of the joint unconditional likelihood estimating
function (8) may not be zero in general. We also see this bias problem in the
simulation study.

5.2. Weighted estimator and mean-score estimator

Inverse selection probability weighted estimation has gained much attention
recently. In the spirit of Horvitz and Thompson (1952), the simplest weighted
estimator uses subjects in the validation set and applies {π(Yi, Vi)}−1 as the
weight for subject i. As in Robins, et al. (1994), Wang, et al. (1997), using
estimated π(Yi, Vi) in general leads to a more efficient estimator of β compared
to that using the true selection probabilities. The estimating equation for the
weighted estimator is

n−1/2
n∑

i=1

δi

π̂(Yi, Vi)
Xi{Yi − H(βtXi)} = 0.

Let φi = Xi{Yi − H(β0 + βt
1Xi + βt

2Zi) and φ∗
i = E(φi|Yi, Vi). For discrete

(Yi, Vi), this weighted estimator can be seen to be equivalent to the mean-score
estimator of Reilly and Pepe (1995), which solves n−1/2 ∑n

i=1{δiφi+(1−δi)φ̂∗
i } =

0, where φ̂∗
i = {∑n

j=1 δjφjI[Yj = Yi, Vj = Vi]}/{
∑n

j=1 δjI[Yj = Yi, Vj = Vi]. Both
estimators share the property that for discrete (Yi, Vi), if Xi is not observed, then
the average score φ̂∗

i obtained from the validation set is used for the estimation
of β.

The covariance for the weighted estimator may be obtained by using a simple
sandwich estimator. Let G = n−1 ∑n

i=1(δi/π̂i)XiX t
i H

(1)(β0 +βt
1Xi +βt

2Zi). Then
the covariance of the weighted estimator can be consistently estimated by

G−1

[
n∑

i=1

{ δi

π̂(Yi, Vi)
φi + (1− δi

π̂(Yi, Vi)
)φ̂∗

i }{
δi

π̂(Yi, Vi)
φi + (1− δi

π̂(Yi, Vi)
)φ̂∗

i }t

]
G−1.
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5.3. Nonparametric maximum likelihood estimator

As described in Section 2, the validation likelihood estimator of Breslow
and Cain (1988) applies

∑n
i=1 δiI[Yi = y, Vi = v] to estimate π(y, v) in the cal-

culation of the offset ln{π(1, V )/π(0, V )}. The NPML estimator of Scott and
Wild (1997) considers the NPML estimator in the sense that the marginal dis-
tribution of (X,V ) is not specified. As in Breslow and Chatterjee (1999), the
NPML estimator is the same as the constrained ML estimator of Breslow and
Holubkov (1997). Suppose V contains B strata and, for notational simplicity,
let V = j if V is at the jth stratum. Let γj be the logarithm of the odds
ratio when V = j. That is, γj satisfies pr(Yi = 1|Vi = j) = H(γj). De-
fine ξj = ξj(γj) = ln[{m1,j − n1,j + n·,jH(γj)}/{m0,j − n0,j + n·,jH(γj)}] − γj,
where my,j =

∑n
i=1 δiI[Yi = y, Vi = j], ny,j =

∑n
i=1 I[Yi = y, Vi = j] and

n·,j = n0,j + n1,j. For given β, the NPML estimator of γj solves
n∑

i=1

[
I[Yi =1, Vi =j]−I[Vi =j]H(γj)−δiI[Vi =j]{Yi−H(β0+βt

xXi+βt
2Zi+ξj)}

]
=0.

For given γj, j = 1, . . . , B, the NPML estimator of β solves
∑n

i=1 δiXi{Yi −
H(βtXi + ξVi)} = 0. In the above equation, we note that ξVi = ξj if Vi = j.
Scott and Wild used an iterative algorithm. Note that β and γj, j = 1, . . . , B
are finite dimensional. We solve the joint estimating equations simultaneously
by the standard Newton-Raphson algorithm.

