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Abstract: This paper considers prediction intervals for a future observation in the

context of mixed linear models. For such prediction problems, it is reasonable

to assume that the future observation is independent of the current ones. Our

approach is distribution-free, that is, we do not assume that the distributions of

the random effects and errors are normal or specified up to a finite number of

parameters. We show that for standard mixed linear models, a simple method

based on the (regression) residuals works well for constructing prediction intervals.

For nonstandard mixed linear models, however, a more complicated method may

have to be used, based on estimation of the distribution of the random effects.

Simulation studies compare prediction intervals based on the ordinary least squares

estimators and those based on the empirical best linear unbiased estimators. We

apply the method to a data set regarding lead contamination of soil.
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1. Introduction

A prediction interval for a single future observation is an interval that will,
with a specified coverage probability, contain a future observation from a popu-
lation. In model-based statistical inference, it is assumed that the future obser-
vation has a certain distribution. Sometimes, the distribution is specified up to
a finite number of unknown parameters, e.g., those of the normal distribution.
Then, a prediction interval may be obtained, if the parameters are adequately
estimated, and the uncertainty in the parameter estimation suitably assessed.
Clearly, such a procedure is dependent on the underlying distribution in that, if
the distributional assumption fails, the prediction interval may be seriously off,
i.e., it either is wider than necessary, or does not have the claimed coverage prob-
ability. An alternative to the parametric method is a distribution-free approach,
in which we do not assume the form of the distribution is known.

The problem of prediction intervals is, of course, an old one. One of the
earliest work in this field is Baker (1935). Patel (1989) provides a review of the
literature on prediction intervals when the future observation is independent of
the observed sample, including results based on parametric distributions and on
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distribution-free methods. Hahn and Meeker (1991) review three types of statis-
tical intervals that are used most frequently in practice: the confidence interval,
the prediction interval, and the tolerance interval. For a more recent overview,
and developments on nonparametric prediction intervals, see Zhou (1997). Al-
though many results on prediction intervals are for the i.i.d. case, the problem is
also well-studied in some non-i.i.d. cases, such as linear regression.

In this paper, we are interested in prediction intervals in mixed linear models.
Let y be a N × 1 vector of observations. The model is

y = Xβ + Z1α1 + · · · + Zsαs + ε , (1)

where X is an N × p known matrix of full rank p (p a fixed integer), β is a p× 1
vector of unknown constants (the fixed effects), Zr is an N × mr known matrix,
αr is an mr×1 vector of i.i.d. random variables with mean 0 and unknown distri-
bution Fr, r = 1, · · · , s (the random effects), ε is an N × 1 vector of i.i.d. random
variables with mean 0 and unknown distribution F0 (the errors), and α1, . . . , αs, ε

are independent. We say (1) is standard if each Zr consists only of 0’s and 1’s,
and there is exactly one 1 in each row and at least one 1 in each column. Thus
standard mixed linear model simply has it that the random effects appear in the
model in the form of an analysis of variance, but there is no restriction on the
fixed effects (see examples in Section 2). For such a reason, a standard mixed
linear model is also known as a mixed model of the analysis of variance (e.g.,
Miller (1977)). Note that it is not assumed that the random effects and errors
are normally distributed. However, it is crucial to assume that the Fr, 0 ≤ r ≤ s,
have finite variances.

1.1. Two types of prediction problems

In linear regression, observations are assumed to be independent. Therefore,
it is a natural assumption that any future observation is independent of the
current ones. In mixed linear models, however, this is not necessarily true and
one distinguishes two types of prediction problems.

The first type of problem arises when one wishes to predict a future obser-
vation from a cluster or unit not previously observed, and it is reasonable to
assume that it is independent of the current ones. The second type of problem
occurs when one wishes to predict another observation from a cluster or unit
from which samples have already been collected, and it is unrealistic to make
such an assumption here. We offer some examples.

Example 1. In longitudinal studies, one may be interested in prediction, based
on repeated measurements from the observed individuals, of a future observation
from an individual not previously observed. It is of less interest to predict another
observation from an observed individual, since longitudinal studies often aim at
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applications to a larger population (e.g., drugs going to the market after clinical
trials).

Example 2. In sample surveys, responses may be collected in two steps: in the
first step, a number of families are randomly selected; in the second step, some
family members (e.g., all family members) are interviewed for each of the selected
families. Again, one may be more interested in predicting what happens to a
family not selected, because one already knows enough about selected families
(especially when all family members in the selected families are interviewed).

Example 3. In small area estimation (e.g., Ghosh and Rao (1994)), small-area
specific effects are often treated as random effects. In such cases, one may be
interested in predicting the outcome from any small area, whether samples have
been collected from it or not. This is related to prediction of random effects. Jeske
and Harville (1988) consider prediction intervals for mixed effects, assuming that
the joint distribution of α and y − E(y) is known up to a vector of unknown
parameters. Thus, their approach is not distribution-free.