6. Simulation Study

We evaluated small sample properties of the proposed joint conditional like-
lihood estimator (β̂JCL). We compared it with a naive complete-case analysis
(β̂CC), inverse-selection probability weighted estimator (β̂IPW ), the conditional
validation likelihood estimator of Breslow and Cain (β̂V L), the joint uncondi-
tional likelihood estimator (β̂JUL) and the NPML estimator of Scott and Wild
(β̂NPML).

Here are the simulation results. In the tables, “bias” was calculated by
taking the average of β̂ − β from replicates, “SD” denotes the sample standard
deviation of the estimators, “ASE” denotes the average of the estimated standard
errors of the estimators. We have also calculated the 95% confidence interval
coverage probabilities (CP). The standard errors for the proposed JCL estimator
were obtained from the sandwich estimator described in Section 4. The standard
errors for the weighted estimator, the validation likelihood estimator and the joint
unconditional likelihood estimator were from sandwich estimates which have also
taken into consideration the estimation of the nuisance parameters. Bootstrap
resampling 50 times was used to estimate the standard errors of the NPML
estimates.
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Table 1. Simulation study with univariate covariate.

Estimates Relative efficiency

β̂CC β̂IPW β̂V L β̂JCL β̂JUL β̂NPML RE1 RE2 RE3
n = 200
β0 Bias −0.643 −0.013 −0.016 −0.007 −0.007 −0.009

SD 0.315 0.170 0.196 0.167 0.168 0.167 1.04 1.38 1.00
ASE 0.309 0.166 0.200 0.165 0.164 0.219
CP 0.424 0.953 0.962 0.953 0.951 0.964

β1 Bias 0.233 0.045 0.038 0.024 0.061 0.029
SD 0.548 0.393 0.404 0.326 0.341 0.329 1.45 1.54 1.02
ASE 0.534 0.351 0.406 0.320 0.320 0.413
CP 0.944 0.921 0.960 0.947 0.939 0.968

n = 500
β0 Bias −0.633 −0.007 −0.010 −0.005 −0.004 −0.005

SD 0.194 0.106 0.118 0.103 0.104 0.103 1.06 1.31 1.00
ASE 0.192 0.105 0.119 0.103 0.103 0.105
CP 0.061 0.954 0.961 0.957 0.957 0.947

β1 Bias 0.205 0.013 0.019 0.009 0.043 0.008
SD 0.345 0.245 0.251 0.199 0.208 0.198 1.52 1.59 0.99
ASE 0.334 0.230 0.244 0.200 0.199 0.205
CP 0.920 0.930 0.947 0.955 0.946 0.952

NOTE: The logit of pr(Y |X) had parameters β = (β0, β1)
t = (−ln(2), ln(3))t and the selection

probability for the validation set was {1 + exp(0.5 + Y − W )}−1. Covariate X had a uniform

[-1,1] distribution. There were 2000 replicates with an average of 58% missing X. Relative

efficiencies were defined by RE1 = var(β̂IPW ’s)/var(β̂JCL’s), RE2 = var(β̂V L’s)/var(β̂JCL’s),

RE3 = var(β̂NPML’s)/var(β̂JCL’s). ASE is the average of the estimated standard errors, CP is

the coverage probability of the 95% confidence intervals.

In Table 1 we consider a univariate covariate, with the logit of pr(Y |X)
linear in parameters β = (−ln(2), ln(3)). We generated Xi, i = 1, . . . , n from
a uniform [-1,1] distribution. The surrogate variable W was then generated
by I[X > 0], where I[·] is an indicator function. The selection probability of
the validation sample follows pr(δ = 1|Y,W ) = {1 + exp(0.5 + Y − W )}−1.
On average, there were 58% missing X. Total sample sizes were n = 200 and
n = 500, respectively. Relative efficiency comparisons were included. The relative
efficiencies were defined by RE1 = var(β̂IPW ’s) / var(β̂JCL’s), RE2 = var(β̂V L’s)
/ var(β̂JCL’s), and RE3 = var(β̂NPML’s) / var(β̂JCL’s). We do not calculate the
efficiency comparison to the joint unconditional likelihood estimator because it
may be inconsistent when the distribution of X|(Y, V ) depends on β; this will be
demonstrated later. It is seen that the proposed estimator is more efficient than
the weighted estimator and the validation likelihood estimator for the estimation
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of β1. For the estimation of β0, the proposed estimator was more efficient than
the validation likelihood estimator, and was about as efficient as the weighted
estimator. The complete-case analysis had serious bias because the selection
of the validation sample depends on the binary outcome variables. The JCL
estimator is in general slightly more efficient than the JUL estimator. In this
setup, the JCL estimator performs slightly better than the NPML estimator
when n = 200, and is almost as efficient when n = 500.

Table 2. Simulation study when distribution of X |V depends on β.

Estimates Relative efficiency

β̂CC β̂IPW β̂V L β̂JCL β̂JUL β̂NPML RE1 RE2 RE3
n = 200
β0 Bias −0.428 −0.035 −0.032 −0.001 −0.126 −0.032

SD 0.294 0.255 0.258 0.245 0.321 0.248 1.08 1.11 1.03
ASE 0.273 0.238 0.243 0.234 0.251 0.265
CP 0.703 0.938 0.940 0.940 0.904 0.954

β1 Bias 0.084 0.041 0.036 0.012 0.238 0.038
SD 0.238 0.243 0.232 0.222 0.312 0.229 1.19 1.09 1.06
ASE 0.232 0.229 0.225 0.218 0.263 0.229
CP 0.954 0.942 0.949 0.947 0.892 0.954

n = 500
β0 Bias −0.404 −0.011 −0.010 0.003 −0.145 −0.010

SD 0.176 0.153 0.155 0.152 0.213 0.150 1.02 1.05 0.98
ASE 0.173 0.148 0.150 0.149 0.164 0.157
CP 0.357 0.940 0.940 0.942 0.839 0.960

β1 Bias 0.060 0.015 0.014 0.003 0.254 0.014
SD 0.145 0.147 0.141 0.139 0.209 0.139 1.12 1.04 1.01
ASE 0.144 0.143 0.140 0.138 0.171 0.140
CP 0.948 0.944 0.946 0.949 0.712 0.950

NOTE: The logit of pr(Y |X) had parameters β = (β0, β1)
t = (−ln(2), ln(3))t and the selection

probability for the validation set was {1 + exp(−0.5+Y −W )}−1. Covariate Xi|(Wi, Yi =0) was

normal with mean −0.5+Wi and variance 0.25; Xi|(Wi, Yi = 1) was normal with mean −0.5

+Wi+0.5β1 and variance 0.25; There were 2000 replicates with an average of 38% missing X.

In Table 2, surrogates were first generated randomly such that pr(Wi = 1)
= 0.5. We assumed that X|(W,Y = 0) was normally distributed with mean
-0.5+W, variance 0.25. Then outcomes Y ’s were generated using (5). Finally
covariates X’s were generated by noting that X|(W,Y ) has mean −0.5 + W +
0.5β1Y and variance 0.25. This setup may be more practical for case-control
studies in which data are from retrospective sampling. See also Wang, Wang and
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Carroll (1997) for details about the relationship between Y |(X,V ) and X|(Y, V ).
As discussed in Section 5.1, under this situation the joint unconditional likelihood
estimator may be inconsistent. It is then seen that β̂JUL has a bias problem. The
comparisons between other estimators are similar but in this case the efficiency
gain over the weighted estimator and the validation likelihood estimator is not
as significant as that in Table 1. We note that from Table 1, β̂IPW was generally
better than β̂V L, but this is not the case for Table 2.