1.2. The scope of this paper

We focus on problems of the first type, and assume a future observation,
y∗, is independent of the current ones. Then E(y∗|y) = E(y∗) = xt∗β, so the
best predictor is xt∗β, if β is known. Even if β is unknown, it is still fairly easy
to obtain a prediction interval for y∗ if one is willing to make the assumption
that the distributions of the random effects and errors are known up to a vector
of parameters (e.g., variance components). To see this, consider a simple case:
yij = xt

ijβ + αi + εij, where the random effect αi and error εij are independent
such that αi ∼ N(0, σ2) and εij ∼ N(0, τ2). It follows that the distribution
of yij is N(xt

ijβ, σ2 + τ2). In mixed linear models, methods are well-developed
for estimating fixed parameters such as β, σ2, and τ2. Once the parameters are
consistently estimated, a prediction interval with asymptotic coverage probability
1−α is easy to obtain. However, it is much more difficult if one does not know the
forms of the distributions of the random effects and errors, and this is the case we
work on. In other words, our approach is distribution-free. Still to consistently
estimate the fixed effects and variance components in a mixed linear model, one
need not assume that the random effects and errors are normally distributed
(Jiang (1996, 1998)).

1.3. Outline of the main results

Our approaches are quite different for standard and non-standard mixed
linear models. For standard mixed linear models, the method is surprisingly
simple, and can be described as follows: first, one throws away the middle terms
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in (1) that involve the random effects, and pretends that it is a linear regression
model with i.i.d. errors: y = Xβ + ε. Next, one computes the least squares (LS)
estimator β̂ = (XtX)−1Xty and the residuals ε̂ = y − Xβ̂. Let â and b̂ be the
α/2 and 1 − α/2 quantiles of the residuals. Then a prediction interval for y∗
with asymptotic coverage probability 1 − α is [ŷ∗ + â, ŷ∗ + b̂], where ŷ∗ = xt∗β̂
(see the discussion in the first paragraph of Section 1.2). Note that, although the
method sounds almost the same as the residual method in linear regression, its
justification is not so obvious because, unlike linear regression, the observations
in a (standard) mixed linear model are not independent. The method may be
improved if one uses more efficient estimators, such as the empirical best linear
unbiased estimator (EBLUE, e.g., Jiang (1998)), instead of the LS estimator. For
nonstandard mixed linear models, the method of obtaining prediction intervals
involves estimation of the distributions of the random effects and errors.

The rest of the paper is organized as follows: In Section 2 we consider stan-
dard mixed linear models. Section 3 deals with the nonstandard case. Section 4
contains some simulation results. In Section 5, we apply our method to a data
set regarding lead contamination of soil. Finally, in Section 6 we have a few
concluding remarks. Proofs are given in the Appendix.

2. Standard Mixed Linear Models

In this section, we consider standard mixed linear models. Note that one
can express the mixed model (1) as

yi = xt
iβ + zt

i1α1 + · · · + zt
isαs + εi , (2)

i = 1, . . . , N , where xt
i is the ith row of X, and zt

ir the ith row of Zr, 1 ≤ r ≤ s.
If we let αr = (αr,u)1≤u≤mr , 1 ≤ r ≤ s, then, in the standard case, we have the
equivalent expression

yi = xt
iβ + α1,u(i,1) + · · · + αs,u(i,s) + εi , (3)

where u(i, r), 1 ≤ r ≤ s, are some indices such that 1 ≤ u(i, r) ≤ mr. Note
that αr,u(i,r) ∼ Fr, 1 ≤ r ≤ s, εi ∼ F0, and α1,u(i,1), . . . , αs,u(i,s), εi are indepen-
dent. Let δi = yi − xt

iβ. Then, δ1, . . . , δN are identically distributed, but not
independent. Let F be the common distribution of the δi’s.

For linear regression, which may be regarded as (2) without the terms,

ξi = zt
i1α1 + · · · + zt

isαs , (4)

Lai and Wei (1982) showed that under suitable conditions the LS estimator of β

is consistent. The result does not require normality of the data.



DISTRIBUTION-FREE PREDICTION INTERVALS 541

In mixed linear models, the following theorem shows that, under suitable
conditions, the LS estimator

β̂OLS = (XtX)−1Xty (5)

is still consistent, where OLS stands for ordinary least squares. The result does
not require normality, nor the standardness of the mixed model. Let λmax
(λmin) represent the largest (smallest) eigenvalue.

Theorem 1. For the mixed model (1) (not necessarily standard), if the variances
of the random effects and errors are finite, and λmin(XtX) → ∞,

λmax(Zt
rZr)

λmin(XtX)
−→ 0 , 1 ≤ r ≤ s , (6)

then β̂OLS
L2−→ β, hence β̂OLS

P−→ β.