Table 3. Simulation study with bivariate covariate.

Estimates Relative efficiency

β̂CC β̂IPW β̂V L β̂JCL β̂JUL β̂NPML RE1 RE2 RE3

n = 300
β0 Bias −0.597 −0.007 −0.015 0.001 0.002 −0.004

SD 0.307 0.193 0.199 0.191 0.192 0.192 1.02 1.09 1.01
ASE 0.310 0.188 0.201 0.187 0.187 0.200
CP 0.511 0.942 0.955 0.944 0.944 0.945

β1 Bias 0.178 0.065 0.070 0.033 0.067 0.038
SD 0.437 0.321 0.309 0.254 0.264 0.256 1.60 1.48 1.02
ASE 0.408 0.286 0.299 0.259 0.259 0.279
CP 0.944 0.941 0.955 0.975 0.961 0.983

β2 Bias −0.067 0.009 0.013 0.009 0.015 0.008
SD 0.474 0.276 0.280 0.275 0.277 0.272 1.01 1.04 0.98
ASE 0.443 0.264 0.278 0.264 0.266 0.275
CP 0.932 0.931 0.953 0.944 0.938 0.943

n = 600
β0 Bias −0.580 −0.009 −0.009 −0.007 −0.007 −0.008

SD 0.219 0.134 0.138 0.133 0.134 0.133 1.02 1.08 1.00
ASE 0.213 0.132 0.137 0.131 0.131 0.130
CP 0.206 0.953 0.953 0.949 0.948 0.948

β1 Bias 0.106 0.008 0.004 −0.002 0.037 0.000
SD 0.287 0.212 0.205 0.180 0.188 0.179 1.39 1.30 0.99
ASE 0.281 0.203 0.204 0.180 0.181 0.179
CP 0.947 0.948 0.962 0.963 0.951 0.950

β2 Bias −0.105 0.005 0.003 0.006 0.012 0.004
SD 0.322 0.185 0.190 0.186 0.187 0.184 0.99 1.04 0.98
ASE 0.306 0.184 0.190 0.185 0.186 0.184
CP 0.926 0.952 0.944 0.945 0.945 0.942

NOTE: The logit of pr(Y |X, Z) had parameters β = (β0, β1, β2)
t = (−ln(2), ln(3), ln(3))t and

the selection probability for the validation set was {1 + exp(Y + 0.5Z − 0.5W )}−1. There were

1000 replicates with an average of 61% missing X.
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Figure 1. Relative Efficiency Comparisons with Various Correlation Coeffi-
cients of (X, W ), n = 500.

In Table 1, the correlation coefficient between X and W , denoted by cor(X,
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W ), was about 0.87. We also investigated the efficiency comparison under various
cor(X,W ) values. The top portion of Figure 1 presents the result when n = 500.
It was seen that when W provides good information, our proposed estimator is
preferred to the weighted estimator and the validation likelihood estimator; while
almost as good as the NPML estimator. When cor(X,W ) was small, including
0 as an extreme case, the proposed estimator was still slightly better. However,
analytical efficiency comparison with other estimators does not appear to have
a simple form. The bottom portion of Figure 1 considers the setup of Table
2 in which the conditional distribution of X|(W,Y = 1) depends on β1. The
distribution of X|(W,Y ) has mean −0.5+γW +0.5β1, variance 0.25. We selected
various γ values so that cov(X,W ) ranged from 0.03 to 0.82. Interestingly, under
this setup, the JCL estimator may not be as efficient as the validation likelihood
estimator if cov(X,W ) is as large as 0.82. Nevertheless, the proposed estimator,
although inferior under some situations, performs well in general. The proposed
estimator may be slightly better than the NPML estimator under some situations
when n = 500.