The proof is given in the Appendix. To see what (6) means, first note that
for standard mixed linear models, λmax(Zt

rZr) = max1≤u≤mr nru, where nru is
the number of 1’s in the uth column of Zr, 1 ≤ r ≤ s, or equivalently, the number
of times αr,u appears in the model. Thus, if the number of times each individual
random effect appears in the model is bounded, which implicitly assumes that mr

increases with N (which is typical in situations where mixed effects models are
used, e.g., in small-area estimation, Ghosh and Rao (1994)), then condition (6)
reduces to λmin(XtX) → ∞. (See Example 4 below.) Note that λmin(XtX) →
∞ is the standard requirement for consistency of LS estimator in linear regression
(Lai and Wei (1982)).

Alternatively, Jiang (1998) considered the EBLUE of β,

β̂EBLUE = (XtV̂ −1X)−1XtV̂ −1y , (7)

where V = Var(y) = σ2
0I +

∑s
r=1 σ2

rZrZ
t
r (I represents the identity matrix), σ2

0

is the variance of the components of ε, σ2
r is the variance of the components

of αr, 1 ≤ r ≤ s; and V̂ is V with the variance components σ2
r , 0 ≤ r ≤ s,

replaced by their estimators. He showed that if the restricted maximum likelihood
(REML) estimators σ̂2

r , 0 ≤ r ≤ s, are used, β̂EBLUE is consistent, and β̂EBLUE

and σ̂2
r , 0 ≤ r ≤ s, are jointly asymptotically normal. Again, the result does

not require normality or the standardness of the mixed model, and the REML
estimators in non-normal cases are defined as M-estimators, i.e., they save the
REML equations derived under normality. Similar results hold when the REML
estimators are replaced by the maximum likelihood (ML) estimators. See Jiang
(1996) for asymptotic properties of the REML and ML estimators in the non-
normal cases.
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Let y∗ be a future observation which we wish to predict. Suppose that y∗
satisfies a standard mixed linear model with the same structure as (2), but with
possibly different covariates. Thus, by (3), y∗ can be expressed as

y∗ = xt
∗β + α∗1 + · · · + α∗s + ε∗ ,

where x∗ is a known vector of covariates (not necessarily present with the data),
α∗r’s are random effects, and ε∗ is an error, such that α∗r ∼ Fr, 1 ≤ r ≤ s,
ε∗ ∼ F0, and α∗1, . . . , α∗s, ε∗ are independent. According to the discussion in
Section 1.1, we assume that the future observations are independent of the current
ones, thus y∗ is independent of y = (yj)1≤j≤N . It follows that the best (point)
predictor of y∗, when β is known, is E(y∗|y) = E(y∗) = xt∗β. Because β is
unknown, it is naturally replaced by β̂, resulting in the empirical best predictor:

ŷ∗ = xt
∗β̂ . (8)

Let δ̂i = yi − xt
iβ̂. Define

F̂ (x) =
#{1 ≤ i ≤ N : δ̂i ≤ x}

N
=

1
N

N∑
i=1

1(δ̂i≤x) . (9)

Note that, although (9) resembles the empirical distribution, it is not one in the
classic sense because the δ̂i’s are not independent (the yi’s are dependent, and β̂

depends on all the data). Let â < b̂ be any numbers satisfying

F̂ (b̂) − F̂ (â) = 1 − α . (10)

Then, a prediction interval for y∗ with asymptotic coverage probability 1 − α is
given by

[ŷ∗ + â, ŷ∗ + b̂] . (11)

Note 1. A “typical” choice has

F̂ (â) =
α

2
, F̂ (b̂) = 1 − α

2
. (12)

Another choice would be to select â and b̂ to minimize b̂ − â, the length of the
prediction interval. Usually, â, b̂ are selected such that the former is negative
and the latter positive, so that ŷ∗ is contained in the interval.

Note 2. If one considers linear regression as a special case of the mixed linear
model, in which the middle terms ξi (see (4)) disappear, then δ̂i is the same as ε̂i,
the residual, if β̂ is the LS estimator. In this case, F̂ is the empirical distribution
of the residuals, and the prediction interval (11) corresponds to that obtained
by the bootstrap method (Efron (1979)). The difference is that our prediction
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interval (11) is obtained in closed form rather than by a Monte Carlo method.
For more discussion on bootstrap prediction intervals, see Shao and Tu (1995),
§7.3.

Although (11) is defined as a prediction interval, one has to demonstrate
that its asymptotic coverage probability is, indeed, 1 − α. This is shown by
the following theorem. Let zi = (zt

i1 · · · zt
is)

t, and SN = {(i, j) : 1 ≤ i, j ≤
N, zt

izj > 0}. Note that SN is the set of all pairs (i, j) such that zir = zjr for
some 1 ≤ r ≤ s. Let |S| represent the cardinality of a set S.