Table 3 considers the case with bivariate covariates, and the logit of pr(Y |X,
Z) is linear with parameters β = (ln(2), ln(3), ln(3)). Covariates Xi was gen-
erated from a uniform [-1,1] distribution and binary Zi was independent of Xi

such that pr(Zi = 1) = pr(Zi = 0) = 0.5. Surrogate variables Wi were gen-
erated by I[Xi > 0]. The selection probability of the validation sample follows
pr(δ = 1|Y,W,Z) = {1 + exp(Y + 0.5Z − 0.5W )}−1. On average, there were
61% missing X. Total sample sizes were n = 300 and n = 600, respectively.
Similarly, for the estimation of β1, the proposed estimator is more efficient than
the weighted estimator and the validation likelihood estimator; but slightly less
efficient than the NPML estimator. Overall, it performs quite well.

In summary, in the standard (prospective) logistic regression setup when the
distribution of covariates does not depend on β, the proposed JCL estimator
is more efficient than the weighted estimator and the validation likelihood es-
timator for the estimation of the parameter for the missing covariate X. The
efficiency gain is less in the retrospective case-control data setup, but in general
the proposed estimator still performs well. Numerical comparisons with the ef-
ficient NPML estimator show that under various situations the proposed JCL
estimator is quite efficient for moderate sample sizes.

7. Example

We consider a case-control study of bladder cancer conducted at the Fred
Hutchinson Cancer Research Center. This population based case-control study



JOINT CONDITIONAL LIKELIHOOD ESTIMATOR 569

was designed to evaluate the association between bladder cancer and some nu-
trient intakes (Bruemmer, White, Vaughan and Cheney (1996)). In this study,
eligible subjects were residents of 3 counties of western Washington state who
were diagnosed between January 1987 and June 1990 with invasive or noninva-
sive bladder cancer. In this section, we consider 498 current and past smokers
to demonstrate the methodology. The response variable is bladder cancer his-
tory (Y ). There were 215 cases. We are interested in the covariates smoking
packet year (X) and obesity indicator (Z). Approximately (US NIH Consen-
sus Development Conference Statement, 1995), we define the obesity indicator
as 1 if a subject’s body mass index (weight/height2) is above the 85 percentile
(29.6 Kg/m2) of the study samples. The smoking packet year of a participant
is defined as the average number of cigarette packets smoked per day multiplied
by the years one has been smoking. In this study, smoking packet year is not
available for some study subjects since they did not respond to the question of
the number of cigarettes smoked per day. A surrogate for X is W = 1 if the
smoking year is larger than the median year (32), 0 otherwise. The majority of
subjects provided the years they had smoked. There were 178 subjects in the
validation set.

We first examine the missingness mechanism. We ran a logistic regression
with outcome δi, i = 1, . . . , n = 498, covariates (Y,Z,W,ZW ). The parameter
estimates for these 4 factors were (1.754, 0.175, 2.027, -0.609), with s.e.s (0.229,
0.449, 0.255, 0.623). It is seen that the missingness mechanism depends signifi-
cantly on Y and W .

Table 4. Analysis of bladder cancer study data.

β̂CC β̂IPW β̂V L β̂JCL β̂JUL β̂NPML

β0 0.486 −0.686 −0.598 −0.504 −0.537 −0.651
(s.e.) (0.221) (0.120) (0.187) (0.112) (0.114) (0.137)

β1 0.272 0.848 0.570 0.457 0.516 0.612
(s.e.) (0.205) (0.201) (0.227) (0.144) (0.136) (0.161)

β2 0.694 0.665 0.592 0.650 0.658 0.710
(s.e.) (0.546) (0.298) (0.351) (0.280) (0.282) (0.391)

Note: Parameters β1 and β2 are the coefficients for smoking packet year and
obesity indicator, respectively.