Theorem 2. Suppose that (i) the mixed model is standard; (ii) F is continuous;
(iii) |xi|, 1 ≤ i ≤ N , are bounded; and (iv) |SN |/N2 → 0 as N → ∞. Then, for
any consistent estimator β̂,

P (ŷ∗ + â ≤ y∗ ≤ ŷ∗ + b̂) −→ 1 − α , as N → ∞ . (13)

The proof is given in the Appendix.
Note that F is continuous if one of the distributions F0, F1, . . . , Fs is (this

follows from the convolution formula, e.g., Billingsley (1986), page 272).
We use examples to illustrate condition (iv) of Theorem 2.

Example 4. Consider the mixed linear model yij = xt
ijβ +αi + εij, i = 1, . . . ,m,

j = 1, . . . , n, where the αi’s are i.i.d. random effects with mean 0 and distribution
F1, εij ’s are i.i.d. errors with mean 0 and distribution F0, and αi’s and εij’s are
independent. It is clear that the model is standard with Z1 = Im ⊗ 1n, where
Im and 1n represent the m-dimensional identity matrix and the n-dimensional
vector of 1’s, respectively (⊗ means Kronecker product). Note that here the
index i is replaced by the multiple index (i, j), and N = mn. It follows that
SN = {((i, j), (i, j′)) : 1 ≤ i ≤ m, 1 ≤ j, j′ ≤ n}. Thus, |SN |/N2 = 1/m → 0 if
and only if m → ∞. Note that the result holds regardless of n. In particular,
it holds when n = 1. It is interesting to note that in the latter case F0 and F1

are not identifiable, but one could still construct a prediction interval with an
asymptotically correct coverage probability.

Example 5. Consider the mixed linear model yij = xt
ijβ + ui + vj + eij , i =

1, . . . ,m, j = 1, . . . , n, where the ui’s are i.i.d. random effects with mean 0 and
distribution F1, vj’s are i.i.d. random effects with mean 0 and distribution F2, eij ’s
are i.i.d. errors with mean 0 and distribution F0, and u, v, and e are independent.
Again, this is a standard mixed model with Z1 = Im ⊗ 1n and Z2 = 1m ⊗ In.
Furthermore, SN = {((i, j), (i′ , j′)) : 1 ≤ i, i′ ≤ m, 1 ≤ j, j′ ≤ n, i = i′ or j = j′}.
Thus, |SN |/N2 ≤ (mn2+m2n)/(mn)2 = 1/m+1/n → 0 if and only if m,n → ∞.

The finite-sample performance of the prediction intervals will be investigated
in Section 4. In particular, comparison between the prediction interval based on
β̂OLS and that based on β̂EBLUE will be considered.
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3. Nonstandard Cases

Although most mixed linear models used in practice are standard, nonstan-
dard mixed models are also used. In this section, we consider how to construct
prediction intervals in such cases.

First, the method developed in the previous section may be applied to some
of the nonstandard cases. To illustrate this, consider the following example.

Example 6. Suppose that the data is divided into two parts. For the first part,
we have yij = xt

ijβ + αi + εij , i = 1, . . . ,m, j = 1, . . . , ni, where α1, . . . , αm

are i.i.d. random effects with mean 0 and distribution F1; εij ’s are i.i.d. errors
with mean 0 and distribution F0, and the α’s and ε’s are independent. For the
second part of the data, we have yk = xt

kβ + εk, k = N + 1, . . . , N + K, where
N =

∑m
i=1 ni, and the εk’s are i.i.d. errors with mean 0 and distribution F0. Note

that the random effects only appear in the first part of the data (and hence there
is no need to use a double index for the second part).

For the first part, let the distribution of δij = yij − xt
ijβ be F (= F0 ∗ F1).

For the second part, let δk = yk −xt
kβ. If β were known, the δij ’s (δk’s) would be

sufficient statistics for F (F0). Therefore it suffices to consider an estimator of
F (F0) based on the δij ’s (δk’s). Note that the prediction interval for any future
observation is determined either by F or by F0, depending on which part the
observation corresponds to. Now, since β is unknown, it is customary to replace
it by β̂. Thus, a prediction interval for y∗, a future observation corresponding to
the first part, is

[ŷ∗ + â, ŷ∗ + b̂] , (14)

where ŷ∗ = xt∗β̂, â, b̂ are determined by (10) with

F̂ (x) =
1
N

#{(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ ni, δ̂ij ≤ x} (15)

and δ̂ij = yij − xt
ijβ̂. Similarly, a prediction interval for y∗, a future observation

corresponding to the second part, is

[ŷ∗ + â, ŷ∗ + b̂] , (16)

where ŷ∗ = xt∗β̂, â, b̂ are determined by (10) with F̂ replaced by

F̂0(x) =
1
K

#{k : N + 1 ≤ k ≤ N + K, δ̂k ≤ x} (17)

and δ̂k = yk − xt
kβ̂. It can be argued, as before, that the prediction interval (14)