Table 4 demonstrates the results from various methods. Recall that the miss-
ingness mechanism depends significantly on (Y,W ) and hence the CC analysis
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may have a bias problem, along with lack of efficiency. Interestingly, except for
the CC analysis, the other 5 estimators show significant effects of smoking packet
year and obesity on bladder cancer incidence (the obesity effect from the valida-
tion likelihood is on the boundary). The difference between the CC analysis and
the other methods is primarily because the missingness depends on the outcome
variable Y . Consistent with most of the simulation results, the proposed JCL
estimator is significantly more efficient than the validation likelihood and the
weighted estimators for the estimation of the effect of smoking packet year. As
a final remark, we note that the smoking effect based on all the methods would
have been stronger if we had included non-smokers in the analysis.

8. Discussion

The paper provides a method for logistic regression when complete covariate
information is known only for part of the study cohort. The idea is to com-
bine the conditional likelihood of Y given (X,Z,W, δ = 1) and that of Y given
(Z,W, δ = 0). The main result was presented for discrete (Z,W ). Extension
to continuous (Z,W ) can be done by an approach similar to that of Wang and
Wang (1997). However, the linearization techniques require more complicated
calculations since the nuisance components involve both the selection probabili-
ties and the estimation of the relative risk E(exp(βt

1X)|Yi = 0, Vi). An important
feature of the proposed method is that distributional assumptions with respect
to covariates are unnecessary.

The idea of the approach is based on conditional likelihood, by which
we meant conditional on δ. This is slightly different from the parametric
maximum likelihood estimator based on an additional model assumption.
By the result of Satten and Kupper (1993), one may consider the likelihood of
L(Y |Z,W )Lδ(X|Y,Z,W ), which is equivalent to Lδ(Y,X|Z,W )L1−δ(Y |Z,W ).
Note that for continuous X, one may model L(X|Y,Z,W ) from the validation
set since δ and X are conditionally independent given (Y,Z,W ). Certainly the
advantage of the parametric maximum likelihood estimator is efficiency, at least
for large sample sizes, but estimation of β may be sensitive to this additional
modeling of X|(Y,Z,W ).
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Appendix. Technical Proofs

Proof of Lemma 1. For any y = 0, 1 and v in the support of V ,

π̂(y, v) − π(y, v) =
∑n

j=1{δj − π(y, v)}I[Yj = y, Vj = v]∑n
j=1 I[Yj = y, Vj = v]

=
n−1 ∑n

j=1{δj − π(y, v)}I[Yj = y, Vj = v]
pr(Y = y, V = v)

+ op(n−1/2),

where the op(n−1/2) term is uniform in (y, v) since the support of (Y, V ) is finite.
Note that if â → a and b̂ → b, then ln(â/b̂) = ln(a/b) + (â − a)/a − (b̂ − b)/b +
o(â − a) + o(b̂ − b). By the definition of U1n(β) and Û1n(β), Û1n(β) − U1n(β) =
n−1/2 ∑n

i=1 δiXiH
(1)
+ (Xi, Vi) ([{π̂(0, Vi)−π(0, Vi)}/π(0, Vi)]−[{π̂(1, Vi)−π(1, Vi)}/

π(1, Vi)]) + op(1) ≡ An − Bn + op(1). Now,

An = n−3/2
n∑

i=1

δiXiH
(1)
+ (Xi, Vi)

∑n
j=1{δj − π(0, Vi)}I[Yj = 0, Vj = Vi]

π(0, Vi)pr(Yi = 0, Vi)
+ op(1)

= n−1/2
n∑

j=1

I[Yj = 0]n−1
n∑

i=1

δiXiH
(1)
+ (Xi, Vi){δj − π(0, Vi)}I[Vi = Vj]

π(0, Vi)pr(Yi = 0, Vi)
+op(1)

= n−1/2
n∑

j=1

I[Yj = 0]{δj − π(0, Vj)}{π(0, Vj)pr(Yj = 0|Vj)}−1

×E{π(Y, V )XH
(1)
+ (X,V )|V = Vj} + op(1);

Bn = n−3/2
n∑

i=1

δiXiH
(1)
+ (Xi, Vi)

∑n
j=1{δj − π(1, Vi)}I[Yj = 1, Vj = Vi]

π(1, Vi)pr(Yi = 1, Vi)
+op(1)

= n−1/2
n∑

j=1

I[Yj = 1]{δj − π(1, Vj)}{π(1, Vj)pr(Yj = 1|Vj)}−1

×E{π(Y, V )XH
(1)
+ (X,V )|V = Vj} + op(1).