((16)) has asymptotic coverage probability 1 − α, as N → ∞ (K → ∞).
If we look more carefully, we see that the model in Example 6 can be divided

into two standard submodels, so that the method of Section 2 is applied to
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each submodel, and, because of the sufficient statistics, there is not much loss of
efficiency in doing so. Of course, not every nonstandard mixed linear model can
be divided into standard submodels. For example, some of the zir’s in (2) may
involve covariates other than 0 and 1, such as in a random slope model. For such
nonstandard models we consider a different approach, described as follows.

Jiang (1998) has considered estimation of the distributions of the random
effects and errors. His approach is the following. Consider the empirical best
linear unbiased predictors (EBLUP) of the random effects:

α̂r = σ̂2
rZ

t
rV̂

−1(y − Xβ̂) , 1 ≤ r ≤ s , (18)

where β̂ is the EBLUE (see (7), and the definition of V̂ below it), and the
“EBLUP” for the errors

ε̂ = y − Xβ̂ −
s∑

r=1

Zrα̂r . (19)

Jiang (1998) showed that, if the REML or ML estimators of the variance com-
ponents are used, then, under suitable conditions,

F̂r(x) =
1

mr

mr∑
u=1

1(α̂r,u≤x)
P−→ Fr(x) , x ∈ CFr , (20)

where α̂r,u is the uth component of α̂r, 1 ≤ r ≤ s, and

F̂0(x) =
1
N

N∑
i=1

1(ε̂i≤x)
P−→ F0(x) , x ∈ CF0 , (21)

where ε̂i is the ith component of ε̂. Here CFr represents the set of all continuity
points of Fr, 0 ≤ r ≤ s.

For simplicity, in the following we assume that all the distributions F0, . . . , Fs

are continuous. Let y∗ be a future observation we would like to predict. As before,
we assume that y∗ is independent of y and satisfies a mixed linear model with the
same structure as (2), but with possibly different covariates. The latter means
that y∗ can be expressed as

y∗ = xt
∗β +

l∑
j=1

wjγj + ε∗ , (22)

where x∗ is a known vector of covariates (not necessarily present with the data);
wj’s are known nonzero constants; γj ’s are unobservable random effects; ε∗ is an
error. In addition, there is a partition of the indices {1, . . . , l} = ∪q

k=1Ik, such
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that γj ∼ Fr(k) if j ∈ Ik, where r(1), . . . , r(q) are distinct integers between 1 and
s (so q ≤ s); ε∗ ∼ F0; γ1, . . . , γl, ε∗ are independent. Define

F̂ (j)(x) = m−1
r(k)

mr(k)∑
u=1

1(wj α̂r(k),u≤x) , if j ∈ Ik (23)

for 1 ≤ k ≤ q. Let

F̂ (x) = (F̂ (1) ∗ · · · ∗ F̂ (l) ∗ F̂0)(x)

=
#{(u1, . . . , ul, i) :

∑q
k=1

∑
j∈Ik

wjα̂r(k),uj
+ ε̂i ≤ x}(∏q

k=1 m
|Ik|
r(k)

)
N

, (24)

where ∗ represents convolution; 1 ≤ uj ≤ mr(k) if j ∈ Ik, 1 ≤ k ≤ q; 1 ≤ i ≤ N .
Then it is easy to show that (20) and (21) imply

sup
x

|F̂ (x) − F (x)| P−→ 0 , (25)

where F = F (1) ∗ · · · ∗ F (l) ∗ F0, and F (j) is the distribution of wjγj , 1 ≤ j ≤ l.
Note that F is the distribution of y∗ − xt∗β. Let ŷ∗ be defined at (8) with β̂ a
consistent estimator, and â, b̂ by (10), where F̂ is given by (24). Then, by the
same argument as the first part of the proof of Theorem 2, it can be shown that
the prediction interval

[ŷ∗ + â, ŷ∗ + b̂] (26)

has asymptotic coverage probability 1 − α.