Therefore Û1n(β)−U1n(β) = n− 1
2
∑n

i=1(−1)Yi{δi−π(Yi, Vi)}{π(Yi, Vi)pr(Yi|Vi)}−1

×E{π(Y, V )XH
(1)
+ (X,V )|V =Vi}+op(1). This completes the proof of Lemma 1.

Proof of Lemma 2. For any â, b̂, we note that âb̂ = ab + a(b̂ − b) + b(â − a) +
(â − a)(b̂ − b). Thus

Û2n(β) = n−1/2
n∑

i=1

(1 − δi)Ti{Yi − H−(Vi)} + Q1n + Q2n + Q3n, (9)

where Q1n = n−1/2 ∑n
i=1(1 − δi)Ti{H−(Vi) − Ĥ−(Vi)}, Q2n = n−1/2 ∑n

i=1(1 −
δi)(T̂i −Ti){Yi −H−(Vi)}, Q3n = n−1/2 ∑n

i=1(1− δi)(T̂i −Ti){H−(Vi)− Ĥ−(Vi)}.
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Again, if â → a and b̂ → b, then ln(â/b̂) = ln(a/b) + (â − a)/a − (b̂ − b)/b +
o(â − a) + o(b̂ − b). First,

Q1n = n−1/2
n∑

i=1

(1 − δi)TiH
(1)
− (Vi)

[
{π(1, Vi)}−1{π̂(1, Vi) − π(1, Vi)}

−{π(0, Vi)}−1{π̂(0, Vi) − π(0, Vi)} − {r(Vi)}−1{r̂(Vi) − r(Vi)}
]

+ op(1)

≡ D1n − D2n − D3n + op(1).

By direct calculation,

D1n = n− 3
2

n∑
i=1

(1 − δi)TiH
(1)
− (Vi)

∑n
j=1{δj − π(1, Vi)}I[Yj = 1, Vj = Vi]

π(1, Vi)pr(Yi = 1, Vi)
+ op(1)

= n− 1
2

n∑
j=1

I[Yj = 1]n−1
n∑

i=1

(1 − δi)TiH
(1)
− (Vi)

{δj−π(1, Vi)}I[Vi =Vj ]
π(1, Vi)pr(Yi = 1, Vi)

+op(1)

= n− 1
2

n∑
j=1

I[Yj = 1]{δj − π(1, Vj)}{π(1, Vj)pr(Yj = 1|Vj)}−1TjH
(1)
− (Vj)

E[π(Y, V )|V = Vj ] + op(1);

D2n = n− 3
2

n∑
i=1

(1 − δi)TiH
(1)
− (Vi)

∑n
j=1{δj − π(0, Vi)}I[Yj = 0, Vj = Vi]

π(0, Vi)pr(Yi = 0, Vi)
+ op(1)

= n− 1
2

n∑
j=1

I[Yj = 0]{δj − π(0, Vj)}{π(0, Vj)pr(Yj = 0|Vj)}−1TjH
(1)
− (Vj)

E[π(Y, V )|V = Vj ] + op(1);

D3n = n−3/2
n∑

i=1

(1 − δi)TiH
(1)
− (Vi){r(Vi)}−1

×
{∑n

j=1 δje
βt
1XjI[Yj = 0, Vj = Vi]

pr(δi = 1, Yi = 0, Vi)
− r(Vi)

}
+ op(1)

= n−1/2
n∑

j=1

n−1
n∑

i=1

(1 − δi)TiH
(1)
− (Vi){r(Vi)}−1

×{eβt
1Xj − r(Vi)}I[Vi = Vj ]I[Yj = 0, δj = 1]

pr(δi = 1, Yi = 0, Vi)
+ op(1)

= n−1/2
n∑

j=1

I[Yj = 0, δj = 1]{eβt
1Xj − r(Vj)}{r(Vj)}−1TjH

(1)
− (Vj)

× pr(δ = 0, Vj)
pr(δ = 1, Y = 0, Vj)

+ op(1).

We have thus shown Q1n = n−1/2 ∑n
i=1 Em(Yi,Xi, Vi)+op(1), where Em(Yi,Xi, Vi)



JOINT CONDITIONAL LIKELIHOOD ESTIMATOR 573

was defined in Lemma 2.
Now consider Q2n. Note that

Q2n = n−1/2
n∑

i=1

(1 − δi){Yi − H−(Vi)}

 0
R̂(1)(Vi) − R(1)(Vi)

0

 .

Because Vi has a finite support, and hence R̂(1)(Vi)−R(1)(Vi) = op(1) uniformly
on Vi. Observe that n−1/2 ∑n

i=1(1− δi){Yi −H−(Vi)} = Op(1). Therefore, Q2n =
op(1).

Similarly, it can be shown that Q3n = op(1). By (9), the proof of Lemma 2
is thus complete.
Proof of Theorem 1. Let dim(β1) = k1, dim(β2) = k2 and

Gn(β) = n−1/2 ∂

∂β
Ûn(β)

= n−1
n∑

i=1

[
δiXiX t

i H
(1)
+ (Xi, Vi) + (1 − δi)TiT t

i H
(1)
− (Vi)

−(1 − δi)

 01×1 01×k1 01×k2

0k1×1 R̂
(2)
k1×k1

(Vi) 0k1×k2

0k2×1 0k2×k1 0k2×k2

 {Yi − H−(Vi)}
]
,

R̂(2)(Vi) =

n∑
j=1

δjXjX
t
je

βt
1XjI[Yj =0, Vj =Vi]

n∑
j=1

δje
βt
1XjI[Yj = 0, Vj = Vi]

−



n∑
j=1

δjXje
βt
1XjI[Yj =0, Vj =Vi]

n∑
j=1

δje
βt
1XjI[Yj =0, Vj =Vi]



⊗2

.

Then it can be shown that Gn(β) → G(β) in probability, where G(β) was defined
in Theorem 1. We note that n−1/2{Ûn(β̂) − Ûn(β)} = Gn(β�)(β̂ − β), for some
β� between β̂ and β. It is easy to see that n−1/2{Ûn(β)} → 0 in probability
since E{Sc(Y,X, V ) + Ec(Y, V ) + Sm(Y, V ) + Em(Y,X, V )} = 0 when evaluated
at the true parameter. By Condition (A5), the convergence of Gn(β) to G(β)
is uniform in a neighborhood of the true β. By the Inverse Function Theorem
as in Foutz (1977), along with Condition (A4), there exists a unique consistent
solution to the estimating equation Ûn(β) = 0 in a neighborhood of the true β.

We now derive the asymptotic distribution of n1/2(β̂ − β). By a Taylor
expansion of Ûn(β̂), it is easily seen that 0 = Ûn(β̂) = Ûn(β)−Gn(β)n1/2(β̂−β)+
op(1). By the consistency of Gn(β) to G(β), we have n1/2(β̂−β) = G−1(β)Ûn(β)+
op(1). By Lemmas 1 and 2, Cov{Ûn(β)} = M(β) defined in Theorem 1, since
Sc(Yi,Xi, Vi) + Ec(Yi, Vi) + Sm(Yi, Vi) + Em(Yi,Xi, Vi) are independent variables
for i = 1, . . . , n. By the Taylor expansion above, the proof of the asymptotic
covariance matrix is thus complete.
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