4. A Simulated Example

In this section we consider the mixed linear model

yij = β0 + β1xij + αi + εij , (27)

i = 1, . . . ,m, j = 1, . . . , ni, where the αi’s are i.i.d. random effects with mean 0
and distribution F1, and εij’s are i.i.d. errors with mean 0 and distribution F0.
This model may be considered as associated with a sample survey, where αi is a
random effect related to the ith family in the sample, and ni is the sample size
for the family (e.g., the family size, if all family members are to be surveyed).
The xij’s are covariates associated with the individuals sampled from the family
and, in this case, correspond to people’s ages. The ages are categorized by the
following groups: 0 − 4, 5 − 9, . . ., 55 − 59, so that xij = k if the person’s age
falls into the kth category (people whose ages are 60 or over are not included in
the survey). The true parameters for β0 and β1 are 2.0 and 0.2, respectively.
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In the following simulations, four combinations of the distributions F0, F1

are considered. These are Case I: F0 = F1 = N(0, 1); Case II: F0 = F1 = t3; Case
III: F0 = logistic (the distribution of log{U/(1−U)}, where U ∼ Uniform(0, 1)),
F1 = centralized lognormal (the distribution of eX − √

e, where X ∼ N(0, 1));
Case IV: F0 = double exponential (the distribution of X1 − X2, where X1, X2

are independent ∼ exponential(1)), F1 = a mixture of N(−4, 1) and N(4, 1) with
equal probability. Note that Case II - IV are related to the following types of
departure from normality: heavy-tail, asymmetry, and bimodal. In each case, the
following sample size configuration is considered: m = 100; n1 = · · · = nm/2 = 2,
and nm/2+1 = · · · = nm = 6. Finally, for each of the above cases, three prediction
intervals are considered. The first is the prediction interval based on the OLS
estimator of β; the second is that based on the EBLUE of β, where the variance
components are estimated by REML (see discussion in Section 2); the third is the
linear regression (LR) prediction interval (e.g., Casella and Berger (1990), page
576-577), which assumes that the observations are independent and normally
distributed. The third one is considered here for comparison.

For each of the four cases, 1000 data sets are generated. First, the following
are independently generated: (i) xij, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, uniformly from
the integers 1, . . . , 12 (twelve age categories); (ii) αi, 1 ≤ i ≤ m, from F1; (iii)
εij, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, from F0. Then yij is obtained from (27) with β0,
β1 being the true parameters. Because of the way that the data is generated,
conditional on the xij’s, the yij’s satisfy (27) with its distributional assumptions.
For each data set generated, and for each of the twelve age categories, three
prediction intervals are obtained according to (12), where α = 0.10 (nominal
level 90%): OLS, EBLUE, and LR; then one additional observation is generated,
which corresponds to a future observation in that category. The percentages of
coverage and average lengths of the intervals over the 1000 data sets are reported.

The results are given in Table 1, in which the letters O, E, and L stand
for OLS, EBLUE, and LR, respectively. The numbers shown in the table are
coverage probabilities based on the simulations, in terms of percentages, and
average lengths of the prediction intervals. Note that for OLS and EBLUE the
length of the prediction intervals do not depend on the covariates (if they are all
determined by (12)), while for LR the length of the prediction interval depends
on the covariate, but will be almost constant if the sample size is large. This, of
course, follows from the definition of the prediction intervals, but there is also an
intuitive interpretation. Consider, for example, the normal case. The distribution
of a future observation y∗ corresponding to a covariate x∗ is N(β0 + β1x∗, σ2),
where σ2 = var(αi) + var(εij) is a constant. So, if the β’s were known the length
of any prediction interval for y∗ would not depend on x∗. If the β’s are unknown
but replaced by consistent estimators, then if the sample size is large, one also
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expects the length of the prediction interval to be almost constant (not dependent
on x∗). For such a reason, there is no need to exhibit the lengths of the prediction
intervals for different categories, and we only give the averages over all categories.

Table 1.

Coverage Probability (%)
Case I Case II Case III Case IV

x O E L O E L O E L O E L
1 90 90 90 89 89 92 90 91 93 90 90 94
2 90 90 90 89 89 91 91 91 93 89 90 96
3 88 88 88 91 91 93 90 89 92 88 89 96
4 90 90 89 91 91 93 89 89 91 89 89 97
5 89 89 89 89 89 92 90 90 92 90 90 96
6 89 89 90 89 89 92 91 91 93 90 90 97
7 89 88 89 90 90 92 90 90 93 88 89 96
8 90 90 90 90 90 92 89 89 91 90 90 97
9 90 90 91 89 89 92 89 89 91 89 89 96
10 89 89 90 91 90 93 89 89 93 88 88 95
11 90 90 90 89 89 93 89 89 92 89 89 97
12 89 89 89 89 89 92 91 91 93 89 89 96

Average Length
4.6 4.6 4.7 7.0 7.0 7.9 8.1 8.1 9.0 12.1 12.1 14.3

It is seen that in the normal case there is not much difference among all
three methods. This is not surprising. The difference appears in the non-normal
cases. First, the LR prediction intervals are wider than the OLS and EBLUE
ones. Second, as a consequence, the coverage probabilities for the LR prediction
intervals seem to be higher than 90%. Overall, the OLS and EBLUE perform
better than LR in the non-normal cases. This is not surprising, because the
OLS and EBLUE prediction intervals are distribution-free. The EBLUE does
not seem to do better than the OLS. This was a bit unexpected. On the other
hand, it shows that at least in this special case the OLS, although much simpler
than the EBLUE in that one does not need to estimate the variance components,
can do just as well as more sophisticated methods such as the EBLUE.

5. An Application: Lead Contamination of Soil

Childhood lead poisoning has been declared by the U.S. Public Health Ser-
vice to be “the most common and societally devastating environmental disease
of young children”. Lead poisoning’s role in reduced intelligence, poor school
performance, and impaired social functioning has been well established. It is
believed that lead poisoning is largely due to exposure to lead hazards from
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deteriorated lead paint and lead-contaminated bare soil in substandard housing.
Children living in well-maintained housing can be poisoned by lead-contaminated
soil and by lead dust created by unsafe repainting and renovation practices that
disturb lead-based paint.

The data for this example came from a survey which was part of a joint
project by the Ohio Air Quality Development Authority and Case Western Re-
serve University. The overall goal for the project was to assess the sources,
nature, and extent of lead contamination of residential soils in Cleveland. Sixty-
nine houses were randomly selected from the area. For each selected house,
thirteen samples of soil were taken: one from the foundation, twelve from the
backyard of the house. Overall, a total of 726 samples were collected. Con-
centration of lead in those samples were then measured in a laboratory. It was
found that there was a tremendous amount of between-house variation as well as
within-house variation in the lead concentration. To model such variations, the
following nested error regression model, a special case of the mixed linear model
(1), was proposed:

yij = β0 + β1xij + β2pi + β3xij · pi + β4wi + αi + εij , (28)

i = 1, . . . , 77, j = 1, . . . , ni, where yij is the measure of lead concentration (in
unit of parts per million, or PPM) for the jth sample from the ith house; the
β’s are unknown regression coefficients; xij = 1 if the measure was taken from
the foundation, and 0 otherwise; pi = 0, 1, 2, or 3, if the house is not painted,
painted in good condition, painted in fair condition, or painted in poor condition;
wi = −1 or 1 if the house was built before 1950 or after 1950, and wi = 0 if that
information is not available; αi represents a house-specific random effect, and
εij is a random error which corresponds to within-house variation. Note that an
interaction between xij and pi is included. It is assumed that the random effects
are independent with an unknown distribution F , the errors are independent with
an unknown distribution G, and the random effects and errors are independent.
The sample sizes ni were supposed to be 13 but, in reality, many were less.

One problem of practical interest is to predict the level of lead concentration
at a randomly selected house given the information of age of the house and
paint condition. It would also be interesting to see if there is a difference in
lead concentration between the foundation and the backyard, and whether that
interacts with the paint condition. Since the mixed linear model (28) is standard,
we may apply the method developed in Section 2 to obtain prediction intervals.
Two methods are used in estimating the β’s: OLS and EBLUE, where for EBLUE
the REML estimators of the variance components are used. Table 2 gives the
estimates of parameters, where the numbers in parentheses are the corresponding
p-values (here 10−4 means that the p-value is less than 10−4).
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Note. Although the OLS estimator (5), as a point estimator, is the same as
the LS estimator, its standard errors are different from those obtained in linear
regression. One has

Var(β̂OLS) = (XtX)−1XtV X(XtX)−1 , (29)

where V is given below (7) (e.g., Diggle, Liang, and Zeger (1996), §4.3).

Table 2. Estimates of Parameters

β0 β1 β2 β3 β4 σα σε

OLS 228.8 68.9 77.8 524.1 -145.0
(.0002) (.29) (.09) (10−4) (.01)

EBLUE 230.9 48.5 54.4 570.9 -137.6 306.0 258.1
(.0002) (.37) (.21) (10−4) (.01) (10−4) (10−4)

It is seen that the OLS and EBLUE estimates of the regression coefficients
that are significant (at 5 percent level) are quite close. It is also notable that,
although the effects of location of the sample (foundation/backyard) and paint
conditions are found individually insignificant, their interaction is highly signif-
icant with a large (in absolute value) coefficient, β3. This suggests that the
location of the sample only matters for painted houses, indicating that the paint
is a main source of lead in soil. Based on the above estimates, 90% prediction
intervals are obtained for each combination of levels of the covariates. Table 3
shows the results for houses that were built prior to 1950.

Table 3. Selected Prediction Intervals (Pre ’50)

Covariate Prediction Interval
x p w OLS EBLUE
1 0 -1 [53, 1164] [49, 1161]
0 0 -1 [0, 1095]† [1, 1113]
1 1 -1 [655, 1766] [674, 1787]
0 1 -1 [62, 1173] [55, 1167]
1 2 -1 [1257, 2367] [1300, 2412]
0 2 -1 [140, 1250] [109, 1222]
1 3 -1 [1859, 2969] [1925, 3037]
0 3 -1 [218, 1328] [164, 1276]

† Lower end is truncated because it is negative (= −15).

The prediction intervals confirm an earlier speculation that there is a large
difference in lead concentration between foundation and backyard for painted
houses; however, such a difference is not significant for houses that are not
painted. Note that, unless the house is either not painted or painted but in
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good condition, the prediction intervals for foundation and for backyard do not
overlap.

6. Concluding Remarks

Distribution-free methods play, perhaps, a much more significant role in pre-
diction intervals than they do in confidence intervals, especially in large samples.
Central limit theorems are often useful in constructing confidence intervals, but
they may not help in obtaining prediction intervals. For example, when predict-
ing a single future observation, as is in this paper, the prediction interval for a
future observation is governed by the actual distribution of the observation, not
by an approximate normal distribution, unless the observation itself is normal;
and this is true whether the sample size is large or small.

Despite the well-known fact that methods developed in regression analysis
do not necessarily apply to mixed linear models, a simple method based on
the residuals prevails in obtaining prediction intervals for standard mixed linear
models. The latter, in fact, are credited with the majority of mixed linear model
applications. Although the EBLUE method has the potential of making an
improvement, this is not seen in our simulation study.
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A. Appendix: Proofs

Proof of Theorem 1. Write β̂ = β̂OLS . Because E(β̂) = β, we have

E|β̂ − β|2 = Etr((β̂ − β)(β̂ − β)t)

= tr(Var(β̂))
= tr((XtX)−1XtV X(XtX)−1) ,

where V is given below (7). It follows that V ≤ λI, where λ = σ2
0 +∑s

r=1 σ2
rλmax(ZrZ

t
r) = σ2

0 +
∑s

r=1 σ2
rλmax(Zt

rZr). Thus,

tr((XtX)−1XtV X(XtX)−1) ≤ λtr((XtX)−1)

≤ p

[
σ2

0

λmin(XtX)
+

s∑
r=1

σ2
r

λmax(Zt
rZr)

λmin(XtX)

]
.

The result follows.

Proof of Theorem 2. By standard arguments, it suffices to show F̂ (x) → F (x)
in probability for each x. For any η > 0, we have

F̂ (x) =
1
N

N∑
i=1

[
1(δ̂i≤x) − 1(δi≤x+η)

]
+

1
N

N∑
i=1

[
1(δi≤x+η) − F (x + η)

]
+ F (x + η)

= I1 + I2 + F (x + η) . (A.1)
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If 1(δ̂i≤x) > 1(δi≤x+η), then δ̂i ≤ x and δi > x + η. Thus, xt
i(β̂ − β) = δi − δ̂i > η.

Therefore, assuming |xi| ≤ B where B > 0, we have B|β̂ − β| ≥ |xt
i(β̂ − β)| > η,

or |β̂ − β| > η/B. It follows that

P (I1 > 0) ≤ P
(
1(δ̂i≤x) > 1(δi≤x+η) for some i

)
≤ P (|β̂ − β| > η/B) −→ 0 . (A.2)

On the other hand, let α = (αt
1 · · ·αt

s)
t. We have

I2 =
1
N

N∑
i=1

[
1(δi≤x+η) − P (δi ≤ x + η|α)

]
+

1
N

N∑
i=1

[P (δi ≤ x + η|α) − F (x + η)]

= I21 + I22 . (A.3)

By conditional independence,

E(I2
21) =

1
N2

E
{
E

[( N∑
i=1

(· · ·)
)2 ∣∣∣ α

]}

=
1

N2
E

{ N∑
i=1

var
(
1(δi≤x+η)|α

) }

≤ 1
4N

−→ 0 . (A.4)

Also, it is easy to show that P (δi ≤ x+ η|α) = F0(x+ η− ξi), where ξi is defined
by (4), and F (x + η) = EF0(x + η − ξi). Note that, if zt

irzjr = 0 (i.e., zir and zjr

have 1 in different places), 1 ≤ r ≤ s, or, equivalently, if zt
izj = 0, then ξi and ξj

are independent. It follows that

E(I2
22) =

1
N2

N∑
i,j=1

cov(F0(x + η − ξi), F0(x + η − ξj))

=
1

N2

∑
zt
izj>0

cov(F0(x + η − ξi), F0(x + η − ξj))

≤ |SN |
4N2

−→ 0 . (A.5)

Combining (A.1) — (A.5), we have F̂ (x) ≤ F (x + η) + oP (1), where oP (1)
represents a term that → 0 in probability. Similarly, we have F̂ (x) ≥ F (x− η) +
oP (1). It follows, by the arbitrariness of η and continuity of F , that

F̂ (x) − F (x) P−→ 0 . (A.6)

It then follows (e.g., Chow and Teicher (1997), page 283) that (A.6) remains true
with the left side replaced by supx |F̂ (x) − F (x)|. The rest of the proof is easy
to complete.
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